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Optimization is everywhere




Energy

Scheduling Supply chain

Routing

▶ Optimization improves efficiency throughout the economy

▶ =⇒ more productivity, less waste, lower costs, lower carbon, more utility

▶ What limits the use of optimization?
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Optimization modeling is the bottleneck

▶ problems can be long and complex, eg, this 64 page power systems problem

▶ require expert knowledge to model: among Gurobi’s commercial solver users,
81% have advanced degrees, 49% in operations research

▶ why is modeling difficult?
▶ what formulations will be slow or fast to solve?
▶ what backend solver will suit the problem requirements?
▶ what approximations are warranted?

▶ linear/quadratic, discrete/continuous, uncertain predictions, . . .

source: Wasserkrug et al., 2024; Gurobi Optimization, 2023

Madeleine Udell, Stanford. OptiMUS 4

https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230126.pdf


Optimization modeling is the bottleneck

▶ problems can be long and complex, eg, this 64 page power systems problem
▶ require expert knowledge to model: among Gurobi’s commercial solver users,

81% have advanced degrees, 49% in operations research

▶ why is modeling difficult?
▶ what formulations will be slow or fast to solve?
▶ what backend solver will suit the problem requirements?
▶ what approximations are warranted?

▶ linear/quadratic, discrete/continuous, uncertain predictions, . . .

source: Wasserkrug et al., 2024; Gurobi Optimization, 2023

Madeleine Udell, Stanford. OptiMUS 4

https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230126.pdf


Optimization modeling is the bottleneck

▶ problems can be long and complex, eg, this 64 page power systems problem
▶ require expert knowledge to model: among Gurobi’s commercial solver users,

81% have advanced degrees, 49% in operations research
▶ why is modeling difficult?

▶ what formulations will be slow or fast to solve?
▶ what backend solver will suit the problem requirements?
▶ what approximations are warranted?

▶ linear/quadratic, discrete/continuous, uncertain predictions, . . .

source: Wasserkrug et al., 2024; Gurobi Optimization, 2023

Madeleine Udell, Stanford. OptiMUS 4

https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230126.pdf


Example problem: pricing

▶ A global fashion brand sells articles of clothing in several markets.

▶ We have an estimate of how price changes affect sales for each article,
assuming constant price elasticity.

▶ Price changes must be in multiples of 1 euro.

▶ Initial prices for each article are given, and no more than 20% of the prices can
change.

▶ Each article has a maximum production volume; we cannot sell more than that.

▶ Given the sales forecast per article for the next twelve months and past
elasticities, the goal is to choose new prices for each article to maximize
expected revenue.
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Example model: pricing



Challenge of modeling an optimization problem

solving a real-life problem = modeling + solving

▶ solvers are extremely reliable
▶ but modeling requires expert knowledge

▶ understanding business logic
▶ mathematical modeling
▶ implementing solver code

How to make optimization more accessible? Answer: automate it!
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Optimization at scale

What makes an optimization problem “large”?

▶ many variables and constraints

▶ large data matrices

▶ long problem description

▶ many stakeholders

▶ complex business logic

▶ changing requirements

▶ solution requires patching together multiple techniques

▶ . . .
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Optimization modeling using LLMs

Attempt 1: just ask ChatGPT to write solver (e.g., gurobipy) code

▶ (+) easy

▶ (−) unreliable

▶ (−) doesn’t scale to large problems
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LLMs for everything?

unreliability is a problem for LLMs in many domains.

▶ code

▶ information retrieval and summarization

▶ mathematics

key attribute: can the output be reliably checked by

▶ traditional code?

▶ an LLM?

▶ a human?

exploit the unique attributes of optimization to reduce errors!
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How to use LLMs for optimization?

▶ ask the LLM for a solution
▶ NL4opt competition (Ramamonjison et al, 2022, 2023)
▶ LLMs as optimizers (Yang et al., 2023)

▶ ask the LLM to write a solver (“Code generation”)
▶ FunSearch (Romera-Paredes et al., 2024)
▶ Evolution frameworks: AlphaEvolve, OpenEvolve, ShinkaEvolve, DeepEvolve, . . .

▶ ask the LLM to call a solver (“Tool use”)
▶ OptiMUS: structured pipeline with error correction
▶ chain of experts: agentic system (Xiao et al., 2023)
▶ ORLM: semisynthetic data + finetuning (Tang et al., 2024)
▶ LLMOPT: structured pipeline + finetuning (Jiang et al., 2024)

▶ chatbots for optimization (“Copilot”)
▶ fixing infeasibility (Chen, Constante-Flores, & Li, 2023)
▶ what-if analysis (Li et al., 2023)
▶ modeling chatbot (Alibaba Cloud, 2022)
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Challenges and solutions

challenges:

▶ long problem descriptions

▶ big data matrices

▶ hallucination

▶ bad models

solutions:

▶ 1) decomposition 2) bigger context windows

▶ use a solver

▶ reflection and testing

▶ education

LLMs can introduce subtle errors:

▶ code runs, but the result is incorrect

▶ some constraints are ignored

▶ variable doesn’t match desired interpretation (eg, AbsPrice ̸= |Price| )

exploit the structure of optimization to reduce errors!
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OptiMUS-0.3

OptiMUS: Optimization Modeling Using Solvers

▶ a project to automate optimization modeling
▶ a suite of opensource tools for building an optimization copilot

Error 
Correction

Extract
 Parameters

Error
Correction

Extract
 Targets

Variables Constraints Objective

Error 
Correction

Formulate
Clauses

Code
Targets

Execute
and

Debug

Targets

▶ paper: https://arxiv.org/abs/2407.19633
▶ code: https://github.com/teshnizi/OptiMUS

▶ Optimus-0.2: AhmadiTeshnizi, Gao, and Udell, ICML 2024

https://arxiv.org/abs/2407.19633
https://github.com/teshnizi/OptiMUS
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OptiMUS: segment optimization problem

 A factory produces
several products. Each
product requires
different amounts of raw
materials, machine time,
and labor. Each product
generates a specific
amount of revenue. The
factory needs to
determine how much of
each product to produce
to maximize profits
while not exceeding
resource capacities.

Pre-processing

M Scalar Number of different machine types

MachineTimeCapacity [M] Capacity of machine time

MaterialRequirement [R, P] Amount of raw material required per unit of product

Parameters

The factory aims to maximize its
profits.

Objective Constraints

Production quantities of products are
non-negative.

Production quantities of products are
integral.

Total raw materials used for all
products cannot exceed

MaterialCapacity.

Total labor used for all products
cannot exceed LaborCapacity.

Connection Graph

A factory produces different
products, each requiring various
amounts of raw materials, machine
time, and labor. These products
generate specific revenues upon sale.

Background

NULL

OptiMUS preprocessor extracts parameters, constraints, objective, and background
information on the problem.
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OptiMUS: formulating a single constraint

For each material, the amount
used should not exceed the

available capacity.

MaterialReq
[R, P]

MaterialCap
[R]

Parameters

LaborCap
[L]

Maximize the total revenue
from producing various

products

Variables

Objective

Constraints

Production
[P]

For each material, the amount
used should not exceed the

available capacity.

MaterialReq
[R, P]

MaterialCap
[R]

Parameters

LaborCap
[L]

Maximize the total revenue
from producing various

products

Variables

Objective

Constraints

▶ OptiMUS identifies relevant variables and parameters for each constraint
▶ LLM only needs to parse and understand the relevant context for modeling,

coding, and debugging ⇒ needs much less context
Madeleine Udell, Stanford. OptiMUS 16



OptiMUS: completed formulation

VariablesParameters

Production [P] Amount of each product producedContinuous

m.setObjective(sum(Production[i] * Price[i] for i in range(P)), GRB.MAXIMIZE)

Objective

The factory aims to maximize its profits.

Constraints

Total raw materials used for all products cannot exceed MaterialCapacity. : 

 for j in range(J):
     m.addConstr(sum(Production[i] * MaterialReq[i][j] for i in range(P)) <= MaterialCapacity[j], name=f"M_Capacity_{j}")

Production quantities of products are non-negative. : 

for i in range(P):
    m.addConstr(Production[i] >= 0, name=f"Non-negativity_{i}")

A factory produces different products, each requiring various amounts
of raw materials, machine time, and labor. These products generate
specific revenues upon sale.

Background

ID:1

ID:k

MaterialReq [R, P] Raw material required per unit of product

M Scalar Number of different machine types

MachineTimeCap [M] Capacity of machine time

Madeleine Udell, Stanford. OptiMUS 17



Error correction
OptiMUS uses self-reflection to identify and fix common errors.

Does constraint Each system uses an integer
number of disk drives. need to be
explicitly modeled in the mathematical
formulation?

This statement seems to imply that we need to
ensure that the number of disk drives used by each
system is an integer. However, this is already
implicit in the variable definition, as we are
dealing with a discrete number of disk drives.

Therefore, I don't think this statement needs to
be explicitly modeled as a constraint in the
(MI)LP formulation.

Figure: OptiMUS-0.3 can fix its parameter and variable identification errors when prompted
“Is the value of P known or not?”



LLM reflects on its confidence

Llama isn’t sure whether the statement is a hard constraint or not.



Errors can be corrected with a more powerful LLM

GPT4o can correct Llama’s error.



Chain of Experts: an agentic system

source: Xiao et al., 2023
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ORLM: pure fine-tuning

source: Tang et al., 2024
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Experiments and dataset

Table: Benchmark datasets for optimization modeling

Dataset Description Length Instances (#MILP) Multi-dimensional Parameters

NL4Opt 518.0 ± 110.7 1101 (0) ×
ComplexOR 497.1 ± 247.5 37 (12) ✓
NLP4LP Easy (Ours) 507.2 ± 102.6 287 (0) ✓
NLP4LP Hard (Ours) 912.3 ± 498.2 67 (18) ✓
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Performance

LLM NL4OPT NLP4LP IndustryOR

Methods based on direct prompting
Standard GPT-4o 47.3% 33.2% 28.0%
Standard o1 > 95% 68.8% 44.0%
Reflexion GPT-4o 53.0% 42.6% –

Methods based on fine-tuning LLMs
LLMOPT Qwen1.5-14B 93.0%∗ 83.8%∗ 46.0%∗

ORLM Deepseek-Math 86.5%∗ 72.9%∗ 38.0%∗

Methods based on agentic frameworks
CoE GPT-4o 64.2% 49.2% –
OptiMUS-0.2 GPT-4o 78.8% 68.0% –
OptiMUS-0.3 GPT-4o 86.6% 73.7% 37.0%
OptiMUS-0.3 o1 – 80.6% 46.0%
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Ablation study

NL4OPT NLP4LP

Importance of Different Components

w/o Debugging 73.2% 26.7%
w/o Extraction EC 86.7% 60.5%
w/o Modeling EC 83.8% 65.7%
w/o LLM Feedback 86.6% 68.4%
OptiMUS-0.3 (GPT-4o) 86.6% 73.7%

Performance with Different LLMs

LLaMa3.1-70B-Instruct 70.4% 31.5%
GPT-4o 86.6% 73.7%
o1 – 80.6%

▶ easy problems need just a bit of debugging
▶ harder problems require error correction and LLM feedback
▶ harder problems benefit from more powerful LLM
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Ablation study: does debugging help?
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Figure: Left) Debugging improves performance. Right) For harder problems, most failures
arise from clause extraction. For easier problems, most failures are due to coding.
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Error correction finds and corrects most errors

Table: Error correction methods can find and fix a large fraction of errors in constraint
extraction (left) and constraint modeling (right), without modifying most correct items.
(Perfect performance is diagonal.)

Extraction

Not Modified Modified

Right 219 7
Wrong 9 41

Modeling

Not Modified Modified

Right 231 2
Wrong 4 22
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Longer problems are still more challenging
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Figure: Solve rate vs. length of problem description
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Example: production problem

A production planning problem:

▶ Given a number of products, each product is produced at a specific rate (in
tons per hour).

▶ There are a number of hours available in a week.

▶ A ton of each product results in a known profit.

▶ For each product, there is a lower limit and an upper limit on the tons of that
product sold in a week.

▶ The problem aims to maximize the total profit from selling all products.

▶ The total number of hours used by all products may not exceed the hours
available.

▶ How to decide the tons of each product to be produced?

Let’s try using the OptiMUS WebApp to solve!
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Example: identify parameters



Example: hallucinated constraint

“The production volume for each product must be an integer value”

No integrality constraint is explicitly mentioned, nor is it necessary from context.
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Example: spurious constraint

“The production for each product is constrained by its respective production in tons
per hour”

This is not be a constraint! It is enforced automatically as we use the
parameter.
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Example: incorrect coding

Constraint: “Non-negative production constraint for each product”

Formulation: TonsSoldp ≥ LowerLimitp



Example: incorrect coding

Constraint: “Non-negative production constraint for each product”
Formulation: TonsSoldp ≥ LowerLimitp



Example: data upload



Example: testing



Example: success!
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Teaching LLM advanced optimization

A good optimizer exploits structure. Can an LLM?

Modeling features

▶ Special Ordered Set (SOS)

▶ Indicator variables

▶ General constraints (norm, abs)

▶ . . .

Structures

▶ Total-unimodularity (network)

▶ SAT problem

▶ Constraint programming

▶ . . .

OptiMUS prompts the LLM to identify and deploy each relevant
structure/technique.
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Illustration: LLM, consider total unimodularity!

I have an optimization problem and here’s the description 

I have a network with a set of edges and vertices. The 
network has a source and a sink, and I also have 
information of the edge connectivity, say C_i = 1 if vertex 
i and j are connected

formulated as follows 

We know there is a type of mixed integer programming 
satisfying totally unimodularity, which we describe as 
follows  

Integer programming problems satisfying total unimodularity 
often come from the following background. 

1. Network Flow Problems: The constraint matrices of network 
flow problems, such as the maximum flow problem and the 
minimum cost flow problem, are totally unimodular. 

2. Assignment Problems: The constraint matrices for 
assignment problems, where tasks are to be assigned to 
agents 

3. ……

If the problem satisfies the aforementioned structure, 
please update the formulation accordingly

Pool of modeling techniques

SOS Indicator Abs

Pool of structures

TU ……SAT
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Do advanced optimization techniques help?

▶ Stanford plans to build new dining halls on campus.
▶ It costs Stanford cj = αjC to build a dining hall of capacity C

at candidate location j = 1, . . . ,K .
▶ Each campus residence houses ni students, i = 1, . . . , I .
▶ No more than one hall will be built in north campus and one in south campus.

Goal: minimize distance from students to food + building cost
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MILP formulation

Constraint: at most one dining hall can be built on south campus
Variable ck : capacity at location k (0 if not built at location k)

Common MILP formulation

▶ xk : whether location k is chosen

▶
∑

k∈S xk ≤ 1

SOS formulation

▶ ck : capacity at location k

▶ (c1, . . . , ck) ∈ SOS1
Madeleine Udell, Stanford. OptiMUS 44



Solution time

▶ OptiMUS generates two codes: one standard (MILP) and the other after
considering the special ordered set (SOS) technique.

▶ We test the performance of the model as the number of candidate locations
grows.
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Prompting LLMs to consider advanced techniques produces scalable models!
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Optimization and AI safety

It . . . seems perfectly possible to have a superintelligence whose sole
goal is something completely arbitrary, such as to manufacture as many
paperclips as possible, and who would resist with all its might any attempt
to alter this goal. For better or worse, artificial intellects need not share our
human motivational tendencies.

— Nick Bostrom, 2003. ”Ethical Issues in Advanced Artificial Intelligence.”
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AI and the future of work

AI can reduce inequality if it enables lower-ranked workers to perform
more valuable work. . . Because so many of the routine tasks that work-
ers previously performed have already been automated, a large fraction of
current jobs require non-routine problemsolving and decision-making tasks.
Empowering workers to perform these tasks more effectively, and to accom-
plish even more sophisticated decision-making tasks, will require providing
workers with better information and decision-support tools.

— Daron Acemoglu, David Autor, and Simon Johnson, 2023. ”Can we have
pro-worker AI?”
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Future directions. Submit a problem:

machine learning thrives on data — help us!

▶ better automated optimization modeling will require larger, more complex,
more realistic (natural language) problems

can a natural-language specification ever be unambiguous?

▶ pin down: query user to clarify goals
▶ quantify: assist with finding or assembling problem data
▶ build trust: enable non-expert oversight of optimization model with

visualizations, simple checks on synthetic data, constraint learning, . . .
▶ identify fragility: suggest scenarios that might break optimization model, and

robust formulations that reduce fragility

real-world problems are constantly changing! need dynamic, editable models.
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