Stanford University

NMapping supermassive Black Holes
with X-ray Reverperation

Dan Wilkins

Einstein Fellow
Kavli Institute for Particle Astrophysics & Cosmology, Stanford University




he Big Questions

e How does matter falling into black holes power some of the brightest
objects in the Universe” What are the processes driving AGN
feedback’

e \/Vnat is the extreme environment like iImmediately outside the event
horizon of a black hole”? Does General Relativity provide the correct
description”

e \\Vhat happens to material in its final moments as it plunges into a black
hole”?

e How are X-ray coronae and jets powered? VWhat is the small-scale
pohysics driving the accretion, ejection & emission processes’?



Outline

e Observing X-ray reverperation around supermassive black holes
e X-ray reverpberation as a probe of the corona and accretion flow

e Beyond the X-rays — multi-wavelength reveroperation



X-ray Retflection & Reverperation

X-ray continuum is reprocesged by the X-rays reverberating from the accretion disc
accretion disc with additiorfal light travel are subject to relativistic effects and strong

time ight bending
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\Vieasuring X-ray Reveroeration

Work In the Fourier domain — divide the light curve into different Fourier
frequency components — fast and slowly varying components of the variability

Lag-Frequency Spectrum Lag-Energy Spectrum
Between two energy bands — one dominated  Average response time of different energies to
by continuum and one dominated by reflection  variability over a chosen range of frequencies
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Characteristic Size Scale

Kara et al, 2010, also DeMarco et al. 2013
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e Reverperation lags scale
with black hole mass

e Probing iInnermost regions
of accretion flow



Hard X-ray Reverperation

e [ourier analysis requires continuous light curve segments

o NUSTAR (+ NICER and STROBE-X) are/will be in low Earth orbits — gaps in light
curves

e Describe lags in the covariance matrix and fit in the time domain (Zoghbi et al. 2013)
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VWhat about a radio-loud AGN?

Long-Timescale Lags in Radio Galaxy 3C120

Alternative to fitting covariance in the time domain is to model light curves with gaps using a
Gaussian process. Sample from probability distribution of underlying light curve and calculate
lags across multiple XMM-Newton oroits
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* How are the corona and the
jet related”?

- Understand the coronal

geometry In a radio louo
AGN



Proping the corona and
accretion flow



NVodelling X-ray Reveroberation

e (eneral relativistic ray tracing simulations

e [race rays from source (corona) to disc to observer in Kerr spacetime

e [Understand the effect of the coronal geometry (Wilkins et al. 2012, 2013), propagation of
fluctuations (Wilkins et al. 2016, Mastroserio et al. 2018), accretion flow geometry & structure
(Taylor & Reynolds 2018)

Rays start from either point Record redshifted
source or extended corona photon energy and
with propagating fluctuations time at observer

=

XILLVER reflection spectrum
from illuminated patch on ¢
disc according to density & i -
lonisation profile of disc
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Reverperation Response of DISC

Energy / keV

Time

Reynolds et al. 1999, Wilkins et al. 2016



NModelling the Lag-Energy Spectrum

Reverberation response is a function of the corona geometry/scale height,
inclination, black hole mass & spin (Wilkins & Fabian 2013, Cackett et al. 2014)
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Also sensitive to disc geometry (Taylor & Reynolds 2018) and ionisation
Chainakun & Young 2015)



ne Lag-energy Prodlem
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Structure of the Corona in | Zw |
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Structure of the Corona in | Zw |
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—\volution of a FHlare
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Variability on different timescales distinguishes the extended corona and the core
Covariance over different frequency ranges probes the variability in emission from each
component as an X-ray flare evolves
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Effective Area (cm?)

Stanford University
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—Reverperation

From 1D lag-frequency or lag-energy to lag-energy-frequency. Resolve the high frequency
lags, getting closer to the shape of the re
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Build up a 3D picture (movie) of the extreme environment just
outside the event horizon
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Probing the Plunging Region

Innermost Stable a =0, fisco = 6re

Circular Orbit  a=0.998, risco = 1.235r¢

Event Horizon G M
rg —

2

Material in the plunging region is strongly irradiated by the corona
Prospects for probing the plunging region by X-ray reverberation

Talk 301.01: Wilkins

(Wednesday, 10:30am)



Beyond the X-rays
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Optical Continuum Reverberation

1.0

0.5

Lag (days)

0.0

-0.5

0.4

-0.4
-0.6

Residuals (days)

0.2f
0.0F
-0.2

NGC 4598 Cackett et al. 2018 *
IIIIIIIIIIIIIIIIIIII . 1 4

- o AR \\\MM M) AS

L T o (MM)Tr™3

l 5 1 e [ime delays as outer disc

i HST STIS | responds to heating by X-ray

= 'i;@%‘ D 1 source

3 s®i ¢ : E | |

E f"i@ """""" E'B'Lé“*?“i“?#; """ g4t go1 o Disc appears ~3x bigger than

5 élBaImer Jump | ; 3 standard accretion disc mode
0 2000 4000 6000 gooo 10000 ® \ertical structure of disc”

Rest Wavelength (A)

Poster 106.33: Cackett

e Disc emissivity and radiative
transfer through disc atmosphere”?
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Connecting the X-ray and Optical Emission

NGC 4151 — Edelson et al, 2017
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e [Ime delay between X-ray and UV is
too long to be explained by heating
of the disc by a central compact X-
ray source

e Lvidence for intermediate
reprocessing by a warm torus”

‘ ‘
How are the innermost regions
of the AGN, the corona and jet

connected to the fuel supply
from the outer disc”?




S U m m al’y dan.wilkins@stanford.edu

o X-ray reflection and reverberation probes structure right down to the innermost stable
orbit and enables mapping of the inner accretion disc and corona

e X-ray reverberation reveals structure within the corona. Starting to see evidence of a
persistent collimated core within an extended corona (the base of a falled jet) and the
evolution of coronal components during flares

e (Great advances with XMM-Newton and NuSTAR. Much more to come with Athena
and (hopefully) STROBE-X!

o |Nulti-wavelength reverberation connects the corona, jet and innermost regions to the
fuel supply through the outer disc

e Understand the physics underlying some of the most extreme systems in the
Universe
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Measure the covariance spectrum at frequencies corresponding to extendeo
corona and core — normalisation is the RMS variability in that component
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