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A B S T R A C T   

Background: We previously identified a cognitive biotype of depression characterized by dysfunction of the 
brain’s cognitive control circuit, comprising the dorsolateral prefrontal cortex (dLPFC) and dorsal anterior 
cingulate cortex (dACC), derived from functional magnetic resonance imaging (fMRI). We evaluate these circuit 
metrics as personalized predictors of antidepressant remission. 
Methods: We undertook a secondary analysis of data from the international Study to Predict Optimized Treatment 
in Depression (iSPOT-D) for 159 patients who completed fMRI during a GoNoGo task, 8 weeks treatment with 
one of three study antidepressants and who were assessed for remission status (Hamilton Depression Rating Scale 
score of ≤ 7). Circuit predictors of remission were dLPFC and dACC activity and connectivity quantified in 
standard deviations. Using established software implementing receiver operating analysis (ROC) we calculated 
the sensitivity and specificity of these predictors at every cut-point for every circuit measure. We calculated 
number needed to treat (NNT) metrics for the ROC model identifying optimal cut-point values. 
Results: ROC models identified maximum separation of remitters (62.5%) from non-remitters (21.2%) at an initial 
cut-point of − 0.75 standard deviations for dLPFC activity and averaged circuit metrics at secondary cutpoints. 
The NNT was 3.72, implying that if 4 patients (rounding of 3.72) were randomly selected, one would be likely to 
remit, but if circuit metrics informed treatment, two would be likely to remit. 
Conclusions: Our findings contribute to identifying clinically actionable circuit measures for clinical trials and 
clinical practice. Future studies are needed to replicate these findings and expand the assessment of longer-term 
outcomes.   

Introduction 

Major depressive disorder (MDD) remains a public health crisis in the 
U.S. and worldwide [1,2]. MDD is the most prevalent of mood disorders 
and the leading cause of disability worldwide [1,2]. From an economic 
standpoint, among all of medical conditions, major depression is asso-
ciated with the largest direct and indirect costs for individuals and so-
ciety, including a negative impact on time management and lost 
productivity [3,4]. Despite this lifetime burden due to MDD, we lack 
tools for selecting the most effective treatment for each patient. While 
antidepressant medications are effective on average, a third to one half 
of patients with MDD do not respond to these medications, even after 
multiple attempts [5]. New and emerging treatments are available to 
those for whom MDD does not respond to conventional antidepressants 

[6], such as repetitive transcranial magnetic stimulation (TMS), but we 
lack strategies for expediting access to these new treatment options. 

Precision medicine applied in psychiatry seeks to address this need. 
The precision strategy is to use objective tests to identify the root cause 
of depression in each patient and to use this test information to aid in the 
selection of treatments. There is a growing evidence base showing that 
MDD comprises multiple different types of circuit dysfunction that may 
be conflated when we consider MDD as an umbrella diagnostic category 
[7–10]. Progress has been made in demonstrating that circuit dysfunc-
tion predicts antidepressant response and can differentiate response and 
non-response to different types of treatment [6]. To advance the clini-
cally actionable utility of circuit measures derived from fMRI, there is a 
need for data on predictive models that evaluate whether the use of 
circuit predictors could improve the number of patients who achieve a 
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therapeutic response. In this study, we used a prior established signal 
detection approach suited to clinically actionable decisions [11]. 

We focused on the cognitive control circuit implicated in cognitive 
impairment in MDD [12]. Cognitive impairment is recognized as a major 
contributor to both poor functional outcomes and lack of symptom relief 
from antidepressant treatments [13]. Using fMRI we have shown pre-
viously that dysfunction of the brain’s cognitive control circuit, 
comprising the dorsolateral prefrontal cortex (dLPFC) and dorsal ante-
rior cingulate cortex (dACC), derived from fMRI, characterizes a 
cognitive biotype of MDD [12]. The cognitive control circuit, defined by 
activity of the dLPFC and dACC, and functional connectivity between 
these regions, can be engaged by a Go-NoGo task and is implicated in 
response to SSRIs and SNRIs [14–16]. 

We have developed a precision medicine imaging technology to 
quantify circuit function in each individual patient relative to a healthy 
reference dataset [17]. This imaging system quantifies the cognitive 
control circuit in MDD and has demonstrated reliability, validity and 
generalizability, as well as sensitivity to individual variation [17]. In this 
study, we used cognitive control circuit measures as inputs to the novel 
signal detection technique in a secondary analysis of patients from the 
international Study to Predict Optimized Treatment in Depression 
(iSPOT-D). In iSPOT-D, patients were scanned with fMRI during a Go- 
NoGo task at the pre-treatment baseline, randomized to escitalopram, 
sertraline or venlafaxine-XR, and assessed for clinical remission out-
comes after 8 weeks of treatment [18]. 

Methods 

Subjects 

Participants were patients from the international Study to Predict 
Optimized Treatment in Depression (iSPOT-D) who met criteria for first- 
onset or recurrent, nonpsychotic MDD according to DSM-IV criteria 
using a structured clinical Mini-International Neuropsychiatric Inter-
view [19] and the 17-item Hamilton Rating Scale for Depression 
(HRSD17) [20] score of ≥ 16 [21]. Exclusion criteria included bipolar 
disorder, any psychosis, and/or neurocognitive disorder. Patients were 
free from pharmacotherapy, behavioral therapy, and other forms of 
therapy at baseline [22]. A total of 202 patients completed fMRI pre- 
treatment and, of these we focused on the 159 who also completed 
treatment and were assessed for remission outcomes. 

Study drugs 

After the baseline fMRI scan, patients were randomized to one of the 
three of the most widely used antidepressants, the SSRIs escitalopram 
and sertraline and the SNRI venlafaxine-XR. 

Symptom assessments 

At the pre-treatment baseline and following 8 weeks of treatment, 
patients were assessed clinically using the Quick Inventory of Depressive 
Symptoms (QIDS) [21]. Remission was defined as a post-treatment QIDS 
score of ≤ 5. 

Neuroimaging (fMRI) technology 

We have developed a precision medicine imaging technology to 
quantify circuit function in each individual patient relative to a healthy 
reference dataset [17]. This imaging system quantifies the cognitive 
control circuit in MDD and has demonstrated reliability, validity and 
generalizability, as well as sensitivity to individual variation [17]. 

Go-NoGo task 
Functional magnetic resonance imaging was undertaken during an 

established Go-NoGo cognitive control task. This task reliably engages 

the cognitive control circuit of interest and activity in the dLPFC and 
dACC. Cognitive control was assessed using a Go-NoGo task. ‘Go’ trials 
(the word “press” in green), required subjects to respond as quickly as 
possible, while in the ‘NoGo’ trials (“press” in red) subjects were to 
withhold responses. 180 Go and 60 NoGo stimuli were presented in 
pseudorandom order: 500 ms each with an interstimulus interval of 750 
ms. Head motion was restricted with foam pads and subject alertness 
was monitored with an eye-tracking system. 

A high-resolution structural scan was also acquired for registration of 
functional images. 

Image pre-processing 
Author LMW has developed a standardized fMRI technology for 

implementing pre-processing and quantification of activation and 
functional connectivity at an individual subject level [17]. Motion 
correction is implemented with scripts that use well established pro-
cedures [23,24] to realign and unwarp the fMRI images to the first 
image of each task run. T1-weighted images are normalized to Montreal 
Neurological Institute (MNI) space using the FMRIB nonlinear regis-
tration tool, and fMRI data are coregistered to the T1 data using the 
FMRIB linear registration tool [25]. We also ensured that scans with 
incidental findings, major scanner artifacts, and signal dropout were not 
included. 

Quantification of region of interest activation 
Using the established imaging pipeline [17] with inputs from quality 

controlled fMRI data we then quantified blood-level-dependent activity 
in control circuit regions of interest for the contrast of NoGo versus Go 
stimuli. The defining regions for the cognitive control circuit are the 
dorsal lateral prefrontal cortex (dLPFC), left and right sided, and the 
dorsal anterior cingulate cortex (dACC). a standardized fMRI technology 
for implementing pre-processing and quantification of activation and 
functional connectivity at an individual subject level [17]. We have 
established masks for these regions of interest that meet quality control 
criteria including adequate gray matter overlap [17]. Task-evoked ac-
tivity was quantified using a generalized linear model analysis in which 
task events were convolved with a canonical hemodynamic response. 
Activation in dLPFC and dACC were expressed in z-score standard de-
viation units relative to mean and standard deviation of a healthy 
reference dataset acquired on the same scanner. Task-related connec-
tivity between dLPFC and dACC, in each direction, was quantified using 
a psychophysiological interaction (PPI) method for the NoGo versus Go 
contrast. This approach to quantifying clinical subject level data has 
been validated in our prior work [17]. 

In total seven metrics were generated for the cognitive control cir-
cuit: left dLPFC activation, right dLPFC activation, dACC activation, left 
dLPFC-dACC PPI, dACC-left dLPFC, right dLPFC-dACC PPI and dACC- 
dLPFC PPI. 

Analyses 

We used a novel application of a signal detection technique, receiver 
operator characteristics (ROC), to describe cognitive control circuit 
metrics that predict remission versus non-remission to the 159 patients 
with complete who had complete pre-treatment fMRI data and who 
completed treatment on one of the three study drugs. 

ROC software 
The software used in this analysis was developed at the Sierra-Pacific 

MIRECC and is in the public domain (https://web.stanford.edu/~yesa 
vage/ROC.html). The ROC software tests for the optimal sensitivity 
and specificity for identifying those particular patients with the specific 
clinically relevant outcome of interest. In this study the outcome of in-
terest in remission. The ROC tests every predictor variable (in this case, 
circuit variables) and every possible cut-point value for that variable for 
every subject in the database. Once the optimal predictor variable and 
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associated cut-point are identified, the association with the outcome of 
interest (in this case, remission) is tested with a stopping rule. If the 
association with remission passes the rule, the sample is divided into two 
subgroups according to the optimal predictor variable and optimal cut- 
point. The ROC analysis is then restarted, separately, for each of these 
two subgroups. The ROC procedure again examines every circuit pre-
dictor variable for every subject and cut-point to see if either subgroup 
can be further separated. The procedure will stop when it hits the 
stopping rule or when a subgroup has too small (less than 10) a sample 
size for further analysis[11]. The final result is a decision tree. 

Data reduction 

In the original work establishing the circuit quantification technol-
ogy we established the internal consistency of the cognitive control 
circuit metrics[17]. We examined the intercorrelations of the seven 
cognitive control metrics for the present sample, reported in Table 1. 
Higher correlations are seen among variables that belong to the same 
putative domains, namely activation with activation and PPI with PPI 
metrics, than those correlations seen between domains, namely activa-
tion with PPI metrics (Table 1). Because each of the cognitive control 
circuit metrics represents a standardized score, we calculated summary 
standardized scores for the three activation metrics (‘Activation 
average’)_and for the four PPI metrics (‘PPI average’) from their arith-
metic averages. We also calculated an average of all seven metrics 
(‘Circuit average’) to determine if it might be more robust than any of 
the separate cognitive control circuit metrics or their domain averages 
as a predictor of remission. 

Results 

In this exploratory analysis, four different sets of ROC analyses were 
performed, each using a different data reduction method for the 
cognitive control circuit predictor data to test the association with 
remission. These included all possible combinations of the individual 
circuit metrics, as well as Activation and PPI averages and a Circuit 
average score:  

1. A Circuit grand average score which was the overall average of all 
seven cognitive control circuit metrics.  

2. Activation and PPI average scores calculated as the arithmetic mean 
of the standardized metrics for the three activation scores and the 
four PPI metrics respectively.  

3. The individual standardized circuits scores of all seven circuit 
metrics.  

4. A “Hybrid” model that included both average scores (Activation, 
PPI) and the seven individual circuit metrics. 

Figs. 1–4 represent the four decision trees based upon the four ROC 
analyses. Each tree starts with the total of 159 cases in which the base 
remission rate is 35.8 %, a rounded proportion of 0.36. In each analysis, 
the next box reports the first-cut point selected by the ROC that repre-
sents the threshold at which there is the best sensitivity and specificity 
for identifying remitters. The 159 is divided into those who meet the cut- 
point threshold or not. The boxes on the right side of the ROC figure 
report the percentage of patients who were actually remitters based on 
this cut-point. In Fig. 1, this percentage is 41.1 %. This percentage is 
further reflected in the Positive Predictive Value (PPV) of 0.411, 
determined by the number of accurately identified remitters divided by 
this number of remitters plus false positives. In the second model in 
Fig. 2, the cut-point by PPI average plus the Activation average sepa-
rated a higher percentage of accurately identified remitters (55.1 %) 
with a PPV of 0.551. For the third model evaluating individual circuit 
scores, the best selected variable, right dLPFC activation, plus the next 
step down split on a second variable, dACC activation, resulted in a 
separation of 56.4 % correctly identified remitters with a PPV of 0.564 
(Fig. 3). The Hybrid model produced the maximum separation of re-
mitters with the first cut-point splitting by right dLPFC activation at the 
first cut-point, and the next step down cut-point splitting on the second 
variable, average PPI, correctly identifying 62.5 % with a PPV of 0.625. 

Table 2 presents the results of these four ROC analyses, highlighting 
the circuit measures selected, their cut-points and the sensitivity and 
specificity of those cut-points to predict remission as measured by the 
HRSD. 

Number needed to treat 

To further assess the clinical meaningfulness of the ROC results, we 
calculated number needed to treat (NNT) metrics. NNT was calculated 
using the following formula: 

NNT = 1/ARR. 
ARR = Control event rate – Experimental event rate. 
Our control event rate (population remission rate) is 35.8 %, 

rounded up to and expressed as a proportion, 0.36. The experimental 
event rate is the percentage of correctly identified remitters for each 
ROC model, rounded to a whole proportion with two decimal places. 

NNT results presented for each model, ordered from highest NNT to 
the lowest (best) NNT as follows:  

1. Circuit average model 

Experimental event rate = 0.41. 
Thus, ARR = 0.36–0.41 = 0.05. 
Thus, NNT = 1/0.05 = 20.  

2. Activation and PPI averages, with circuit average 

Table 1 
Correlation matrix of cognitive control circuit metrics derived from fMRI.    

Activation metrics PPI metrics   

Right_dLPFC 
activation 

dACC 
activation 

Left dLPFC-dACC 
PPI_ 

dACC-Left dlPFC 
PPI 

Right dLPFC-_dACC 
PPI 

dACC-Right_dLPFC 
PPI 

Activation 
metrics 

Left dlPFC 
activation  

0.46  0.57  − 0.14  − 0.03  − 0.06  0.05 

Right dlPFC 
activation   

0.49  0.06  0.09  − 0.01  0.03 

dACC activation    − 0.03  0.13  − 0.05  0.08 
PPI metrics Left dlPFC-dACC PPI     0.49  0.61  0.38 

dACC-Left dLPFC 
PPI      

0.32  0.42 

Right dlPFC- dACC 
PPI       

0.45 

Legend: Higher correlations are seen among variables that belong to the same putative domains (Activation with Activation metrics, light red shading, and PPI with PPI 
metrics, paler red shading), than those correlations seen between domains (Activation with PPI metrics, gray shading). Bold font indicates significant at p < .001. 
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Experimental event rate = 0.55. 
Thus, ARR = 0.36–0.55 = 0.19. 
Thus, NNT = 1/0.19 = 5.26.  

3. Individual Activation and PPI metrics 

Experimental event rate = 0.56. 
Thus, ARR = 0.36–0.56 = 0.20. 
Thus, NNT = 1/0.20 = 5.  

4. Hybrid model 

Experimental event rate = 0.63 %. 
Thus, ARR = 0.36–0.63 = 0.27. 
Thus, NNT = 1/0.27 = 3.70. 
Let us apply the interpretation of NNT to these results, focusing on 

the hybrid model:  

1. As is the custom, we conservatively round up the 3.70 NNT to 4. 

Fig. 1. ROC for remission predicted by the Circuit grand average. Maximum separation of correctly identified remitters was 41.1% remission versus the base rate of 
35.8%. Sensitivity was 0.807, specificity was 0.347 and kappa was 0.132. *One data point was excluded as missing. 

Fig. 2. ROC for remission predicted by the Activation average and PPI average with the Circuit average. Activation and PPI average scores predicted remission better 
than the Circuit grand average score. Maximum separation of correctly identified remitters was 55.1% versus the base rate of 35.8%. Sensitivity was 0.734, specificity 
was 0.544 and kappa was 0.262. 
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2. The base population remission rate is 36 %; with the optimized fMRI 
selection procedure, we can prospectively identify a higher rate of 
individuals who will achieve remission, raising the rate to 63 %.  

3. Then, using an NNT of 4, one could expect 1.44 remissions in the 
unselected patients (36 % of 4), but 2.52 with the improvement in 
identification of remitters (63 % of 4).  

4. The difference between 2.52 and 1.44 represents one less patient 
with a failed treatment. 

Discussion 

In a secondary analysis of data from 159 patients from the iSPOT-D 
trial, we derived cognitive control circuit metrics using an image pro-
cessing method designed to quantify fMRI data at the individual patient 
level. These circuit measures were inputs into an established software, 
implementing ROC to calculate the sensitivity, specificity and predictive 
power of circuit predictors of antidepressant remission outcomes at 
every possible cut-point value for every predictor. The best results in 
terms of the maximum separation of remitters correctly identified 63 % 
of remitters versus the base rate of 36 %. Circuit predictors in this model, 
the ‘hybrid’ model, combined an initial cut-point of − 0.75 standard 
deviations for dLPFC activity with an average of connectivity and acti-
vation scores at secondary cut-points. 

Within the hybrid model the right dLPFC was the primary contrib-
utor to correct prediction of remission status. In our prior work the right 
dLPFC also shows relatively greater impairment than the left dLPFC in 
charactering the cognitive control biotype of depression [12]. The right 
dlPFC has been specifically implicated in the online adjustment of 
cognitive control, including the flexible adaption to dynamic task de-
mands [26,27]. These findings regarding lateralized dLPFC functions 
suggest that the right dLPFC not only contributes to the mechanisms of 
the cognitive control biotype but also to identifying likelihood of 
remitting on commonly prescribed antidepressants. 

We emphasize that the ROC strategy used in this analysis is a data 
exploration technique and that results in a sample of this size must be 
replicated. Nonetheless, there are some suggestions for further study, 
including in prospective trial designs that assess longitudinal outcomes 
over a longer time frame than in the present dataset. Ultimately the best 
set of circuit predictors will be resolved with a combination of empirical 
data, a trial in the field where the sought-after signal and the sur-
rounding noise will vary with each setting and clinician consensus. 

Implications for precision medicine in psychiatry 

Our findings contribute to the broader goal of precision medicine in 
psychiatry to develop clinically actionable measures that could be used 
in routine clinical practice. A number of national initiatives have been 
launched to make progress toward this goal, including the National 
Institute of Mental Health Research Domain Criteria initiative [28,29]; 
and the NIH BRAIN Initiative [30]. More recently, Congress passed the 
Commander John Scott Hannon Veterans Mental Health Care 
Improvement Act of 2019, which instructs the Veterans Administration 
to implement the Precision Mental Health for Veterans Initiative to 
identify and validate brain and mental health biomarkers among vet-
erans, with specific consideration for depression, anxiety, PTSD, bipolar 
disorder, and traumatic brain injury [31]. Under this initiative, the 
methods should include brain structure and function measurements, 
such as functional magnetic resonance imaging, aligned with the focus 
of our study and findings. 

Clinical and economic implications of optimizing remission outcomes 

We have described the NNT as the number of patients needed to treat 
with a new treatment to prevent one additional bad outcome: death, 
stroke, or—in our case—failure to remit after antidepressant therapy. 
For example, if an antidepressant has an NNT of 5, it means you must 

Fig. 3. ROC for remission predicted by the seven individual circuit metrics. Maximum separation of correctly identified remitters was 56.4% versus the base rate of 
35.8%. Sensitivity was 0.833, specificity was 0.477 and kappa was 0.203. 
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Fig. 4. ROC for remission predicted by the Hybrid model, combining the Activation and PPI averages with the seven individual circuit metrics. Within the hybrid 
model the best overall predictor of remission, included in the decision tree with average scores and all seven individual metrics, was right dlPFC activation. Maximum 
separation of correctly identified remitters was 62.5% remission versus the base rate of 35.8%. Sensitivity was 0.758, specificity was 0.483 and kappa was 0.244. This 
was the best performing of the models. 

Table 2 
Summary of Best Prediction of Remission in Four ROC Models.  

Best Variable  Cut- 
Point 

Sens Spec kappa chi square, χ2 % correctly identified remitters NNT 

Circuit Average Score (Fig. 1)         
Branch 1. Circuit average GE  − 0.462  0.80  0.35  0.132  4.493  41.1 %  18.28 
Activation average and PPI average with Circuit Average (Fig. 2)         
Branch 1. PPI average GE  − 0.099  0.66  0.53  0.174  5.527   
Branch 2. Activation average GE  − 0.575  0.730  0.542  0.262  6.303  55.1 %  5.14 
Individual Activation and PPI scores (Fig. 3)         
Branch 1. Right dlPFC activation GE  − 0.754  0.807  0.402  0.175  7.256   
Branch 2. dACC activation LT  − 0.522  0.478  0.721  0.203  4.509  56.4 %  4.81 
Hybrid (Fig. 4)         
Branch 1. Right dLPFC activation GE  − 0.754  0.807  0.402  0.175  7.256   
Branch 2. PPI average GE  − 0.115  0.717  0.525  0.232  6.301   
Branch 3. dACC activation LT  0.169  0.758  0.483  0.244  3.895  62.5 %.  3.72 

Note: Color code shading refers to first, second and third decision tree branches. Corresponding color codes are also used in Figs. 1-4 in the Decision Tree Diagrams. 
NNT = Number needed to treat. 
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treat 5 people with the drug to prevent one additional failure to remit 
compared to a standard treatment. Our optimized hybrid fMRI selection 
model has an NNT of 4. Thus, for every 4 patients using the optimized 
fMRI model to select treatment prevents one additional failure to remit 
compared to unselected patients. The remission rate increases from the 
entire population rate of 36 % for unselected patients to 63 % using the 
optimized fMRI model. 

Creating a larger economic example may show the importance of 
NNT calculations. Take treating 100 typical patients, you would expect 
36 remissions in an unselected population (36 % of 100). Using fMRI 
selection, were it to work in the field, one would only have to treat 58 
patients meeting the selection criteria to obtain the same number of 
remissions (62 % of 58). Thus, if the treatment cost is $10,000 per 
course, the fMRI of selected patients would only cost $580,000 to treat 
(58 times $10,000) versus $1,000,000 (100 times $10,000) for the same 
number of successes in an unselected population. Such an approach at a 
health systems level might afford considerable savings, even if one had 
to spend $58,000 to get 58 fMRIs at $1000 each. Finally, it might also 
afford a considerable reduction in frustration of patients and physicians 
alike by avoiding a treatment that has a near 2/3 risk of being doomed to 
failure. 

Finally, boosting the number of patients achieving remission based 
on pre-treatment circuit predictors has the further potential to help drive 
down the longer-term costs due to burden of illness in depression. 
Reflecting some aspects of the burden of illness, for every employee 
experiencing depression, there is an average cost of $15,000 per year in 
lost productivity, health care costs and turnover[32]. Based on this 
annual cost, using the current clinical heuristic, one individual 
achieving remission out of three would reduce lost productivity costs 
from $45,000 to $30,000. In the future, if the incorporation of circuit 
predictors enables two out of three individuals to achieve remission, this 
cost could be reduced further, from $45,000 to $15,000. Depression has 
a chronic course of disability, resulting in lifetime costs that are 
currently not routinely factored in when evaluating the introduction of 
new clinical tools, such as neuroimaging, in psychiatry. 

In conclusion, our findings contribute to the broader goal of preci-
sion medicine in psychiatry to develop biomarkers that align with na-
tional initiatives and that could be used in clinical trials in the field and 
in clinical practice. Future studies are needed to replicate these findings 
and to consider expanding them to a longer-term assessment of outcome. 
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