

Observing Black Holes

Dr Dan Wilkins

PHYSICS 100 – Introduction to Observational Astrophysics

Outline

- Where do we see black holes?
- Anatomy of a black hole
- Powering the light source
- Measuring properties of a black hole

Stanford University

Active Galactic Nuclei

 $M = 10^{6} \sim 10^{9} M_{\odot}$ $L_{\rm nuc} \sim 10^{44} \, {\rm erg \, s^{-1}} \sim 10^{11} L_{\odot}$

The Galactic Centre (Sgr A*)

The Galactic Centre (Sgr A*)

Stellar Mass Black Holes

 $M = 1.5 \sim 10 \, M_{\odot}$

 \bigcirc

The No Hair Theorem

Black holes are entirely described by 3 properties

- Mass
- Spin
- Electrical Charge but astrophysical black holes are probably uncharged

But the physics of the surrounding/accreting environment can be much more complicated

How do you power something so bright?

 $L = \epsilon \dot{M} c^2$

Assume the radiation we see is from the gravitational potential lost between infinity and the innermost stable orbit

How do you power something so bright?

$$L = \epsilon \dot{M} c^2$$

Assume the radiation we see is from the gravitational potential lost between infinity and the innermost stable orbit

$$\begin{split} L &= \frac{GMM}{r} - \frac{1}{2}\dot{M}v^2 = \frac{GMM}{2r} \\ \epsilon &= \frac{L}{\dot{M}c^2} \quad r = \frac{6GM}{c^2} \quad \epsilon = \frac{1}{12} & \text{Newtonian Gravity} \\ \epsilon &= 0.057 \quad \text{full GR, no rotation} \\ \epsilon &= 0.4 & \text{GR, maximally rotating} \end{split}$$

How does it compare?

 $L = \epsilon \dot{M} c^2$

How does it compare?

 $L = \epsilon \dot{M} c^2$

How do we know it's a black hole?

- Luminosity need a sufficient mass accretion rate falling deep enough into gravitational potential
- Mass in a black hole binary or in Galactic centre, force on stars
- Compactness
 - Needs to fit within the accretion disc and within orbits of stars
 - Variability timescale, to vary on timescale τ , must be able to carry information across it on that timescale, limiting size to $c\tau$
- The mass must lie within the event horizon predicted by General Relativity, so must be a black hole

Measuring the Mass

Measuring the Mass

Measuring the Mass

Thermal Emission (Accretion Disc)

Thermal Emission (Accretion Disc)

Thermal Emission (Accretion Disc)

Corona and X-ray Continuum

Relativistically Blurred Reflection

Relativistically Blurred Reflection

Measuring Black Hole Spin

Summary

dan.wilkins@stanford.edu

- Black holes power some of the most luminous objects in the Universe – liberation of gravitational potential of inflating material
- Observing (accreting) black holes across all wavelengths teaches us about their properties, their environments and the accretion process
- Can apply basic physics to interpret observations black hole mass, temperature and extent of disc, spin
- Detailed analysis of X-ray spectra and variability and comparison with detailed models lets us understand detailed physics of accretion