

Beyond the Lamppost: Lag spectra arising from extended coronae

Dan Wilkins

Saint Mary's University with Ed Cackett, Andy Fabian, Chris Reynolds

Lorentz Center Workshop - 'The X-ray Spectral-Timing Revolution' – February 2016

arXiv: 1602.00022 - new today!

One University. One World. Yours.

Outline

- I. X-ray reverberation observations what are we trying to model?
- 2. Inadequacies of the lamppost model
- 3. Developing an extended corona model
- 4. How does it compare to data?

Everything in this presentation is open to discussion!

Kara et al. 2012, MNRAS 428, 2795-2804

One University. One World. Yours.

Kara et al. 2012, MNRAS 428, 2795-2804

One University. One World. Yours.

Reverberation from a lamppost

Reminder – the lag formalism

The Response Function

 $L_E(t) = L(t) \otimes T(E, t)$

Calculating the Response

Calculating the Response

Calculating the Response

The Lamppost

The Lamppost

Requirements

- Simultaneous detection of the 'hard lag' at low frequencies and disc reverberation at high frequencies
- 2. Shape of the high frequency, 'reverberation' lagenergy spectrum – 3keV dip

The X-ray Spectrum and Emissivity

Developing an extended corona model

Developing an extended corona model

Self-consistent Physical

Extended Coronae

But with Lag/Energy...

Propagation

Propagation

What about the hard lags?

Modified version of Arévalo & Uttley 2006

What about the hard lags?

Viscous Propagation

Viscous Propagation

Viscous Propagation

Propagating Fluctuations

e.g. Ingram & Done 2011, Ingram & van der Klis 2013

Propagating Fluctuations

e.g. Ingram & Done 2011, Ingram & van der Klis 2013

What about vertical propagation?

Vertical Propagation

What is the dip at 3keV?

What is the dup at 3keV?

Time

Black Hole Spin

A tale of two coronae?

A tale of two coronae?

Looking Ahead

- Model fitting robust parameter estimates
- Data quality required
- Best fitting strategy
 - Fit lag/frequency, lag/energy or cross-spectrum
 - Use all the spectral & timing information!
- Degeneracies

Resolving the Disc

Radius of Reflection

0.3	1.0	2.4	5.2	10.8	21.8	43.9	88.3	176.1	

E-mail: <u>drw@ap.smu.ca</u> arXiv: 1602.00022

One University. One World. Yours.

Conclusions

- General relativistic ray tracing enables modelling of Xray reverberation
- X-ray reverberation gives us a complimentary probe of the corona and geometry of the inner regions
- Point source models struggle to reconciling reverberation with hard lags and explain features of lag/energy spectrum
- Can already constrain broad features of the corona. Hints of more complex structures within the corona, giving clues to the physics powering the X-ray source

Data Quality and Model Fitting

XMM IMs

Data Quality and Model Fitting

XMM IMs

Athena IMs

