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8. Valuation

What is the present value of a contract that promises to pay you $1000 ten years from now? 
The answer depends on the conditions in which the promise will be kept. If the payment is 
absolutely certain to be paid it should be worth the current cost of a ten-year zero coupon bond 
paying $1,000 at the time. But if there is any chance that the bond will pay less than $1,000 or 
possibly nothing at all, it is worth less than the value of a risk-free bond. But how much less? 
What is it really worth?

This chapter provides a method for valuing strategies with uncertain future payments. Not 
surprisingly, many sources of retirement income fall into this category, especially when income 
is measured in real terms. As we will see, the ability to estimate the present value of a range of 
possible future real incomes can reveal important aspects of alternative retirement income 
approaches.



The Capital Asset Pricing Model

A standard approach for the valuation of uncertain future payments, taught in undergraduate 
and MBA level finance courses, is the Capital Asset Pricing Model described in Chapter 7. The 
key result for valuation is the Security Market Line, which implies that the expected return on 
an asset i should be determined by (1) the risk-free rate, (2) the scaled covariance of its returns 
with those of the market portfolio (its beta value) and (3) the excess expected return on the 
market over the risk-free rate. In symbols:  

ei=r f +βi(em−r f )

In many cases, the expected returns and the risk-free rate are expressed as percentages (e.g. 
10%) or fractions (e.g. 0.10). But they can also be expressed as value relatives (e.g. 1.10) and 
the equation will still hold. In what follows we assume that all returns are measured as value 
relatives.

Now, let vi be the uncertain payment made by asset i at the end of a year. Its expected value 
relative will equal the expected value at year-end divided by the price today. 

ei=
e (vi)

p

For our purposes, the beta measure is based on the covariance of the value relative for the asset 
and that for the market portfolio:

βi=
cov (ri , rm)

var (rm)

But the numerator can be expressed in terms of the current price of the asset and the covariance 
of the amount that will be received a year hence and the value relative for the market portfolio:

cov (r i , rm)=cov (
v i

p
, rm)=( 1

p
)×cov (v i , rm)



Putting all these relationships together and re-arranging terms provides an expression for the 
current price of an asset based on the expected value of the probability distribution of the 
payments it will provide at year-end and the covariance of such payments with the value-
relatives for the market portfolio:

pi  =  

e(v i)  −  
cov (v i , rm)×(em−r f )

var (rm)
r f

In the world of the CAPM this relationship will hold for any security or portfolio. 



State Prices

As indicated earlier, the CAPM is an equilibrium valuation model derived in the early 1960's 
based on the assumption that investors care only about the mean and variance of return 
distributions. And this assumption followed the prescriptions of Markowitz' portfolio theory, 
first published in 1952.  A different approach to valuation of assets with uncertain returns was 
developed in the 1950's by Kenneth Arrow (“Le Role de valeurs boursieres pour la repartition 
le meillure des risques” in 1951) and Gerard Debreu (in a 1951 article and a 1959 book “The 
Theory of Value: An Axiomatic Analysis of Economic Equilibrium”.

The Arrow/Debreu approach views the future in terms of a set of alternative states of the 
world.Their key insight was to show that in a complete market, for each future time period 
there could be a set of contingent claims, each of which would provide payment in one and 
only one of such states. The value of any security that provides payments that differ across 
states could then be determined by multiplying the amount paid in each state times the price of 
a claim to receive $1 if and only that state occurs, then summing the results. 

I explored the Arrow/Debreu approach at great length in my 2007 book, “Investors and 
Markets, Portfolio Choices, Asset Prices and Investment Advice”. There I argued that the 
Arrow/Debreu (or state-preference) approach provides a richer way view asset valuation under 
uncertainty than does the CAPM . That said, the two approaches have considerable similarities. 
In the standard one-period setting for which the Markowitz approach was developed, and in 
which the CAPM is set, the mean/variance assumption can be considered a special case of the 
more general state-preference analysis. But it has some disadvantages in a one-period case and 
even more in a multi-period setting, as we will see.  

To start, consider a simple world with only one future period a year hence. For simplicity, 
assume there are 1,000 future states of the world and that we know the return on the market 
portfolio for each one. Now, consider an “Arrow/Debreu” security that pays $1 at the end of the 
year if and only if the first scenario takes place and $0 if any other scenario occurs. We can 
create its “payoff vector” with a “1” in the first row and “0” in the other 999 rows. Question: 
what is the present value of this security? Not a problem if the CAPM holds. We simply do the 
computations using the previous formula. The result is the present value of $1 to be received if 
and only if state (scenario) 1 occurs. In finance parlance, it is the value of an option to receive 
$1 if that condition obtains. 



Now, assume that this procedure has been repeated for each of the 1,000 possible one-scenario 
payment options. The figure below shows the results from a case with our default market 
parameters (in which the risk-free value relative os 1.01, the excess return value relative for the 
market is 1.0425 and the standard deviation of the market value relative is 0.125).

Note, first that each of the state prices is small, since there is only one chance out of a thousand 
that any particular one will pay off. The y-value at top of the graph is 3x10-3  or  $0.003.  



To get a better sense of the scale, it is useful to divide each price by the probability that the 
security will pay off (in this case, 1 out of 1,000) to obtain the price per chance, or PPC. The 
results for our example are shown in graph below.

Note that for every scenario with a given market value relative, the PPC value is the same. 
Moreover, the smaller the return on the market portfolio the greater is the PPC. More generally, 
the relationship is monotonic, downward-sloping and linear. The first two characteristics make 
great sense, as we will argue later. But the latter can lead to problems.  

For states of the world in which the return on  the market portfolio is especially high (here, 
greater than 40%) the state price and price per chance are both negative. This makes no 
economic sense. Why would someone actually pay youto hold an option which could either 
produce nothing (if the market return is less than 40%) or something (if it is greater than 40%)? 
A market in which you can obtain money now in return for accepting the chance (however 
small) that you will receive more money in the future is one that we can only dream about. 



This problem comes from the assumption that investors care only about the mean and variance 
of the probability distribution of outcomes. We will have more to say about this in the next 
chapter. But such implications are well known. Markowitz himself has justified mean/variance 
preferences as only approximations for investors' true utility functions. Prices such these, 
obtained from the CAPM, are best viewed as approximations as well. For many purposes they 
may suffice. But, as we will see, a somewhat different approach is likely to provide better 
estimates of state prices and PPCs. 



Constant Elasticity Pricing Kernels

In the asset pricing literature, the set of state prices (or prices per chance) is termed the pricing 
kernel for a market. Some call this (or the values obtained by multiplying each price by the 
risk-free value relative) the set of Stochastic Discount Factors (SDFs) or, collectively, the 
Stochastic Discount Function We will avoid such terms, since they are at the very least 
confusing and could be misleading. Henceforth, the price for  income to be received if and only 
if a state occurs will be termed the state price and the price per unit of chance (probability) the 
PPC.

As we have seen, if the CAPM holds, the pricing kernel is linear. But this is at best a rough 
approximation. Negative prices make no economic sense. And one would imagine that the right 
to receive income in very dire markets (with low value relatives) should be worth considerably 
more than implied by the linear functions in the previous section.

The following figure shows an alternative (in red) along with the CAPM results (in blue).

As can be seen, this new pricing kernel produces relatively similar state prices for midrange 
market returns, but avoids negative state prices and also produces high state prices for extreme 
market declines –  all features likely to be found in actual capital markets.



But how did we produce this new kernel? The answer is obvious when both axes are plotted on 
logarithmic scales (using the MATLAB loglog plotting function), as in the following diagram.

Here it is clear that the relationship shown by the red curve is linear, so that at every point in 
the diagram, a given small percentage change in the logarithm of the market value relative is 
associated with the same percentage change in the PPC. With a logarithmic scale, a given 
distance represents the same percentage change at every point (as can be easily seen by 
examining the horizontal grid lines). Economists use the term elasticity to refer to the ratio of 
the percentage change in one of two related variables divided by the percentage change in the 
other. In this case the  (instantaneous) elasticity is  the same at every point along the red curve. 
Thus the relationship exhibits constant elasticity. 

In this case, the elasticity is -2.94, so that for every 1% increase in the market value relative the 
PPCs (and state prices) fall by roughly 2.94%. Later we will show how to calculate this 
coefficient directly. But first we focus on the economics of the situation.



Downward-sloping Demand Curves

Both our the linear pricing kernel and the constant elasticity version plot as downward-sloping 
functions, with lower prices associated with greater market value relatives. This makes great 
economic sense. In most markets, higher prices result in lower quantities demanded. Looked at 
the other way, scarce goods and services command higher prices in order to ration the existing 
supply. This is often termed the economic law of demand: in a diagram with quantity 
demanded on the horizontal axis and price on the vertical axis, the relationship will plot as a 
downward-sloping curve. Some would say this is the most important theorem in micro-
economics. With rare exceptions, in competitive markets in which prices are freely set, lower 
prices are associated with greater quantities.

It seems entirely plausible that such a relationship should hold in capital markets. Low market 
value relatives are associated with bad times for investors and, in most cases for non-investors 
as well, since major declines in security values generally signal greater chances of hard times 
for the real economy.  The pricing kernel should thus be downward-sloping for a very good 
reason: people will pay more for a scarce good (a dollar in bad times) than for a plentiful good 
(a dollar in good times). In bad times, there will be fewer dollars to go around, so people will 
pay more in advance to have one of them. This is the essence of asset pricing theory, whether it 
be the CAPM or this more general pricing kernel approach.

There is, of course, the question of how to estimate the actual demand curve. As we will see, 
there are good reasons for selecting the constant-elasticity form and, given our assumptions 
about the risk-free return and the distribution of market returns, the parameters of the function 
can be easily determined.



Multi-period Pricing Kernels

The setting for the CAPM and the mean/variance portfolio theory from which it was derived 
involves present investment followed by a payoff one period hence. More succinctly, both are 
one-period models. But in the real world, people often invest money now in order to receive 
payments not only a year from now but in subsequent years as well. To be sure, some investors 
have a horizon of one year (or less). But others have horizons of two, three or many years. 

There is no agreed-upon model of equilibrium in a world in which investors have different  
horizons. But the it is easy to show that the CAPM is not up to the task. Consider a world in 
which the the model holds for both this year and next year. If so, the pricing kernel for each 
year will be a linear function of the value-relative for the market portfolio in that year:

p1=a−b Rm1

p2=a−b Rm2

The price (present value) of $1 two years from now will be the product of its present value for 
year two times the present value for year 1:

p1 p2=a2−abRm1−ab Rm2+b2 Rm1 Rm2

Clearly the price today of a dollar two years from now will depend not only on the total value 
relative for the market over the two years (the product of the two value relatives in the last 
term) but also on the way in which that total value was achieved (the individual returns in the 
second and third terms on the left of the equal sign).  And the the farther in the future the 
payment, the more terms that will be required for its valuation. 



Contrast this with the case when the pricing kernel has constant elasticity. Assume that the one-
period kernel is:

p=a Rm
−b

Then for a horizon of two years:

p1 p2=a Rm1
−b×a Rm2

−b=a2(Rm1 Rm2)
−b

More generally:

p st=a t Rmst
−b

where pst is the present value today of a dollar to be received at time t in scenario s and
Rmst is the cumulative value relative for the market from the present to time t in scenario s.  

Graphically, the relationship between state price and cumulative market return will be a 
downward-sloping curve for any future horizon (t). This has important implications, as we will 
see.



Cost-efficiency

The figure below, based on 100,000 scenarios and returns for 25 years, shows PPC values and 
Cumulative Value Relatives for the final year, using a constant-elasticity pricing kernel based 
on our standard parameters for the risk-free return and the distribution of market returns. As 
before, the values are plotted on logarithmic scales. Two strategies are represented. The first, 
which is a “buy and hold” strategy that invests in the market portfolio at the outset and holds it 
until year 25, plots as a set of points on the straight blue line. The second, represented by the 
red points, involves an “active management” strategy in which some assets are held in less-
than-market proportions and others are held in more-than-market proportions. This could be 
done on a permanent basis, say by holding only one of the four components in our world 
bond/stock market surrogate. Or a manager might choose different holdings in each year and 
scenario. Or a combination of the two approaches. For this exercise, returns for the active 
strategy were obtained by adding to each market value relative in the matrix a normally-
distributed variable with a mean of zero and a standard deviation of 0.05. 



Clearly, such an active strategy has non-market risk, since the red dots scatter around the 
pricing kernel. And, in an important sense, this is an inefficient strategy. Consider any case in 
which one of two points lies to the northeast of the other. The figure below provides an 
exaggerated example.

For emphasis, the horizontal axis has been labeled “payment” since the value relative can be 
used as a payment and the vertical axis has been labelled “price”, since a PPC is simply a 
present value (price) divided by its probability. Here scenario j plots to the northeast of scenario
i, showing that it provides a greater payment in a state with a higher price. Consider a switch in 
which payment i is provided in the scenario with a greater price and scenario j is provided in 
the scenario with a lower price. The resulting situation, shown by points i' and j',provides the 
same two payments but the total cost is clearly lower. 



Such an active strategy is clearly inefficient in this sense, since many pairs of points can be 
found in which the greater of the two payments is provided in the more expensive state of the 
world. In any such case there is a better way to provide the same set of payments at lower cost. 
All one has to do is sort the prices from lowest to highest, then arrange to get the highest 
payment in the least expensive state, the next-to-highest payment in the next-to-least expensive 
state, and so on. More generally, one can sort the vector of prices in  ascending order and the 
vector of payments in descending order, then assign each element in one vector to the one in 
the same position in the other. The sum of their products will be the cheapest way to obtain the 
original set of payments.

More simply, the following Matlab code will do the job.

 currentValue = prices' * payments;
 minimumValue = sort( prices, 'ascend' )' * sort( payments, 'descend'  );

Finally, we can divide the minimum value by the current value to provide a measure of the cost 
efficiency of a strategy:

 costEfficiency = minimumValue / currentValue;

In this case shown earlier, the the cost efficiency of the active strategy shown by the red dots is 
0.9185, indicating that the same exact distribution of payments could have been obtained for 
91.85% of the cost of the current strategy. To cover the possibility of ties, we can say that: 

   for a cost-efficient strategy, payments are a non-increasing function of state prices. 

And since, market value relatives are a non-increasing function of state prices:

  for a cost-efficient strategy, payments are a non-decreasing function of market value relatives.

 For conciseness we term an approach of this type a market-based strategy – its payments do 
not have plot as a strictly upward sloping function of market returns or value relatives, but the 
curve can never go down. 



If an active manager simply adds uncertainty to returns by overweighting some investments 
and underweighting others investments relative to market proportions, the investor will obtain 
results that could have been produced for less with a market-based strategy. In the earlier case 
in which the manager provided a return each year equal to that of the market return plus a 
normally-distributed variable with a mean of zero and a standard deviation of 0.05, the result 
could lower a recipient's standard of living 25 years hence by over 8%. And this is in addition 
to the losses resulting from management fees, transactions costs, etc.. Of course the impact of 
active management will depend on the period over which it does its damage. The following 
graph shows the cost-efficiency in this case for holding periods from 1 to 50 years in length. 
The longer the period, the greater the possible loss.

Of course these estimates are based on the assumption that our market portfolio is in fact 
“priced” in capital markets so that any other portfolios will be cost-inefficient. And the 
quantitative impact will depend not only on the length of time the portfolio is held but also on 
the magnitudes of departures from market returns, which could be less (or more) than assumed 
in our example. 



Investment Glide Paths

One might assume that any strategy which invests only in the market portfolio and/or TIPS 
would have a cost-efficiency of 1.0 (100%). This will indeed be the case for any approach that 
invests in one or both assets, holds each component for some number of years, then spends the 
proceeds at the end of the period. But not necessarily for an approach that varies holdings in the 
two assets from time to time before the proceeds are spent .

Consider an investment policy that starts with 100% invested in the market portfolio, then buys 
and sells securities at the end of each year so that the proportion in the market portfolio will be 
4% less than at the end of the prior year, ending with 0% invested in the market portfolio in 
year 25 and thereafter. Glide path strategies of this type are often recommend for those 
accumulating assets for retirement and sometimes for retirees as well.

Here are results for year 25 with 100,000 scenarios, using our standard return assumptions. 
Clearly, there is not one-to-one relationship between the amount of an ending value and its 
price. Why? Because there is not a monotonic relationship between the cumulative 
performance of the market portfolio and that of the strategy. The strategy's performance 
depends on both the terminal value of the market portfolio but also the path that it took to reach 
that value. More succinctly, this is a path-dependent strategy. And, as in our previous case, the 
strategy is not cost-efficient. 



Making the computations shown in the previous section, yields an estimated cost efficiency for 
year 26 of 0.926. This means that it would be possible to achieve the same probability 
distribution of returns with a market-based strategy for 92.6% of the cost.

To be sure, these results depend on our overall model of capital market returns and valuations 
as well as the specific parameters that we have used for the computations. Different 
assumptions will undoubtedly give different numeric estimates. And shorter and more gentle 
glide paths will generally cause less inefficiency (as we will see in later analyses). But many 
financial advisors advocate strategies for providing retirement income that give path-dependent 
returns; thus it is useful to estimate the resultant inefficiencies and added costs.



A Multi-period Capital Market Equilibrium

Consider a world in which the pricing kernel for each period is the same and has constant 
elasticity. As we have shown, only investment strategies that provide payments in each year 
that are monotonic non-decreasing functions of the return on the market portfolio are cost-
efficient. In such a setting, each informed investor will choose to invest in either the riskless 
asset, the market portfolio, a combination of the two or some security with returns that are 
market-based (in the sense that the returns are a non-decreasing function of the return on the 
market portfolio). Assume that there are investors with different horizons, from one year to 
possibly many years. In such a setting, every informed investor would choose some 
combination of a riskless asset and the market portfolio or a derivative thereof. At any given 
time, the markets would clear and the market portfolio would be cost-efficient for every 
horizon (t) since as we have shown:

p st=a t Rmst
−b

 

This is a powerful reason for choosing such a pricing kernel. It is consistent with a possible set 
of equilibrium asset prices.

Of course this convenient result doesn't mean that actual asset prices are set in this manner. In 
the real world, people do have different horizons and in many cases they tailor their portfolios 
accordingly in the belief that the results are preferable to the sorts of market-based strategies 
that we recommend. Actual aspects of market equilibrium are undoubtedly far more complex 
than those in our simple model thereof. Yes, our assumptions are consistent with equilibrium, 
but as Ralph Waldo Emerson, a nineteenth century American poet and philosopher wrote   “a 
foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers 
and divines.” He could have added to the list economists such as the present author.

One might imagine that empirical evidence could be marshaled to support or reject the 
characteristics of our assumed equilibrium. Some attempts have been made, but the problem is 
a difficult one. First, historic empirical data are limited. Even if underlying return distributions 
were constant from year to year, we have a limited number of observations of annual returns on 
a broad market portfolio (say, 100 from a 100-year history). And we have no direct way of 
measuring ex ante prices for market returns that did not occur. 



An alternative is to observe prices of securities such as traded option contracts that offer 
payments related to the return on a broad market portfolio. But such prices typically reflect 
both state prices and probabilities. In our world of many scenarios, it is possible to determine a 
price for each state and time based on the market return at that time in that state. And each of 
our scenarios has the same probability. And there may be multiple states with the same market 
return at a given time. The price for a claim that pays one dollar when the market return equals 
that amount will reflect both the number of such states and the price per state. To be sure, it will 
have the same price per chance (PPC) as does each of the component states and one may be 
able to infer that PPC value from the prices of different option contracts. But to find the state 
price, one must make an assumption about the forecast probability of the state – the chance (C) 
in the denominator of price per chance (PPC). 

Valiant efforts to overcome these obstacles have been made by several researchers  using the 
prices of options on U.S. stocks and bonds – most notably, work by Stephen Ross in “The 
Recovery Theorem, in the Journal of Finance in 2015. But data are limited and the task is not a 
simple one. At this point results, are suggestive but not definitive. That said, the pricing kernels 
derived in such studies appear to exhibit decreasing slopes in a standard diagram with price on 
the vertical axis and payoff on the underlying asset on the horizontal axis, as does our constant-
elasticity formula. 



Computing the Pricing Kernel Parameters

Given the form of our pricing kernel, it remains only to compute the parameters associated with 
the assumptions about returns on the market portfolio and the riskless asset. We need to find the 
values of parameters a and b for the pricing kernel:

p st=a t Rmst
−b

These parameters should produce present values (prices) that correctly value the total proceeds 
in any future year from investing a dollar in the market portfolio at $1. And the same present 
values should value the total proceeds in any future year from investing a dollar in the risk-free 
asset at $1. Of course, if this holds for the first year it will hold for every future year and, as a 
result, for any multi-year holding period. Thus it suffices to find parameters that “price” returns 
for the first year: 

p s1=a1 Rm1
−b

More simply put:

∑ ps Rms=1

∑ ps R fs=1

But since the two left-hand sides equal the same value (1), we may write:

∑ ps Rms=∑ ps R fs



Substituting our pricing formula gives:

∑ a Rms
1−b=∑ a Rms

−b R fs

Clearly, coefficient a can be dropped from each side, leaving an equation with a single 
unknown – the elasticity measure b. It would be a relatively simple matter to solve for this 
value numerically, say by trying different values until the equation held to any desired degree 
of precision. Then the value of coefficient a could be found that would make each side in the 
original equation equal 1.

This procedure could be repeated for the each year. If there were an infinite number of 
scenarios, the resultant estimates of the coefficients should be the same. But even with 100,000 
scenarios we do not have the entire population of possible returns on the market that would be 
generated by the assumed lognormal distribution. Instead, we have a samples of that 
population, one sample for each year. Because of this, the method will provide different values 
of the coefficients a and b in our pricing equation for each year in the analysis. And this, in 
turn, will violate the desired characteristics of our multi-period equilibrium.

Fortunately there is another approach, provided by one of my coauthors John Watson for an 
early paper employing this valuation method: “The 4% Rule – at What Price?” Jason S. Scott, 
William F. Sharpe and John G. Watson, in the Journal of Investment Management, Third 
Quarter, 2009. It computes the coefficients for a constant elasticity pricing kernel directly from 
the parameters of the lognormal return distribution for the market return and the risk-free rate.



The first step is to produce the constant-elasticity coefficient:

b=
ln (Em/ R f )

ln (1+S m
2/ Em

2 )

Given this, the constant term can be computed: 

a=(√(Em×R f ))
b−1

Our standard assumptions are that:

R f =1.01
Em=1.0525
S m=0.125

Which gives:

a=1.0524
b=2.9428



Computing Present Values 

All the results from the previous derivations in this chapter are implemented by adding six 
statements to the market_process( ) function.

Recall that in chapter 7 we included a statement to compute the total expected return for the 
market portfolio by adding the risk-free rate of return to the market expected excess return:

u = market.exRm + ( market.rf – 1 ); 

Using this parameter, the standard deviation of the market return and the risk-free rate, we can 
compute the parameters of the pricing function:

b = log( u/market.rf ) / log(1 + (market.sdRm^2) / (u^2) );
a = sqrt( u*market.rf ) ^ ( b-1 );

Next, we create a set of at terms as a vector:

as = ones(nrows,1) * ( a .^ ( 0: ncols-1 ) );

then a complete matrix of price per chance values:

market.ppcsM = as .* ( market.cumRmsM .^ -b );

To complete the task, we divide by the number of scenarios to obtain a matrix of present 
values:

market.pvsM = market.ppcsM / nrows;



Sampling Errors

It might seem that the creation of 100,000 scenarios is overkill. One often hears about Monte 
Carlo analyses in which 1,000 or 5,000 or even 10,000 scenarios have been analyzed. We do 
not use the term “Monte Carlo” since it conjures up images of super-rich people gambling, not 
ordinary people trying to live comfortably in retirement. That said, many such studies deal with 
probability distributions of market portfolio returns, as do our analyses. And there is good 
reason to believe that results of such analyses would have been more valuable had more 
scenarios been generated. As we have seen, the time, effort and computer time involved need 
not be significantly great as long as programs are written in a language able to efficiently 
perform operations on large matrices (cue the advertisement for Matlab).

This said, even with large samples there will still be some differences between the 
characteristics of the samples drawn from underlying probability distributions and those of the 
hypothesized population parameters, as examination of the present values for our pricing kernel 
will show.



In principle, the present value of the cumulative returns on the market portfolio in any year 
should equal $1.00, and so should the present value of the cumulative returns on the risk-free 
asset.  But for any particular set of draws from the distributions this may not be the case. The 
following heat diagram shows the results from 5,000 analyses, each of which used 100,000 
scenarios. For each future from year 1 through year 57 (the last for the Smith Case), the colors 
show the distribution of the computed present value for investment in the market portfolio. In 
the majority of cases it is close to $1.00, and in almost all cases the values fall with a range 
from $0.95 to $1.05 (and the very few outside the upper and lower values are included with 
those values). But for the very distant years, the computed value can differ substantially from 
the theoretical population value of 1.0.



The next diagram provides results for the risk-free rate of interest in these cases. Although there 
is no uncertainty about the cumulative value of a risk-free investment, divergences of the 
market return distribution from its theoretical values produce errors in the pricing kernel. These 
errors may not be fully offset by the divergences in the market return distribution as in the 
previous diagram, and such price errors can lead to greater possible errors in the valuation of 
long-term risk-free investments. As in the previous diagram, the range of possible sample errors 
is greater for more distant years and can be substantial for cash flows to be received in the very 
distant future.



Of course, the probabilities of receiving substantial incomes after 50 years in retirement are 
relatively small, due to the inexorable toll taken by mortality. Thus the actual impact of 
sampling errors on valuations for retirement income plans is likely to relatively small. To 
provide a more relevant view, we valued a fixed annuity for the Smiths that provides a constant 
real income for every year that Bob and /or Sue is/are alive plus an amount equal to one-year's 
payment to their estate. The figure below shows the results from 5,000 cases (each with 
100,000 scenarios) of the present value divided by the mean over all the cases. As can be seen, 
the values fall around the theoretical (mean) value with relatively small deviations. In no case 
was the error more than 2%, and in roughly 90% of the cases it was less than 1%. 



Another mitigating fact is that in many cases our interest is in the relative values of various 
aspects of a retirement plan (such as the present value of fees vis-a-vis spendable income) so 
sample pricing errors in some variables will be at least partially offset by similar errors in other 
variables. 

The bottom line is that valuations will be subject sampling errors. In some cases it may be 
prudent to increase the sample size (say, from 100,000 scenarios to 500,000) or to repeat the 
analysis to examine the variation between cases. It may also be useful to set the random 
number generator so that results may be repeated in future analyses. The simplest way to do 
this is to execute the Matlab command:

rng( n )

where n (the “seed”) is a positive integer. This will produce a predictable set of “pseudo-
random” numbers for each of the future uses of rand or randn functions. We will generally not 
do this, retaining a certain element of surprise whenever an analysis is re-run but accepting the 
fact that these are, after all, attempts to model phenomena that are ultimately less-than-perfectly 
known, even probabilistically.

With this caveat in mind, we are ready to move on to considerations of the preferences of the 
beneficiaries of a strategy or strategies for providing retirement income.
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