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Abstract
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their problem using an expected utility framework. In contrast, many financial advisors
rely instead on rules of thumb. We show that some of the popular rules are inconsistent
with expected utility maximization, since they subject retirees to avoidable, non-market
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Efficient Retirement Financial Strategies

Today’s retirees are making increasingly complex financial decisions. Goneare

the days when one could rely solely on government or corporate pensions. The freezing

or elimination of pension plans, combined with the rapid introduction of defined

contribution plans, has forced retirees to rely more and more on their own investments to

fund their retirement spending. Retirees are not only expected to fund a larger portion of

their retirement spending, but early retirement and increased longevity imply their assets

must support potentially longer retirements as well. To address this responsibility, a

retiree has either implicitly or explicitly adopted an investment strategy to govern his

investment decisions and a spending strategy to govern his spending decisions. A pair of

investment and spending strategies constitutes a retirement financial strategy.

Economists have long explored the issue of optimal spending and investment

strategies (Merton 1971). A major theme of their work is that optimal or efficient

solutions are only achieved when investment and spending decisions are made in tandem

as part of a complete retirement financial strategy. Economists use a standard framework

in which the retiree’s goal is to maximize expected utility in a complete market.

However, solving such a utility maximization problem requires detailed knowledge about

the retiree’s preferences. Moreover, one must make assumptions about the trade-offs

available in capital markets. Not surprisingly, financial advisors rarely embrace this

approach; rather they rely on “rules of thumb”. For example, one popular rule suggests

annually spending a fixed, real amount equal to 4% of initial wealth and annually

rebalancing the remainder to a 40%-60% mix of bonds and stocks. The goal of this

chapter is to consider whether the advice suggested by financial planners is consistent
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with the approach advocated by financial economists. More specifically, we examine

some rules of thumb to see if they are consistent with expected utility maximization, for

at least some investor in a standard market setting. If a rule is consistent, we say it is

efficient and refer to the underlying utility as the investor’s revealed utility.

In what follows, we make several key assumptions—the assumptions of our

canonical setting. Regarding retiree preferences, we assume they are well modeled by

additively separable utility functions.1 Moreover, we assume that spending preferences

take into account mortality estimates and the retiree’s attitudes concerning his spending 

relative to that of any beneficiaries, and that the amounts to be spent under the plan will

go either to the retiree or to beneficiaries. Further, we assume, as do many rules

advocated by financial planners, that no annuities are purchased. Our assumptions about

asset prices are consistent with a condition associated with models of asset pricing such

as the Capital Asset Pricing Model and a number of Pricing Kernel Models—only risk

associated with the overall capital market is compensated. More specifically, we assume

that there is no compensation in higher expected return from taking non-market risk

(Cochrane 2005; Sharpe 2007). Further, to keep the mathematics as simple as possible,

we will develop our results using a simple complete market consisting of a riskless asset

and a risky asset. Our risky asset tracks the market portfolio, which is assumed to follow

a binomial process.

In the remainder of this chapter, we first provide the details of our canonical

setting and formulate the financial economist’s problem—find the investment and

spending strategies that maximize a retiree’s expected utility. We then develop conditions

and tests to determine whether an arbitrary retirement strategy is optimal or efficient, and
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the equations for its revealed utility, when it exists. We then introduce the simple

complete market to be used for illustrative purposes. Next we describe a fundamental

spending strategy that employs lockboxes. We discuss three efficient lockbox strategies

and their revealed utilities. We next look at two popular rules of thumb used by financial

planners. We show that the first rule, the investment glide path rule, is efficient provided

it is paired with a very specific spending rule. We show that the second rule, the constant

4% spending rule, is only efficient when all investments are in riskless securities. Finally,

we conclude with a summary of results and some topics for further investigation.

Revealed Utility and Retirement Spending

A retiree, who maximizes his expected utility, is faced with the following

problem. For each year in the future, and for all states of the world in each year, our

investor must optimally choose how much to consume and an investment policy to

support that consumption. If markets are complete, our retiree can purchase contingent

claims on the future states, and cash in these securities to pay for consumption. We

assume that markets are complete, so that the investment alternatives are known, and

only the consumption values are to be determined. Let “t” index future years, “s” index 

future states, and the pair “t,s” index a state that occurs at time “t”. We denote 

consumption by Ct,s, the probability that a state occurs by t,s, the current price of a

contingent claim by t,s, utility from consumption at time t by Ut(C), and initial wealth by

W0, Our investor must choose consumption values that maximize the function:

  )(CUπmax(1a) st,tst,

and also satisfy the budget constraint:

  st,st,0 ΨCW(1b)
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In Eqs.(1), the summations are with respect to all states and times. Note that we have

assumed that all states occurring at time t have the same utility function Ut, and that this

utility is only a function of consumption at time t. The maximand in Eq.(1a) is the

expected utility of the consumption plan, which is assumed to be time separable. We

assume that the utility functions Ut(C) are increasing and concave, i.e., Ut(C) > 0 and

Ut(C) < 0. In other words, we assume that investors always prefer more to less, and are

risk averse. We term this the canonical retiree problem: given an initial wealth, to find

the set of consumptions at every time and state in the future that will maximize expected

utility, where these consumptions are provided by investments in state contingent claims.

Throughout, we assume that the retiree has a known separable utility function, knows the

probabilities of future states, and knows the prices of contingent claims.

Many economists will find our canonical retiree problem both familiar and

sensible, though most practitioners are likely to consider it beyond the pale. How many

retirees know their utility functions? Very few, at best. But by choosing a particular

retirement financial strategy, a retiree has either made a mistake or revealed something

about his preferences. When we examine some popular strategies, in each case we seek to

determine (1) whether the strategy is consistent with expected utility maximization, and

(2) if so, what are the characteristics of the associated utility function. A strategy that

meets condition (1) will be said to reveal utilility in the sense that we can, if desired,

answer question (2)–that is, determine the characteristics of the utility function for

which the strategy would be optimal.
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The relevant equations for this task are derived from the first order equations for

the maximization problem. The full set of such equations includes the budget constraint

and the following equations for each time t and state s:

st,st,0,00st,t /πΨ)(CU/)(CU(2) 

In Eq.(2), the right-hand side is the ratio of the state-price to state-probability, sometimes

termed the state’s price-per-chance (PPC).2 For any given time in the future, a retirement

strategy prescribes a set of consumption values—one for each state. Using these choices

and a model that specifies the price-per-chance for each state, we can infer the marginal

utility function Ut(C) for that time period, if it exists. Such a function exists if two

conditions are met. First, the strategy must provide a single consumption value for each

time and state. Secondly, in order to recover a concave utility function, consumption must

be higher in states with lower price-per-chance and the same in all states with the same

price-per-chance. More succinctly, if for a given time we rank the states in order of

increasing consumption, this must be equivalent to ranking the states in order of

decreasing price-per-chance. If such an ordering is possible, we can then integrate the

marginal utility function to get a revealed utility function. We note that the revealed

utility functions Ut(C) are not completely unique; for each time we can add an arbitrary

integration constant, and all times can have a common positive multiple, namely

U0(C0,0). Fortunately this non-uniqueness is economically immaterial.

A key ingredient in our analyses is a model of the characteristics of asset prices.

Since contingent claims prices are not observable, we need to make an assumption about

the nature of equilibrium in capital markets. We adopt a multi-period generalization of

the results obtained with several standard models of asset pricing, such as the Capital



Sharpe, Scott, and Watson–July 2007 7

Asset Pricing Model, some Pricing Kernel models, and the binomial model employed

below. In particular, we assume that the explicit or implicit contingent claim prices at any

given time t are a decreasing function of the cumulative return on the overall market

portfolio from the present time to that time period. Equivalently, if for a given time we

rank the states in order of increasing market return, this must be equivalent to ranking the

states in order of decreasing price-per-chance. This is the market setting for our canonical

retiree problem.

For the remainder of the chapter, we will consider a state “s” at time “t” to be 

synonymous with cumulative market return at time “t”. So a retirement strategy must 

predict a single consumption value for any particular market return, and be independent

of prior market returns, i.e., the particular paths that led to the final cumulative return.

Further, since we assume that the price-per-chance is a decreasing function of market

returns, the existence of a revealed utility requires that consumption be an increasing

function of market return. Although our illustrations utilize a binomial process, the results

apply in other settings as well.

Not all retirement strategies have revealed utilities. Three straightforward tests

can be used to identify obvious violators. First, the retirement strategy cannot lead to

multiple values of consumption for the same cumulative market return. Consumption

must be path independent. Second, the present level of wealth for every state (before or

after consumption) must also be path independent. If not, either consumption will

ultimately be path dependent (a violation of the first test), or it must be the case that for

one or more paths not all wealth will have been spent (a violation of optimality).
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The third test is both non-obvious and subtle, but exceedingly powerful. We term

it the principle of earmarking. If knowledge of a state provides knowledge of

consumption, and state prices exist, then at any point in time, the retiree’s portfolio can 

be subdivided into assets that are earmarked for consumption in that state and time. It

follows that assets allocated to all states at a given time can be aggregated so that our

retiree also can identify the assets earmarked to support spending in any given year.

Maximizing expected utility implies that our retiree knows at any point in time how much

wealth is currently earmarked for consumption at each future date. If the wealth allocated

to consumption at a specific time is uncertain, this uncertainty must translate to

uncertainty regarding consumption in at least one state at that time, which necessarily

violates maximizing expected utility.

A Simple Complete Market

In this section, we describe the simple complete market we use in the remainder

of this chapter. Generally, a market is complete if the set of all contingent claims can be

constructed using its assets. Our simple market has just two assets, a deterministic risk-

free asset and a stochastic risky asset. The yearly returns on the risk-free asset are

assumed constant, while the returns on the risky asset will track the returns of the total

market portfolio. We assume that in any year the market is equally likely to move up or

down, that the characteristics of the movements in each year are the same, and that the

movement in any year is independent of the actual movements in prior years. More

succinctly, the market moves are independent and identically distributed coin-flips, and

thus the total number of up-moves (or down-moves) over a span of years has a binomial

distribution.3
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Given the above assumptions, our complete market is specified by three

parameters: (1) the total annual market return Ru for an up-move, (2) the total annual

market return Rd for a down-move, and (3) the total annual return Rf on a risk-free asset.

All three of these annual returns are assumed to be real. For example, the values Ru =

1.18, Rd = 0.94, and Rf = 1.02 give a market portfolio with an annual expected real-rate

of return of 6%, a volatility of 12%, and a Sharpe Ratio of 1/3. These values roughly

correspond to an aggregate market portfolio made up of 40% bonds and 60% equities.

We take the initial value of the market portfolio to be one, which is the value at

the root of the binomial tree. After one year, the market value is equal to Vm,1 = Rm,1. This

value, the random total market return for the first year, can equal either Ru or Rd. In

Figure 1, we draw two paths emanating from the initial market value, one up and one

down, that connect the initial value to the two possible values at t = 1. After two years,

the market value is equal to the random product Vm,2 = Rm,1Rm,2. It can have one of three

possible values { Ru
2, RuRd, Rd

2 }, but there are now four different, equally likely paths,

{ up-up, up-down, down-up, down-down } connecting the initial value with the three

final values. The up-down path and the down-up path lead to the same market return,

namely RuRd, and this value is twice as likely as either of the two possible paths that lead

to it. After t years, the market value Vm,t = Rm,1Rm,2Rm,t can have one of (t+1) possible

values, { Vt,s = Ru
sRd

t-s | 0 s  t }, where the parameter “s” is the total number of “up-

moves”—a useful parameter for indexing the market values. On the other hand, there are

2t paths between the initial state and the final states. The number of paths that have the

market value indexed by s at time t will equal the binomial coefficient for “t-choose-s”. 
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Hence, the state probability t,s, the probability that the market’s value is equal to Vt,s, is

given by the expression:

t
st, 2

s)!(ts!
t!

π(3) 




In Eq.(3), an exclamation point is used to denote a factorial.

Figure 1 here

Associated with every path of the binomial tree is the price today of a security

that pays $1 if and only if that path is realized. We term these securities path-contingent

claims. We can use standard arbitrage pricing techniques to compute any such price. The

price of a claim to receive $1 at a given time and state is the cost of a dynamic strategy

using the market and the risk-free asset that will provide this amount and nothing at any

other time and state. For example, the current option price fu for the first period up-move

path and the current option price fd for the first period down-move path are the following

functions of Rf, Ru, and Rd:

)R(RR
RR

f(4b)

)R(RR
RR

f(4a)

duf

fu
d

duf

df
u











The inequality Rd < Rf < Ru is a necessary condition for positive prices. The prices for the

two period paths can be written in terms of the one-period prices: fuu = fu
2, fud = fdu = fufd,

and fdd = fd
2. More generally, for a t-year path, the price is equal to (fu

sfd
t-s), where s is

the number of up-moves. Hence, the option price for all paths that end at the market state

“s” are the same, and depend only on the total number of up-moves and down-moves, not

on the particular sequence of up-moves and down-moves. Thus today’s price t,s of a
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state claim that pays $1 if and only if state s occurs is equal to the number of paths to the

state times the price of each path.

st
d

s
ust, ff

s)!(ts!
t!

ψ(5) 




We assume that markets are complete, or at least sufficiently complete, so dynamic

strategies involving the market and the risk-free asset can replicate any state-claim.

Finally for a fixed value of t, the sum of all the state prices is equal to 1/Rf
t, the price of a

risk-free dollar, t-years from now. This must be the case, since purchasing all the state

claims available at year t guarantees the investor a dollar in year t, no matter which state

is realized.

We are now in a position to show that for our binomial model, the price-per-

chance is a decreasing function of cumulative market return. First, the price-per-chance

and the cumulative market value are given by the formulas:

s-t
d

s
ust,

st
d

s
u

t
st,st,

RRV(6b)

ff2/πψ(6a)



 

If we take the logarithm of each equation, we obtain two equations that are linear in s.

After we eliminate the parameter s from this pair, we get the following simple relation

between price-per-chance and cumulative market return:

p
st,

t
st,st, V/a/πψ(7a) 

In Eq.(7a), the power p and time-factor a are constants defined by:

p
dd

du
df

fu

Rf2a(7c)

)/Rln(R
RR
RR

lnp(7b)















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Generally, p and a are positive, and so price-per-chance is a decreasing function of total

cumulative market return. In our numeric example, p = 3.05 and a = 1.08.

Lockbox Spending Strategies

In this section, we introduce and illustrate lockbox strategies, a fundamental class

of spending strategies. This approach divides a retiree’s initial wealth among separate 

accounts, one account for each future year of spending. The assets in each account are

dynamically managed according to the account's exogenous investment rule. When an

account reaches its target year, our retiree cashes out its investments, closes the account,

and spends all of its proceeds. The accounts can be real or virtual, and we collectively

call them lockboxes—a term that emphasizes the retiree's implicit obligation to yearly

spend all the assets from the target account and to never co-mingle or spend the assets of

any of the remaining accounts.

All efficient strategies adhere to the earmarking principle and have a lockbox

formulation, however, there are inefficient lockbox strategies. The test for efficiency is

simple; each lockbox’s value must be a path-independent, increasing function of the

cumulative market. For example, lockboxes that alternate investments in the risk-free and

market assets are obviously path dependent and inefficient. In the remainder of this

section, we pair three different investment strategies with lockbox spending. For each

pair we show that the resulting retirement strategy is efficient and derive its revealed

utility.

Consider the lockbox strategy where each lockbox is invested in the market

portfolio. Suppose our retiree has a planning horizon of T years, and has assigned F0

dollars for today's consumption, placed F1 dollars in the first lockbox, F2 in the second
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and, more generally, Ft in the t-th year lockbox. The total assigned dollars will sum to the

initial wealth, i.e., W0 = F0 + F1 + … + FT. At the end of each year, the consumption from

the t-th lockbox will equal Ft times the cumulative return of the market:

st,tst, VFC(8a) 

Note that for each state at each time there will be a unique amount of consumption, and

this will be an increasing function of the market value. We see immediately that this

investor has a revealed utility. The revealed marginal utility follows from Eqs.(2) and (7):

 pt
t

t /CFa(C)U(8b) 

To obtain Eq.(8b), we set U0'(C0,0) equal to one since the entire set of an investor’s utility 

functions can be multiplied by a constant without changing the implied optimal strategy.

This strategy is thus optimal for an investor with a utility function that exhibits constant

relative risk-aversion, generally abbreviated as CRRA, with risk-aversion parameter p.

Further, our investor’s attitudes towards consumption in future states relative to the 

present are revealed by the dollars assigned to the lockboxes.

Now, suppose that instead of investing solely in the market, our retiree invests

Fm,t dollars of lockbox t in the market and Ff,t dollars in the risk-free asset, with the sum

of the dollars invested equal to W0. Once the initial allocation is made, our investor

adopts a buy and hold investment strategy. In practice, this investment strategy could be

implemented by purchasing a zero-coupon bond and a market exchange-traded fund for

each lockbox. When the t-th lockbox is opened and cashed out, the consumption will be:

st,tm,
t
ftf,st, VFRFC(9a) 

As long as at least some dollars are allocated to the market, consumption will be an

increasing function of market returns. Solving for the revealed marginal utility we obtain:
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p

t
ftf,

tm,t
t RFC

F
a(C)U(9b) 














In this case, the strategy is optimal for an investor with a HARA utility function—one

that exhibits hyperbolic absolute risk aversion. In effect, the investor requires a minimum

subsistence level equal to the amount provided by the allocation to the risk-free asset and

has constant relative risk aversion with respect to the amount provided by the allocation

to the market.

Our third example has lockboxes invested in constant-mix, constant-risk

portfolios. Specifically, we annually rebalance a lockbox’s assets so that a fraction is

invested in the market portfolio and the remaining fraction (1-) is invested in the risk-

free asset. We impose a no-bankruptcy condition; hence the total return must be positive

in either an up or down state, and so is limited to the range:

   dffmaxminfuf RRRβββRRR(10a) 

For our parameter choices, the bounds are min = -6.38 and max = 12.75. The total annual

returns of the mix follow a binomial model, and the cumulative return Mt,s() of the mix

at time t and in state s is given by:

      s-t
df

s
ufst, RβRβ1RβRβ1βM(10b) 

Again, s denotes the number of up-moves in the path to time t.

As before, we let Ft’s be the amounts of initial wealth allocated to the lockboxes, 

and we introduce t’s as the constant mixes for the lockboxes. Though the risk in any

given lockbox is constant, the risks among all the lockboxes are allowed to vary. It

follows that the spending from a constant-mix lockbox is given by:
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tst,tst, βMFC(11a) 

We see from the previous equations that consumption will be an increasing function of s,

provided the market exposures are non-negative. But Eq.(6a) showed that price-per-

chance is a decreasing function of s. Thus for a constant mix strategy, consumption at

time t will be a decreasing function of price-per-chance. Therefore the investor’s utility 

function for that period will be revealed. Moreover, Eq.(6b) showed that market return is

an increasing function of s. Thus a constant-mix strategy will have no non-market risk

and will be efficient.

Using Eqs.(6b) and (10b), we can eliminate the parameter s from Eq.(11a) and

write Ct,s as an increasing function of Vt,s. The revealed marginal utility then follows:

 
 
 

  t

t

dtftdt

dtft

utft

df

fu
t

t
t
tt

RβRβ1f2a(11d)

RβRβ1
RβRβ1

ln
RR
RR

ln(11c)

/CFa(C)U(11b)



































Again, our retiree has a CRRA utility, but in this case, the retiree's choice for the

exposures t determines the risk-aversions t. Both the exposures t and initial allocations

Ft determine the retiree's relative preference for consumption today, versus the future. We

note if all the exposures are equal to one, the market exposure, then Eq.(11b) reduces to

Eq.(8b), the result for the market only strategy.

The above three examples illustrate efficient financial retirement strategies and

their revealed utility functions. Since financial economists often use CRRA or HARA

models for utility, they may likely suggest one of our example strategies to a retiree. On

the other hand, financial planners, who tend to rely on rules of thumb for investing and

spending, would rarely advise one of the above combinations of investing and spending
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strategies. In the next two sections, we evaluate the efficiency of two of the most

common rules.

Glide Path Investment Strategies

Many advisors recommend that retirees annually adjust their portfolios by

decreasing their exposure to equities, and thus reducing their overall risk. This rule of

thumb, often called a glide path strategy, is an age-based investment strategy. A classic

example is the oft-quoted 100-minus-age rule for the percentage of assets allocated to

equities, e.g., 60 year-olds should hold 60% of their assets in bonds and 40% of their

assets in equities. Many retirees follow a glide path strategy by investing in lifecycle

funds—age-targeted, managed funds intended to serve as the sole investment vehicle for

all of a retiree’s assets. In recent years, interest in lifecycle funds has exploded. Jennings

and Reichenstein (2007) analyzed the policies of some leading lifecycle funds and found

that a 120–minus-age equity allocation describes the typical management rule. An earlier

paper by Bengen (1996) suggested that the target equity allocation should equal 128-

minus-age for clients up to age 80 and 115-minus-age afterwards. The advocates of glide

path strategies often pair this investment rule with one or more options for a spending

rule. However, there is only one spending rule that makes the complete retirement

strategy efficient, and that rule is the focus of this section.

The investing rules described above specify equity percentages, but our market

model deals more conveniently with market fractions. However, there is a simple linear

relationship between the two descriptions. For example, our sample parameters roughly

correspond to a market of 60% equities. In this case, the equity mix is 0% when = 0, is

60% when = 1, and is 100% when equals = 5/3. Now, consider a 65 year-old retiree
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following the 120-minus-age rule. This retiree has the annual equity percentage targets of

55%, 54%, 53%, etc. and the annual market fraction targets of 55/60, 54/60, 53/60, etc.

Because age-based rules are easily translated into a market-fraction time series, we

generally use the latter to describe a glide path.

Consider the generic glide path investment and spending strategy. At the

beginning of each year, some portion of the portfolio is spent; the fraction t of the

remainder is invested in the market, and the rest is invested in the risk-free asset. When

this total portfolio strategy is efficient, it has a lockbox equivalent. We use this

equivalence principle to derive the optimal spending rule. We start by choosing any one

of the lockboxes, say the j-th box, and virtually combine its contents and the contents of

all succeeding lockboxes. Initially, the j-th combined portfolio will have value Fj + … + 

FT, where the Ft’s are again the initial lockbox allocations. The future values of a

combined portfolio must satisfy two requirements. First, they must evolve in a path

independent manner, just like the values of the constituent lockboxes. Secondly, since the

j-th combined portfolio is the total portfolio for the j-th year, this combined portfolio

must have the glide path's market fraction j in the j-th year, independent of the market

state. Now, as we saw in the previous section, a constant-mix portfolio with market

exposure j satisfies both of these requirements; in fact, it can be shown that every

combined portfolio is a constant-mix portfolio. If we let the random variable j,t be the

value of the j-th combined portfolio at year 0 t j, then we have:

  jtTjtj, βF...F(12a) MΣ 

where Mt() is the random cumulative return at year t for the constant-mix portfolio with

market weight ; its value in state s at time t is given by Eq.(10a).
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Given the combined portfolios for an efficient glide path, the individual lockbox

holdings follow immediately. First, the lockbox for T is just the combined portfolio for T;

a constant-mix portfolio with exposure T and initial allotment FT. The remaining

lockbox portfolios are obtained by differencing successive combined portfolios. Let the

random variable j,t be the value of j-th lockbox at time t:

     

     1ttjtT1jjtj

1ttT1jjtTj

t1,jtj,tj,

ββF...FβF

βF...FβF...F

(12b)













MMM

MM

ΣΣΛ

The initial lockbox holds cash, the last lockbox holds a constant-mix portfolio, and the

middle lockboxes hold a combination of assets; the first is a constant-mix asset, and the

second is a “swap” between two constant-mix assets. Finally the efficient spending is

given by Ct =t,t, or in terms of states:

     

 

















 

Tt,βMF

Tt0,βMβMF...FβMF

0t,F

C(12c)

TsT,T

1tst,tst,T1ttst,t

0

st,

It is tedious, but straightforward, to directly verify that the above spending rule, coupled

with its glide-path investment rule, is efficient. Further, though there is no simple

function to describe the revealed utility, its values can be easily computed numerically.

Glide paths may well reflect the desires of many retirees to take less risk

concerning their investmentsas they age, but these retirees’ retirement strategies will be 

inefficient unless spending follows Eq.(12c). Glide path rules are ubiquitous, but their

complementary spending rules are rare. In fact we are unaware of any retiree that
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computes his annual spending according to the above rule. As an alternative to the glide

path strategy, we recommend the constant-mix lockbox strategy discussed in the previous

section. If a retiree decreases the market fractions for successive lockboxes, then his total

portfolio risk will tend to decrease over time. Thus, a retiree can retain the desired feature

of the glide path, but have a much simpler spending rule.

The 4% Rule

Many recent articles in the financial planning literature have attempted to answer

the question: “How much can a retiree safely spend from his portfolio without risking 

running out of money?” Bengen (1994) examined historical asset returns to determine a 

constant spending level that would have had a low probability of failure. He concluded

that a real value equal to approximately 4% of initial wealth could be spent every year,

assuming that funds were invested with a constant percentage in equities within a range

of 50% to 75%. Cooley, Hubbard, and Walz (1998) used a similar approach and found

that a 4% spending rule with inflation increases had a high degree of success assuming

historical returns and at least a 50% equity allocation. Later, Pye (2000) concluded that

with a 100% allocation to equities, the four percent rule would be safe enough if equity

returns were log-normally distributed with a mean return of 8% and a standard deviation

of return equal to 18%.4 Based on this research, there is a growing consensus that newly

retired individuals with funding horizons of thirty to forty years can safely set their

withdrawal amount to 4% of initial assets and increase spending annually to keep pace

with inflation. This is the foundation for the now common 4% rule of thumb for

retirement spending.
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An efficient retirement strategy must be totally invested in the risk-free asset to

provide constant spending in every future state.5 However, the generic 4% rule couples a

risky, constant-mix investment strategy with a riskless, constant spending rule. There is a

fundamental mismatch between its strategies, and as a result it is inefficient. The

following simple example illustrates these points. Consider a retiree who, whether the

market goes up or down, wants to spend only $1 next year. He can achieve this goal by

investing 1/Rf dollars in the risk-free asset. On the other hand, if he uses the market asset,

he must increase his investment to 1/Rd dollars, so that if the market goes down, the

investment pays the required $1. However, if the market goes up, the investment pays

(Ru/Rd) dollars, and there is an unspent surplus. So, if our retiree truly requires just $1,

then investing in the market is less efficient than investing in the risk-free asset because

of the greater cost and the potential unspent surplus.

We can use the above argument to investigate a more general case. Suppose a

retiree wants to support a constant spending level Ct,s = f W0 for T years from a portfolio

with initial wealth W0 that is invested in a possibly, time-dependent strategy, e.g., a glide

path. Further, let Dt equal the minimum total return of the portfolio in year t. These

minimums will correspond to down (up) moves for portfolios with positive (negative)

market fractions t. Then to insure against the worst-case scenario, a safe spending

fraction f must satisfy the equation:

T21211 D...DD
1

...
DD

1
D
1

1
f
1

(13)







The most efficient investment will yield the largest spending fraction f, which

corresponds to maximizing the minimum returns Dt. However, in any period, the best of

the worst is achieved by investing in the risk-free asset, and thus t = 0. For example,



Sharpe, Scott, and Watson–July 2007 21

suppose a retiree has a planning horizon of 35 years and invests in the risk-free asset,

then Dt = Rf = 1.02 and f = 3.85%. On the other hand, if the retiree insists on investing in

the market portfolio, then Dt = Rd = 0.94 and f = 0.77%, a five-fold decrease in spending.

For the risk-free asset (Dt > 1), each successive year is cheaper to fund, but for the market

portfolio (Dt < 1), each successive year is more costly.

The safe spending fraction satisfies Eq.(13). With this spending level, all

scenarios, other than the worst-case scenario, will have an unspent surplus. If we raise the

spending fraction just a bit, then the worst-case scenario will be under funded and the

spending plan will collapse if this path is realized. As we continue to raise the level, more

and more scenarios will be under funded, a few may be spot on, and the remaining will

have a surplus. If our example retiree insists both on investing in the market and

increasing his spending fraction to 4%, then approximately 10% of scenarios will be

under-funded and the remaining 90% of scenarios result in an unspent surplus. Further,

more than 50% of the scenarios will have a surplus more than twice initial wealth! It is

very unlikely that this retiree, who desired a riskless spending plan, would find such an

eschewed-feast or famine plan acceptable.

This type of analysis generalizes to any given desired spending plan. With

complete markets, any given spending plan has a unique companion investment plan that

delivers the spending at minimum cost. With state-contingent securities, the minimum

cost investment plan involves simply purchasing the contingent claims that deliver the

desired spending. Given our simple complete market, the contingent claims must be

translated into dynamic strategies utilizing the market and riskless assets. Deploying this

minimum required wealth using any other investment strategy necessarily results in
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surpluses and deficits relative to the desired spending plan. Extra wealth must then be

introduced to eliminate all deficits.

The preceding assumed individual preferences were consistent with a fixed

spending plan and demonstrated the inefficiency of a market investment plan. If we

instead assume the investment plan is indicative of preferences, then we need to find a

spending plan consistent with a market portfolio investment plan. This problem was

previously analyzed, and the spending solution is reported in Eq.(8a). If a market

investment plan is indicative of preferences, then all efficient spending plans require

spending that is proportional to cumulative market returns.

The 4% rule does not generate a revealed utility because the investment and

spending rules do not correspond to an efficient retirement strategy. Retirees interested in

fixed retirement spending should invest in the risk-free asset. Anyone who chooses to

invest in the market should be prepared for more volatile spending. Either can adopt an

efficient strategy. However, a retiree who plans to spend a fixed amount each period,

while investing some or all funds in the market, faces a very uncertain future. Markets

could perform well, and his wealth would far exceed the amount needed to fund his

desired spending, or they could perform poorly, and his entire spending plan would

collapse.

Conclusions

Virtually all retirees have an explicit or implicit retirement spending and

investment strategy. What is striking is the gulf that exists between how financial

economists approach the problem of finding optimal retirement strategies and the rules of

thumb typically utilized by financial advisors. Aside from identifying this gap, our
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objective with this chapter has been to evaluate the extent to which several popular

retirement spending and investment strategies are consistent with expected utility

maximization. This evaluation has two stages. First, is the given rule of thumb consistent

with expected utility maximization for any investor? Second, if it is, how must the rule’s 

investment and spending strategies be integrated to achieve and maintain efficiency?

By and large, we find that the strategies analyzed fail one or more of our tests.

Investment rules suggesting risk glide paths pass the first assessment in that they are not

per se inconsistent with expected utility maximization. However, the conditions on the

implied spending rule required by efficiency seem onerous and unlikely to be followed

by virtually any retirees. While risk glide paths only specify suggested investments, the

4% rule is fairly explicit about both the recommended spending and investment strategy.

Unfortunately, the 4% rule represents a fundamental mismatch between a riskless

spending rule and a risky investment rule. This mismatch renders the 4% rule inconsistent

with expected utility maximization. Either the spending or the investment rule can be a

part of an efficient strategy, but together they create either large surpluses or result in a

failed spending plan.

While most of our results are obtained using a simple binomial model of the

evolution of asset returns, many hold in more general settings, as we intend to show in

subsequent research. Our results suggest a reliance on lockbox spending strategies, a very

different type of retirement financial strategy than those currently advocated by

practitioners. To an extent, this may be attributable to the assumptions we have made

concerning both the nature of the capital markets and the objectives of the retiree. It is at

least possible that one or more of the standard rules may be appropriate if prices are set
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differently in the capital markets and/or the investor has a different type of utility

function. For example, one might posit that returns are not independent, but negatively

serially correlated. Or one might focus on the efficiency of a strategy for an investor

whose utility for consumption at a given time depends on both the consumption at that

time and consumption in prior periods. However, we suspect that it may be difficult to

prove that the practitioner rules we have analyzed are efficient even in such settings.

Much of the analysis in this chapter relates to identifying problems with existing

rules of thumb, but we have only hinted at ways to remedy the situation. An interesting

line of inquiry would address this gap by finding an efficient strategy that strictly

dominates an inefficient strategy such as one of those advocated by practitioners. There

are two types of inefficiencies that could be introduced. First, a given retirement strategy

could inefficiently allocate resources. That is, the same set of outcomes could be

purchased with fewer dollars.6 Given this inefficiency, a revised strategy could be

constructed that strictly dominates the original strategy in that the revised strategy would

increase spending in at least one state without decreasing spending in any state. A second

type of inefficiency occurs when a strategy entails multiple spending levels for a given

market return. If the total present value allocated to purchase the multiple spending levels

were instead used to purchase a single spending amount, then as long as the expected

returns in all such states are the same, any such replacement would be preferred by any

risk-averse investor (formally, the revised set of spending amounts would exhibit second-

degree stochastic dominance over the initial set). By making all such possible

replacements, an inefficient strategy could be converted to a dominating efficient

strategy. Another line of inquiry involves the examination of the properties of the
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revealed utility function associated with any efficient strategy, whether advocated

initially or derived by conversion of an inefficient strategy. Such examination might

reveal preferences that are inconsistent with those of a particular retiree and hence the

strategy, while efficient, would not be appropriate in the case at hand.

Overall, our findings suggest that it is likely to be more fruitful to clearly specify

one’s assumptions about a retiree’s utility function, then to establish the optimal spending 

and investment strategy directly. Of course, one should take into account more aspects of

the problem than we have addressed in this chapter. Annuities should be considered

explicitly, rather than ruled out ex cathedra. Separate utility functions for different

personal states (such as “alive” and “dead”) could be specified rather than using a

weighted average using mortality probabilities, as we have assumed here. Yet our

analysis suggests that rules of thumb are likely to be inferior to approaches derived from

the first principles of financial economics.

References

Bengen, William P. 1994. Determining Withdrawal Rates Using Historical Data. Journal

of Financial Planning 7(4) October: 171-180.

Bengen, William P. 1996. Asset Allocation for a Lifetime. Journal of Financial Planning

August: 58-67.

Cochrane, John H. 2005. Asset Pricing: Revised Edition. Princeton: Princeton University

Press. 3-147.

Cooley, P.L., C.M. Hubbard and D.T. Walz. 1998. Retirement Savings: Choosing a

Withdrawal Rate That Is Sustainable. The American Association of Individual

Investors Journal. February: 16-21.



Sharpe, Scott, and Watson–July 2007 26

Dybvig, Phillip H. 1988a. Distributional Analysis of Portfolio Choice. Journal of

Business. 61:369-93.

Dybvig, Phillip H. 1988b. Inefficient Dynamic Portfolio Strategies or How to Throw

Away a Million Dollars in the Stock Market. Review of Financial Studies. 1:67-

88.

Jennings, W.W. and W. Reichenstein. 2007. Choosing the Right Mix: Lessons From Life

Cycle Funds. The American Association of Individual Investors Journal. January:

5-12.

Merton, Robert C. 1971. Optimum Consumption and Portfolio rules in a Continuous-

Time Model. Journal of Economic Theory. 3: 373-413.

Pye, Gordon B. 2000. Sustainable Investment Withdrawals. The Journal of Portfolio

Management. 26(4) Summer: 73-83.

Sharpe, William F. 2007. Investors and Markets: Portfolio Choices, Asset Prices, and

Investment Advice. Princeton: Princeton University Press. 74-100.



Sharpe, Scott, and Watson–July 2007 27

Figure 1. An illustration of a two-year binomial tree. Each successive year (t) has one
more possible market state (s). In the second year (t = 2) the middle state (s = 1) can be
reached by either following the up-down path or down-up path.
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Notes

1 We are assuming that for each time period, there is a utility function that gives the

utility measured today as a function of the amount consumed in that period. Moreover,

we assume that the investor prefers more to less and is risk-averse, so the utility function

for a time period increases with consumption at a decreasing rate. The expected utility of

consumption in a time period is simply the probability-weighted average of the utilities of

the amounts consumed in different scenarios at the time. Finally, the expected utility of

the retirement plan is the sum of the expected utilities for each of the time periods.

2 Sharpe uses the term price-per-chance or PPC for the ratio of a state’s price to its 

probability (Sharpe 2007, 74). As discussed by Cochrane (Cochrane 2005, 7), this

quantity is also called the marginal rate of substitution, the pricing kernel, a change of

measure, and the state-price density.

3 Though our binomial model for annual market returns may appear highly restrictive,

similar models using shorter time periods are often used in both the academy and

financial sector for pricing options and predicting the results of investment strategies.

4 Pye (2000) also shows that a 60% initial allocation to TIPS improves the allowable

withdrawal to 4.5%, while simultaneously lowering the measured downside-risk.

5 As the market fraction approaches zero, constant-mix lockboxes are invested in just

the risk-free asset and provide constant spending. Further, the risk aversion parameter of

the underlying CRRA utility approaches infinity in this limit. Alternatively, state-

independent spending can be viewed as the limit of the buy and hold lockbox for which

all wealth is allocated to the risk-free asset and none in the market asset. Here, the

subsistence levels of the underlying HARA utility exhaust the budget.
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6 Dybvig (1988a, 1988b) explored inefficient portfolio strategies in a pair of papers. His

approach is very useful for analyzing retirement strategies such as the 4% rule.


