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15. Lockboxes

Theory and Practice

This chapter is about investment strategies that use vehicles that we will call Lockboxes, as 
described in my working paper “Lockbox Separation” in June 2007 (available at  
www.stanford.edu/~wfsharpe) and a joint paper with Jason Scott and John Watson. “Efficient 
Retirement Financial Strategies,” written in 2007 and published in 2008 in John Americks and 
Olivia Mitchell's book “Recalibrating Retirement Spending and Saving”.

Initially, the discussion will be theoretical (antonym: realistic). This is a practice often engaged 
in by economists to simplify analysis and focus on key aspects of a problem. The reader's 
indulgence is requested in the hope that the key ideas will lead to useful and practical 
investment products and/or services.



Lockbox Contents

To begin, let's focus on the provision of income in a specific future year – for example, year 10 
(9 years hence). To keep things simple, let's also assume that both Bob and Sue will be alive at 
that time. Today we create Lockbox10 to provide their income in year 10. And today we put 
into the box, chosen amounts of some or all of three types of investments:

           1.   Zero-coupon TIPS maturing in 9 years

2. World Bond/Stock Mutual Fund or ETF Shares to be sold in 9 years

3. m-Shares maturing in 9 years

The box is to be sealed after the contents are put in, then opened at maturity (here, 9 years).

You were warned that this would be theoretical. Let's see why.

First, at present every maturity of TIPS securities provides coupon payments (although the 
coupons are relative low for some newer issues due to the exceedingly low interest rates in 
recent years). Second, there may be no outstanding TIPS issues with maturities for some future 
years. Third, at the time of this writing there is no single World Bond/Stock mutual fund or 
ETF (although one can be simulated using the procedures described in Chapter 7). And fourth, 
there are currently (in 2017) no m-shares per se, in the sense described briefly in Chapter 9. But 
our lockboxes are in part an aspirational concept, so please keep reading. 



m-shares

An m-share is a security that promises to pay a real amount per share at a single pre-specified 
maturity date, with the amount paid being a non-decreasing function of the cumulative real 
return on the market portfolio from the present to the maturity date.  Here, as throughout this 
book, the cumulative real return on the market portfolio at a given date equals the real value at 
a future date of $1 invested in the market today, so the cumulative return cannot be negative as 
long as the securities in the market portfolio have limited liability. As a practical matter, we 
assume that the World Bond/Stock Mutual fund is a sufficient proxy for the market portfolio.

As discussed in Chapter 9, a financial service firm could create any desired type of m-share by 
purchasing a portfolio of TIPS and the market portfolio and issuing two classes of shares. The 
first class would make the payments required for the desired m-share; the other class would 
make payments from the assets remaining after the first class was paid. While not absolutely 
necessary, it is preferable for both classes to be m-shares, with payments that are non-
decreasing functions of the cumulative return on the market portfolio.



Below is an illustration of the basic approach. The green curve shows a desired payout for a 10-
year security that we will call m-share A. As discussed in Chapter 9, this is equivalent to (1) 
purchasing market shares, (2) selling an option for someone to call the shares at a higher price, 
and (3) purchasing an option to allow the holder to sell shares at a lower price. As we know, in 
the option trade such an approach is sometimes called an Egyptian strategy.

Now, find the steepest slope along the green curve. Here it is equal to the slope shown by the 
dotted red line. Next, move this line up until it lies on or above the green line for every value 
on the x-axis. Here we use the lowest such line, shown by the solid red line, but we could have 
used a higher parallel line. We then purchase a combination of the risk-free asset and the 
market portfolio that will provide the real incomes shown by the solid red line. Then we issue 
two classes of shares: A and B. At the maturity date, we pay out the entire value of the fund to 
the two share classes, with the amount shown by the green curve to class A and the remainder 
to class B. Note that both classes are m-shares since the real income of each is a non-decreasing 
function of the cumulative real market return at maturity. As we have indicated, Class A 
provides payments equal to that of an Egyptian strategy: going from left to right the curve is 
flat, then up, then flat (fuf). And inspection shows that Class B provides payments equal to that 
which, as indicated in Chapter 9, is sometimes called a Travolta strategy. The amount paid to 
Class B shares, if shown  separately would plot on a curve that, going from left to right would 
go up, then be flat, and then go up again (ufu). Note that in order to qualify as a non-decreasing 
function of the cumulative market return, an m-share's curve cannot be vertical or downward-
sloping.



To generalize: A financial institution can create any desired type of m-share by following this 
approach. The result can provide one class of m-shares with the desired payout structure, and 
another class with a complementary structure. Absent outright fraud, there should be no default 
risk. And, given sufficient competition, overall expenses (fees, etc.) should be very low.

This example illustrates another important point. For every investor who wishes to have a 
payout that is a non-linear function of the return on the overall market, there must be one or 
more others willing to accept a payout that is a complementary function of the market return. 
For example, investors who want Egyptians need others willing to accept Travoltas, and vice-
versa. The prices of the two share classes will need to adjust as needed to clear the markets and, 
given any reasonable sort of equilibrium, the values of the classes should be close to the value 
of the underlying pool of TIPS and market portfolio shares used to create the m-shares.

The term “non-decreasing function” is cumbersome but essential. Consider a graph such as the 
one above, with the terminal value of the market portfolio at a given time on the x-axis and the 
terminal value of the m-share at that time on the y-axis. It must be possible to graph the 
payments made by the m-share by putting a pen (or stylus) at the origin, then moving it to the 
right and either horizontally or upward, but never vertically or to the left, all the while not 
picking the pen up until reaching the right side of the graph. This is a necessary and sufficient 
condition for the value of the m-share to be a non-decreasing function of the terminal market 
value.

Note that the market portfolio meets our definition of an m-share, as does a riskless real asset. 
In fact, we could have defined our lockbox as simply a box holding an m-share. But we choose 
to differentiate the three possible investments, restricting the term “m-share” to describe an 
instrument with payments that plot as a non-linear and non-decreasing function of the 
cumulative return on the market portfolio. 



Cost Efficiency

In Chapter 8 we showed that the least-cost way to obtain any given set of possible incomes in a 
year is to allocate the payments across scenarios so the amount of income is a non-increasing 
function of price per chance. We now show that the income produced by any investment in our 
type of lockbox is 100% cost efficient in this sense.

Consider the situation shown below. A couple has decided that $60,000 per year from savings, 
plus income from Social Security will provide a satisfactory standard of living in year 10. 
Accordingly, they invest in an m-share that will pay the amounts shown below, depending on 
the cumulative market return in the next nine years.

The terms of this m-share have been constructed so that there is a 33.3% chance that income 
will be below $60,000, a 33.4% chance that it will equal $60,000 and a 33.33% chance that it 
will exceed $60,000. In financial jargon, it is a Travolta.

This clearly meets the requirement for an m-share: income is a non-decreasing function of the 
cumulative return on the market. And, of course, each of the other two instruments allowed in 
our lockbox – investments in the market portfolio or TIPS would also provide income that is a 
non-decreasing function of the cumulative return on the market..



Recall the relationship between price per chance (PPC) and the cumulative return on the market 
portfolio: PPC is a decreasing function the return on the market, as shown below for year 10:



Combining the relationships in the two previous graphs gives the following:

  

Income is indeed a non-increasing function of PPC. And there is thus no cheaper way to obtain 
the chosen distribution of income. Thus the Travolta strategy's cost-efficiency is 100%. 

This result is more general:

1. The investments in any of our lockboxes will be cost-efficient, and

 2. any distribution of incomes in a year can be obtained at lowest cost using such a                
lockbox strategy.

Our type of lockbox strategy or the equivalent is thus a necessary and sufficient condition for 
100% cost-efficiency.

One note is in order before we continue. We have not considered dynamic strategies that adjust 
holdings of a risky portfolio and a riskless asset as values change, with the hope of obtaining a 
terminal value that is close to some pre-specified function of market return. The omission is 
intentional. In frictionless markets that allow frequent trades at prices that change by tiny 
increments, such strategies could provide cost-efficient results. But in actual markets, this is 
unlikely – the results could at best approximate a desired function and substantial costs would 
be incurred for frequent transactions.  



Utility

There is more. Chapter 9 showed that a person wishing to maximize the expected utility of 
income in a given year should choose a strategy for which the utility of income in each possible 
future state is equal to a state's price per chance times some positive constant plus some other 
positive constant. Thus a graph such as the one above can be taken to represent the relationship 
with the recipients' marginal utility of income in the year in question. It thus reveals important 
information about preferences. 

A particularly interesting aspect of this example is the range of PPC values for which the 
recipients have chosen a constant amount of real income.  The largest PPC in this range is 2.46 
times the smallest. This implies that the marginal decrease in utility from a slight decrease in 
income from $60,000 is almost 2.5 times as large as the increase in utility from a slight increase 
in income from that level. Using terminology from behavioral economics, the pain from a small 
decrease in income from the reference point of $60,000 is 2.5 times as great as is the pleasure 
from an increase of a similar magnitude. The recipients' underlying utility curve thus has a kink
at the reference point, leading to a reluctance to accept lower incomes unless the cost is very 
large and higher incomes unless the cost is considerably lower. 

This sort of behavior is consistent with key aspects of the approach presented by Amos Tversky 
and Daniel Kahneman in their seminal 1979 paper “Prospect Theory: An Analysis of Decision 
Under Risk”. Moreover, the ratio of implied marginal utilities at the reference point is close to 
the magnitudes frequently implied by choices made by subjects in empirical studies. Such 
experiments tend to suggest that for many people the displeasure from a small loss relative to 
the reference point appears to be two to three times as large as the pleasure from a small gain 
from that point. 

Tragically, Amos Tversky died in 1996 at the age of 59. In 2002, Daniel Kahneman received 
the Nobel Prize in Economics for their joint work (the Prize is not awarded posthumously). 
Perhaps we should follow suit and call a strategy such the one we have been analyzing a 
Kahneman instead of a Travolta. Rather than taking a position either way, we will refer to such 
an approach by the key characteristics of its plot: moving from left to right, it goes up, then 
remains flat, then goes up again. Thus, up-flat-up or UFU – pronunciation:  oo-foo. The plot for 
the complementary strategy, heretofore called an Egyptian, is flat, then goes up and then is flat 
again, hence: FUF (rhymes with muff).



While an UFU strategy may be preferred by some investors, it of course does not offer 
something for nothing. The figure below contrasts it with two equal-cost alternatives: 100% 
investment in the market portfolio and 100% investment in the riskless real asset. It may seem 
strange that the blue curve is only slightly above the red for lower market returns and well 
below it for larger returns. But this reflects the fact that money in low future market return 
states is considerably more expensive than money in high market return states. In competitive 
capital markets, there are no free lunches.  



Income Distributions and m-share Terms

In our ideal (theoretical) world, an investor can obtain any set of income probability 
distributions for future years that he or she can afford. In this section we will see how this could 
be done.

Consider the following situation. An investor has created a lockbox that will mature in year 2, 
with $1,000 invested entirely in the market portfolio fund. The probability distribution for its 
value at maturity is shown below.

The investor would like to have the same probability distribution of income (as seen from 
today) for every other future year.  We will use the lockbox for year 10 as an example. The 
problem is that the cumulative returns on the market portfolio through year 10 are not 
distributed in the same manner as those through year 2. But there is a way that an m-share class 
could be created to provide similar probability distributions of returns in the two years. 



We start with the creation and processing of a market data structure. From this we extract from 
the market.cumRmsM matrix column 2 with 100,000 possible cumulative returns through year 
2 and column 10 with 100,000 possible cumulative returns through year 10. The curve in the 
graph below shows a cross-plot of the two sets of returns, with each sorted from lowest to 
highest. Now, assume that this curve shows the terms of an m-share. In year 10 the issuer 
would plot the realized cumulative  return on the market portfolio on the horizontal axis, then 
pay an amount equal to the corresponding amount on the vertical axis. If future returns are 
drawn from  the 100,000 scenarios used for the construction of the m-share, it would offer the 
same ex ante distribution of  incomes in year 10 as did the market investment in year 2. 

But this is a big if. At the very least, we should examine the possible results provided by such 
an m-share using a newly generated matrix of market portfolio returns. And the results are 
likely to differ, if only slightly, from those on the curve showing its terms. For this reason it 
might be best to generate the curve using a larger number of scenarios and to smooth it 
somewhat, especially at the values corresponding to very large and very small cumulative 
market returns. 

These caveats aside, viewed from today, such an m-share could provide a probability 
distribution of possible cumulative returns 10 years hence very similar to the probability 
distribution of possible cumulative returns 2 years hence.  

More generally one could, in principle, design an m-share with a distribution of terminal values 
approximately equal to any type desired by enough investors to warrant the effort.



Linear Approximations of Income Distributions

At present there are few, if any, financial instruments can provide payments that are non-linear 
functions of the return on a broad bond/stock market portfolio over a period of many years. It is 
possible that eventually there might be sufficient demand for an investment firm to provide 
such securities using default-free and low-cost vehicles such as m-shares. But at present such 
low-cost and simple instruments are unavailable. An alternative is to create a lockbox with only 
TIPS and/or the market portfolio to provide a linear approximation of a desired distribution of 
income in a future year.

One way to do this is shown below. 

The blue curve is the same one shown earlier, but the y-axis has been labeled as the m-share 
payment in year 10. In addition, we have fitted a line to the points on the blue curve using our 
standard commands for least-squares regression:

  xvals = [ ones(length(x), 1) x ];
  b = xvals \ y;
  yFitted = b(1) + b(2)*x;  

Here, x is the vector of the x-values for the blue curve and y is the vector of the corresponding 
y-values  on the curve.



 

It may seem surprising that the red line seems to lie above the blue curve more than it lies 
below it. Why? Because there are fewer scenarios with cumulative market returns below 1.0 or 
above 3.0 than there are between 1.0 and 3.0, and each scenario is given equal weight when 
fitting the regression line, which is designed to minimize the sum of the squared deviations of 
the fitted (red) points from the original (blue) points. 

In this case, the the value of b(1) is 0.7162 and that of b(2) is 0.2124. These have direct 
economic interpretations. We can approximate the distribution of cumulative market returns 
obtained with the investment of $1 in the market portfolio held for 1 year (until year 2) with an 
investment in the risk-free asset and the market portfolio held for 9 years (until year 10). Note 
that the intercept indicates the ending value if the cumulative return on the market portfolio is 
zero (that is, nothing is left from investing in the market). Thus the return on the risk-free 
holding is $0.7162. But we know that this asset has a real return of 1% per year. Thus the initial 
amount invested in the risk-free asset must equal 0.7162/ (1.01^9), or $0.6548. 

Note also that if the cumulative return on the market is 1.0, the value of the m-share will equal 
0.7162+0.2124*1. The difference between the ending value if the cumulative return on the 
market is 1.0 and the value if it is 0 is thus 0.2142. Therefore the amount invested in the market 
initially must be 0.2124. More generally:

      Initial investment in the risk-free asset  = 
b1

(1+rf )t

     Initial investment in the market portfolio = b2

In this case, the sum of the two amounts invested  =  0.8672, so only 86.72% as much needs to 
be invested in lockbox10 as in lockbox2 in order to have roughly similar probability 
distributions of income in the two years.



Here are the actual distributions of income in years 2 and 10 for our two lockboxes, assuming 
the cost of the first is $1 and that of the second is $0.8672. As expected, they are similar, but 
not exactly the same. 



AMDnLockboxes 

It is useful to generalize the prior example. First, we can consider a set of lockboxes, maturing 
at the beginning of years 1, 2 and so on. As in the case shown for year 10, each can be designed 
to provide a distribution of values similar to that of a lockbox with $1 invested at present in the 
market portfolio and maturing a year hence at the beginning of year 2. We call such a set: 
AMD2 lockboxes.

By extension, we will also consider strategies designed to approximate returns obtained by 
holding the market portfolio for more years – hence AMD3, AMD4 and so on. More generally, 
an AMDn strategy is designed to provide for each year after year n, an income distribution 
approximately equal to the income distribution obtained by holding the market portfolio until 
the beginning of year n. Since we do not allow borrowing at the TIPS rate of interest, for cases 
in which n is greater than 2, we assume that the market portfolio and/or TIPS are held in each 
lockbox maturing before or at year n. 

Since AMDn lockboxes can be used for annuities or for strategies that do not involve 
annuitization, it is convenient to be able to create and process AMDnLockbox data structures 
that could be utilized for either purposes. Our goal is to create a generic version of such a set of 
lockboxes, with the total value invested in the first lockbox equal to 1.0. Subsequent functions 
can then scale the values in each of the  boxes, as needed.

Here is the AMDnLockboxes_create function: 

function AMDnLockboxes = AMDnLockboxes_create( );
  % creates an AMDn lockboxes data structure
  
    % year of cumulative market return distribution to approximate (n)
    % note: n must be greater or equal to 2
       AMDnLockboxes.cumRmDistributionYear = 2;       

 % lockbox proportions (computed by AMDnLockboxes_process)
       AMDnLockboxes.proportions = [  ];  

    % show lockbox contents (y or n)
       AMDnLockboxes.showProportions = 'n';
       
end     

The first parameter indicates the desired year's distribution to be approximated. The second 
provides a data element that will contain the proportions after AMDnLockboxes_process is run. 
And the last parameter indicates whether or not a graph of the results is to be shown.



The  AMDnLockboxes_process function has two main sections. The first does the calculations, 
the second provides a graph if one is requested. 

Here are the initial statements:

function AMDnLockboxes = AMDnLockboxes_process(AMDnLockboxes, market, client);

  % get number of years of returns 
     [nscen nyrs] = size( market.cumRmsM );

  % get n
     n = AMDnLockboxes.cumRmDistributionYear;
     if n < 2 ; n = 2; end;
     if n > nyrs; n = nyrs; end; 

  % set lockbox proportions for initial years to investment in the market portfolio
     xfs = zeros( 1, n-1 );
     xms = ones ( 1, n-1 ); 
  % create matrix of proportions
     xs = [ xfs; xms ];

This section creates the initial matrix of values for each lockbox maturity year, with the 
amounts for TIPS holdings in the initial row and the amounts for the market in the second row. 
While the holdings for year 1 (which will be spent immediately) could be any combination of 
TIPS and the market portfolio that sums to 1.0, we arbitrarily choose the market portfolio. We 
also use it for any subsequent maturity year prior to the year n-1. And, just to be safe, we insure 
that the values of n are within allowable bounds.  



These tasks complete, the function next computes the required contents for each of the 
subsequent lockboxes. For each one, we create a vector x of sorted cumulative market returns 
for the base year n and a vector y of sorted cumulative market returns for the year in question. 
Then, as in the earlier example, we use regression analysis to find the parameters of the least-
squares linear relationship between the two sets of values. The next statements compute the 
amounts to be invested in the riskfree asset and the market portfolio, using our prior results, 
then add them to the matrix xs. 

     

  % do regressions to compute contents of remaining lockboxes
     for yr = n: nyrs
        % sort cumulative returns
            x = sort( market.cumRmsM( : , yr ), 'ascend' );
            y = sort( market.cumRmsM( : , n ), 'ascend' );
        % regress y values on x values
        %     y = b(1) + b(2)*x
            xvals = [ ones(length(x), 1)  x ];
            b = xvals \ y;
        % compute lockbox contents
           xf =  b(1) / mean( market.cumRfsM ( : , yr ) );
           xm =  b(2);
        % add to xs matrix
           xs = [ xs  [ xf ;  xm ]  ];
     end % for yr = n: nyrs  
     

When all the lockbox contents have been computed, the resulting matrix is placed in the 
element proportions of the AMDnLockboxes data structure so that it can be used by other 
functions to produce incomes: 

  % add lockbox proportions to  AMDnLockboxes
     AMDnLockboxes.proportions = xs;
  



The remaining statements of the function produce a graph if desired, then end the function:

  % plot contents if requested
     if lower( AMDnLockboxes.showProportions ) ==  'y'
        fig = figure;
        x = 1: 1: size(xs,2);
        bar( x, xs' , 'stacked' ); grid;
        set( gca, 'FontSize' , 30 );
        ss = client.figurePosition;
        set( gcf,  'Position' , ss );
        set( gcf, 'Color' , [1 1 1]  );
        xlabel(  'Lockbox Maturity Year ' , 'fontsize' , 30 );
        ylabel(  'Amount Invested at Inception   ' , 'fontsize' , 30 );
        legend( 'TIPS ' , 'Market ' );

                   ax = axis; ax(1) = 0; ax(2) = nyrs+1; ax(3) = 0; ax(4) = 1; axis(ax);
        t = [ 'Lockbox Proportions for approximating Market Distribution in year ' num2str(n) ];
       title( t, 'Fontsize' , 40, 'Color', 'b' );
       beep;  pause;
     end; %if lower( AMDnLockboxes.showProportions) = 'y'    
     
end % function 

And here is the graph produced by the function for a case with n = 2:



Before proceeding, we need to consider the issue of sample bias. In principle, we should not 
use a matrix of possible cumulative market returns to construct our lockboxes, then analyze 
their performance using the same matrix of cumulative market returns. Any such matrix should 
be considered a sample of scenarios from the larger population of a great many possible 
scenarios. Ideally we would construct our lockboxes analytically using the formulas for the 
underlying distributions. Alternatively, we could employ a simulation using  the best possible 
sample of the population of scenarios, but this could require a huge matrix with millions or 
billions of rows. That said, we could at least construct the lockboxes with one sample of 
scenarios, then apply the results using another. For example, consider a case in which we create 
our usual market data structure using the statement:

market = market_process( market, client );   

then create a second market structure using the statement:

market2 = market_process( market, client ); 

This will use the same parameters for the risk-free real rate of return, market expected risk and 
return, etc. as in the earlier statement, but produce a different matrix of market cumulative 
returns. We would then create our lockbox contents using this new matrix:

AMDnLockboxes = AMDnLockboxes_process( AMDnLockboxes,  market2 );

The data structure market2 can then be discarded, with the original market structure used for  
subsequent computations. This will yield results that are still subject to error but are unbiased.



While this is a better alternative, it may be relatively harmless to simply use the same market 
data structure to create lockboxes and then to determine their performance. The following two 
graphs show the results of an experiment in which 100 different market structures with our 
parameters were used to compute lockbox contents.  The two leftmost dots reflect values that 
are all the same. For each subsequent year the results vary, as can be seen from the slightly 
elongated vertical plots, but the variations are very small indeed. Here, as with the survival 
probabilities, sampling error may be a minor concern. 



Returning to our main theme, consider a case with a single recipient named Angela. We assume 
that only Angela is alive (personal state 1) and that she will live for precisely 30 years. 
(Remember, this is still theoretical). She has enough money to invest $40,000 in lockbox 1 and 
proportionate amounts given by the lockbox contents shown in the bar chart above.

Here are the probability distributions of the values of the lockboxes at maturity, shown by the 
last version of the animated graph produced by setting the analysis.plotIncomeDistributions 
data element to 'y':  

The probability distribution for year 2 has the lowest real income for high probabilities and 
very low probabilities, and it has the highest real income for mid-range probabilities. The 
distribution for year 30 has the highest real income for high probabilities, the lowest for mid-
range probabilities and the highest for very low probabilities. Plots for other years fall neatly 
between these two. But the key result is that the distributions are, as desired, very similar. 



The figure below shows the last version of the animated graph obtained by setting  
analysis.plotYOYIncomes to 'y': 

There can be substantial variation from year to year in the early years, but less in the later ones. 
Moreover, the variation tends to be smaller following years with either relatively low incomes 
or those with relatively high incomes. 



Perhaps surprisingly, the relationship between real income and price per chance across 
scenarios (possible future states of the world) varies substantially from year to year, as shown 
by the following graph obtained by setting analysis.plotPPCSandIncomes to 'y' and, in order to 
obtain a plot with logarithmic values on both axes, setting 
analysis.plotPPCSandIncomesSemilog to 'n':

As with the previous graphs, this is the view near the end of the animation. The dark red curve 
shows the relationship for incomes in year 29. The flattest and shortest curve reflects the 
relationship for incomes in year 2. The remaining years fall between, covering larger income 
ranges, with greater slopes at the point at which the logarithm of PPC is 0 (and thus PPC = 1).

This may seem paradoxical. We assumed that Angela wanted similar probability distributions, 
viewed from today, for income in each future year. Yet her implied marginal utility functions 
for those years differ substantially. And this is not due in any way to mortality, since we have 
assumed that she is guaranteed to be alive through year 30. 

Why? The formal answer is straightforward. The range of costs (price per chance) for income is 
wider for years farther in the future. Yet Angela has chosen nearly the same range of incomes. 
She takes differences in costs (PPCs) into account, but changes her planned spending less to 
respond to differences in costs in later than in earlier years. 



Formally, only the curve for year 2 displays a constant degree of relative risk-aversion  – it 
plots as a straight line when both axes use logarithmic scales. For each of the other years, the 
curve becomes less steep as income increases or, viewed the other way, steeper as income 
decreases. This will be the case for any lockbox that contains both TIPS and the market 
portfolio. Why? Because the curve must approach a vertical line (formally, an asymptote) at the 
level of income provided by the safe asset (in this case, TIPS). 

The absolute value of the slope of such a curve is defined as relative risk aversion. Thus each 
of the curves for periods funded by lockboxes with both a market portfolio and a riskless real 
asset reflects decreasing relative risk aversion. For higher levels of income, the recipient 
changes the chosen amount of income less in states with higher or lower cost (price per 
chance). Anyone who chooses a combination of a safe asset and the market portfolio has thus 
made a choice that is consistent with maximizing a utility function with decreasing relative risk 
aversion. 

The result applies more broadly. Consider retirees who are receiving Social Security payments 
and invest all their other money in the market portfolio. Absent a change in the Social Security 
rules, their total real income can never fall below their Social Security payments, which 
provide an income floor. In a given year, no matter how large the price per chance may be for a 
particular state (scenario), their total income will be at least as large as that provided by Social 
Security. In either of the two previous diagrams, as one moves to higher values of PPC, the 
curve will become steeper, since it can never cross the vertical line representing Social Security 
income. 

The bottom line is that most retirees choose retirement income strategies consistent with utility 
functions with decreasing relative risk-aversion. But we know that the market portfolio is 
consistent with constant relative risk aversion. So, for there to be equilibrium, some people 
must take positions consistent with increasing relative risk aversion. Rich investors are likely 
candidates, as are those who have yet to reach retirement age. And also our children and 
grandchildren, who will have to pay taxes to provide additional funds to finance our Social 
Security payments after we retire and to cover payments on TIPS and other government 
securities. 

Enough about equilibrium. Let's return to the analysis at hand.



Next, we set analysis.plotYearlyPVs to 'y', producing the following figure:

     

The present values of the incomes produced in each year are very close to the values in our 
lockboxes (although some could differ slightly due to sampling error). And, as intended, the 
strategy is completely cost-efficient – there is no way to produce the chosen probability 
distributions of income at lower cost.



Finally, we set analysis.plotEfficientIncomes to 'y' to show again that our strategy is cost-
efficient and produces incomes in each year that fall on a linear functions of the cumulative 
market return. The result of the animation after 29 years have been shown is below. For each 
year, the actual results fall precisely on a fitted straight line. Moreover, the lines show the 
payoffs we intended – comforting, if not surprising. 



Constant Relative Risk Aversion

As we have seen, a desire to have roughly similar distributions of future income is consistent 
with different utility functions for each year, each of which exhibits decreasing relative risk 
aversion as income increases. 

On the other hand, we might consider retirees with constant relative risk aversion. One such 
possibility would involve investing all of the money in each lockbox in the market portfolio 
and putting the same amount of money in each one. Consider a case with $40,000 invested in 
each lockbox. The implied marginal utility functions through year 29 are shown below.

Each function plots as a straight line in a log/log graph and thus exhibits constant relative risk 
aversion. As one moves to lockboxes for later years, the range of possible incomes increases 
and the implied utility functions move upward and to the right. 



As shown below, the probability distributions of future real income also move to the right and 
the risk associated with future income is substantially greater, the farther in the future is the 
year in which a lockbox matures.



An alternative set of preferences would have the same implied marginal utility function for 
each future year. This is easily accomplished by putting securities with lower values in 
lockboxes with later maturities. Analysis of the prior graph of PPCs and Real Incomes can 
provide the recipe for such a strategy. As we will see later in the chapter, given the parameters 
we are using for risks and expected returns, the solution is to invest 0.98 times as much in each 
lockbox as in the one maturing in the prior year. 

The graph below shows the implied marginal utility curves for each of the years for a case 
using this approach with (a) an immediate income (in lockbox 1) of $40,000, (b) $39,200 ( = 
$40,000*0.98) invested in the market portfolio in lockbox 2 (maturing in a year),  (c) $38,416 
( = $ 40,000 *(0.98^2)) invested in the market portfolio in lockbox 3, and so on. 

With both axes plotted using logarithmic scales, all the curves are linear with those for later 
years extending farther towards the axes due to the fact that the longer the holding period, the 
greater is the range of possible cumulative market returns. 



This does indeed reduce the range of possible future incomes, as can be seen in the following 
graph:

Note the difference in the magnitudes on the horizontal axes of this graph and those in the 
corresponding one for the prior strategy. In this case the numbers shown on the horizontal axis 
are to be multiplied by 105 while those in the previous version were to be multiplied by 106 . 
This is not surprising, since less is invested for every future year. 

This may seem strange. Consider an investor with a constant relative risk aversion marginal 
utility function that spans the entire range in the prior diagram, is the same for every future 
year, and has the same degree of relative risk aversion as that of the market. One might assume 
that maximizing utility would result in the same level of risk, somehow defined, for each future 
year. But most people would likely consider the prospects shown in the graph above to involve 
greater risk for later years than for future ones. And many would likely prefer some other 
attainable set of prospects.



But what about a strategy with a constant level of relative risk aversion but one that differs 
from that of the market as a whole? Perhaps a retiree could select an approach that is optimal 
for different constant relative risk aversion marginal utility functions for each year, with each 
function more conservative than the prior one. 

Here is an example. Given the parameters we have chosen for expected returns and risks, the 
relative risk aversion for the market (shown by the slope in the graph with the logarithm of 
cumulative market return on the x-axis and the logarithm of PPC on the vertical axis) is 
-2.9428. What about choosing the market portfolio for the first year and a more conservative 
strategy for a later year? For example consider one for a constant level of relative risk aversion 
of, say,  -2.0.

The figure below shows two such marginal utility functions. 



We know that the first function will be consistent with an investment that is wholly invested in 
the market portfolio. But what about the second? Here is a graph showing the strategy return on 
the vertical axis and the market return on the horizontal. 

It would be straightforward to produce such range of returns with an m-share, but not with any 
combination of a risk-free asset and the market portfolio, since this function is non-linear and 
every possible combination of a risk-free asset and the market portfolio will provide returns 
that plot as a linear function of market return.

The conclusion is that absent the availability of suitable m-shares, it is impossible to obtain a 
portfolio optimal for an investor with a constant relative risk aversion marginal utility function 
with risk aversion that differs from that priced in the market portfolio. That said, it is possible 
to choose a combination of TIPS and the market portfolio for one year, find the implied 
marginal utility function, then find combinations for subsequent years that are optimal for the 
same marginal utility. The next section shows how.



Constant Marginal Utility Lockboxes

Our goal is to determine holdings of TIPS and/or the market portfolio in a series of lockboxes 
that will produce probability distributions of returns in each year with the same implied 
marginal utilities of income.

We begin by constructing a data structure CMULockboxes for such constant marginal utility 
lockboxes:

function CMULockboxes = CMULockboxes_create(  );
  % creates a CMU lockboxes data structure
  
    % initial lockbox market proportion: 0 to 1.0 inclusive
       CMULockboxes.initialMarketProportion = 1.0;
       
    % lockbox proportions (computed by CMULockboxes_process)
       CMULockboxes.proportions = [  ];   
       
    % show lockbox proportions (y or n)
       CMULockboxes.showProportions = 'n';
       
end      

The key element is the proportion of the first lockbox invested in the market portfolio (with the 
remainder in TIPS). As with our AMDnLockboxes, the goal is to produce a set of lockboxes 
with relative proportions of TIPS and the market portfolio. When the data structure is 
processed, a matrix with the proportions will be placed in the proportions element. Given the 
total amount of money to be invested, the actual values of the securities held in each lockbox 
can subsequently be computed by multiplying the lockbox proportions by an appropriate 
constant.

The final element indicates whether or not a bar graph showing the proportions is to be 
displayed.



The computations are of course handled by a separate function, here CMULockboxes_process. 
The first section handles the computations, the second the plotting (if desired). Here is the first 
portion:

function CMULockboxes = CMULockboxes_process( CMULockboxes, market, client );
  % computes lockbox proportions for an CMULockbox strategy
  
  % get number of years
     [nscen nyrs] = size( market.cumRmsM );
     
  % set proportions for year 1
     mktprop = CMULockboxes.initialMarketProportion;
     if mktprop > 1; mktprop = 1; end;
     if mktprop < 0; mktprop = 0; end;
     tipsprop =  1 - mktprop;
     
  % find ratio of market proportion each year to that for the prior year
     a = market.avec(2);
     b = market.b;
     logk = ( -log(1/a) ) / b;
     k = exp( logk );
  % compute market proportions for all years  
     mktprops = mktprop* ( (1/k).^(0:1:nyrs-1) );
     
  % compute TIPS proportions for all years   
     tipsprops = tipsprop * ( (1/market.rf).^(0:1:nyrs-1) );
     
  % compute lockbox proportions;
      CMULockboxes.proportions = [ tipsprops; mktprops ];

The function first finds the number of years for the current case from the market data structure, 
makes certain that the initial market proportion is between zero and one, then computes the 
associated proportion in TIPS. 

The next section computes the market proportions for all the desired years. As can be seen, the 
amounts depend on the parameters of the implied marginal utility function for the market 
portfolio – the a value for the first year and the b (relative risk aversion) value.

Next the proportions in TIPS for the years are computed. Not surprisingly, these depend solely 
on the riskless real return (which we assume to be the same for every horizon).

Finally, we create a matrix of the proportions in the same format used in for the 
AMDnLockboxes, with a column for each year, the proportions in TIPS in the top row and the 
proportions in the market portfolio in the bottom row.



Here is the remainder of the CMULockboxes_process function. With only slight changes to 
accommodate a different name, it is the same as the one shown earlier for the 
AMDnLockboxes_process function. 

      
  % plot contents if requested
     if lower( CMULockboxes.showProportions ) == 'y'
        xs =  CMULockboxes.proportions; 
        fig = figure;
        x = 1: 1: size(xs,2);
        bar(x, xs', 'stacked'); grid;
        set(gca, 'FontSize', 30);
        ss = client.figurePosition);
        set(gcf, 'Position', ss);
        set(gcf, 'Color', [1 1 1] );
        xlabel( 'Lockbox Maturity Year ','fontsize', 30 );
        ylabel( 'Amount Invested at Inception   ', 'fontsize', 30 );
        legend( 'TIPS ', 'Market ' );
        ax = axis; ax(1) = 0; ax(2) = nyrs+1; ax(3) = 0; ax(4) = 1; axis(ax);
        t = [ 'Lockbox Proportions for Constant Marginal Utility ' ];
        title( t, 'Fontsize', 40, 'Color', 'b' );
        beep; pause;
     end; % if lower(CMULockboxes.showContents) = 'y'    
     
end % function 



Lockbox Combinations

Thus far we have provided for two somewhat extreme approaches to the creation of lockbox 
proportions. The first attempts to generate incomes with approximately similar probability 
distributions in different years, without taking into account the fact that in more distant years 
there are greater ranges of cost (price per chance). The second generates incomes that conform 
with the same marginal utility function, achieving similar responses to differences in cost (price 
per chance) but generating considerable differences in the probability distributions of income.

It is entirely possible that a retiree (or a couple thereof) might prefer an approach that 
compromises on the two possible objectives – with asset allocations falling between the two 
extremes. To accommodate such cases, we provide a data element that can produce a set of 
lockboxes with contents equal to a weighted average of two or more other sets of lockboxes. 

Here is the function for creating such combinedLockboxes:

function combinedLockboxes = combinedLockboxes_create( );
  % creates a lockbox by combining other lockboxes
  
     % lockboxes to be combined (data structures) 
       combinedLockboxes.componentLockboxes = {     };
      
     % proportions of lockboxes being combined
     %   one value for each lockbox; values greater than or equal to 0
     %   values will be normalized to sum to 1.0
       combinedLockboxes.componentWeights = [ ];
       
     % title of combined lockboxes
       combinedLockboxes.title = 'Combined Lockboxes';
       
     % combined lockboxes proportions produced by combinedLockboxes_process
       combinedLockboxes.proportions = [ ];
       
     % show combined lockbox contents (y or n)
       combinedLockboxes.showCombinedProportions = 'n';
       
end     

The first element should contain a list of lockbox data structures and the second the desired 
weight assigned to each of them. The next element allows for a title. After processing, the  
proportions element will contain a matrix with the proportions of TIPS and the market portfolio 
in the lockboxes, using the format in our prior data structures. The last element determines 
whether or not the process function should provide a bar chart of the resulting proportions. 



The function that produces a combined lockboxes data structure, and a bar chart if desired, is 
straightforward:

function combinedLockboxes = combinedLockboxes_process(combinedLockboxes,market, client);
  % combines componentLockboxes in combinedLockboxes to create a new lockbox
    n = length(combinedLockboxes.componentLockboxes);
    wts = combinedLockboxes.componentWeights;
    wts =  max( wts, 0 );
    wts = wts / sum(wts);
    
    boxprops = combinedLockboxes.componentLockboxes{1}.proportions;
    combprops  = wts(1) * boxprops;
    for i = 2:length( combinedLockboxes.componentLockboxes )
        boxprops = combinedLockboxes.componentLockboxes{i}.proportions;
        combprops  = combprops + ( wts(i) * boxprops );
    end; 
    combinedLockboxes.proportions =  combprops; 
    
  % plot contents if requested
     xs =  combinedLockboxes.proportions;
     nyrs = size( xs, 2 );
     if lower( combinedLockboxes.showCombinedProportions ) == 'y'
        fig = figure;
        x = 1: 1: size(xs,2);
        bar( x, xs', 'stacked' ); grid;
        set( gca, 'FontSize', 30 );
        ss = client.figurePosition;
        set(gcf, 'Position', ss );
        set(gcf, 'Color', [1 1 1 ]);
        xlabel( 'Lockbox Maturity Year ', 'fontsize', 30 );
        ylabel( 'Amount Invested at Inception   ', 'fontsize', 30 );
        legend( 'TIPS ', 'Market ' );
        ax = axis; ax(1) = 0; ax(2) = nyrs+1; ax(3) = 0; ax(4) = 1; axis(ax);
        t = [ 'Lockbox Proportions for ' combinedLockboxes.title ];
        title( t, 'Fontsize', 40, 'Color', 'b');
        beep; pause;
     end; %if lower(combinedLockboxes.showContents) = 'y'    
     
end % function 

The create and process functions could have provided for graduation ratios so that lockboxes 
for later years would have lower or higher income distributions and corresponding marginal 
utility functions. Instead, such a feature will be included instead in programs that use lockboxes 
to provide annuity payments or non-annuitized incomes.



Here are the proportions for a combination with equal proportions of AMD2 and CMU 
lockboxes, obtained by setting:

 combinedLockboxes.componentWeights =  [0.5000 0.5000];

Not surprisingly, the proportion for each year is a 50/50 combination of the proportions for the two 
other strategies. 

Absent the availability of m-shares, retirees can either need to choose retirement income 
strategies that provide payments with significantly different probability distributions of income 
at future dates, adopt an approach consistent with marginal utility functions of future income 
that differ substantially, or select some combination of the two approaches.  Moreover, given 
the fact that most retirees will receive fixed real payments from Social Security or some other 
sort of defined benefit plan, it will be important take into account all sources of income. The 
remaining chapters explore some of these implications in detail for the construction of 
strategies for providing income with and without insuring against longevity risk. In both 
contexts, lockboxes can play a prominent role. 
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