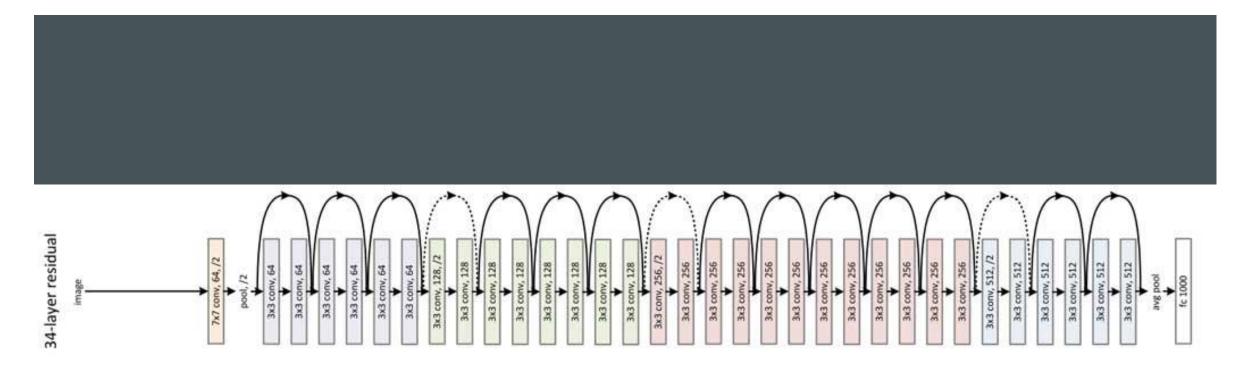


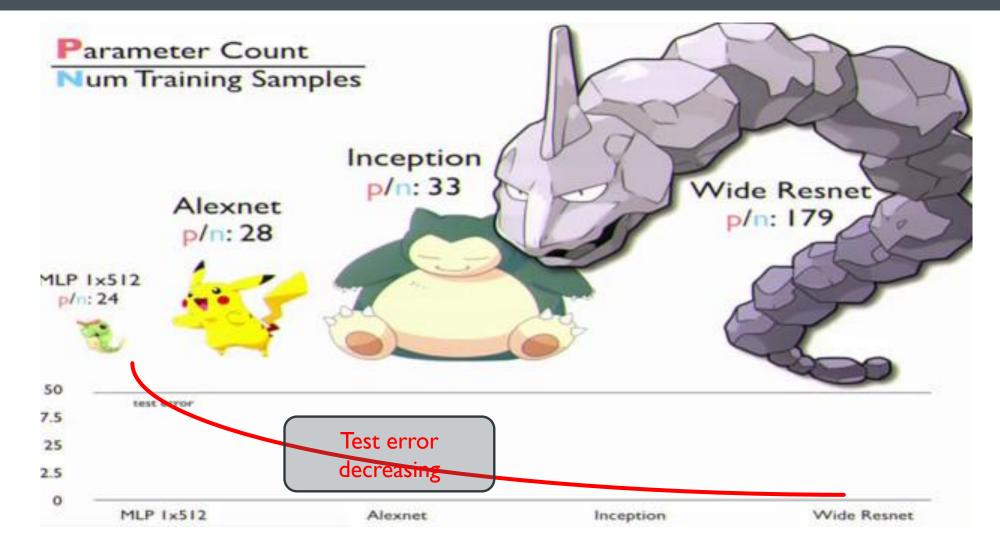
DYNAMIC SYSTEM VIEW OF DEEP LEARNING

YIPING LU PEKING UNIVERSITY

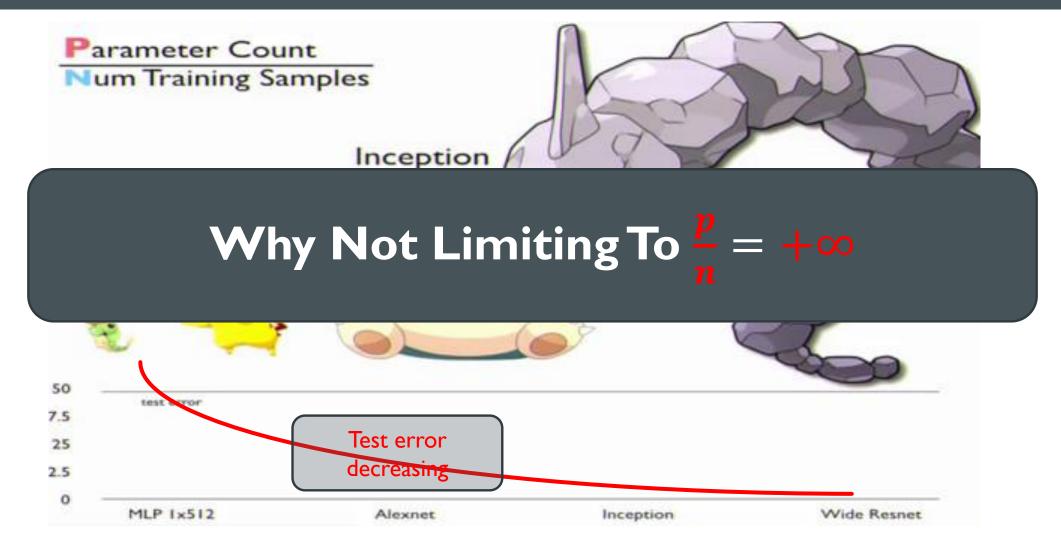


DEEP LEARNING IS SUCCESSFUL, BUT...

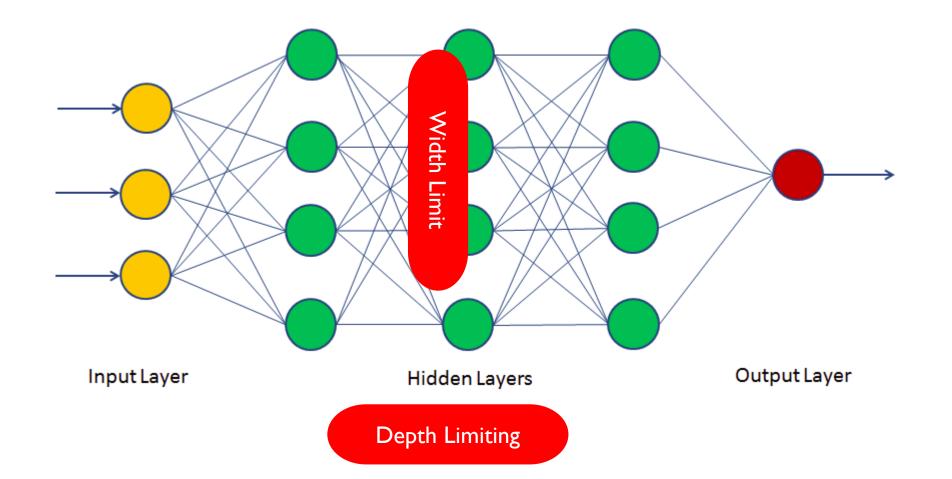
LARGER THE BETTER?



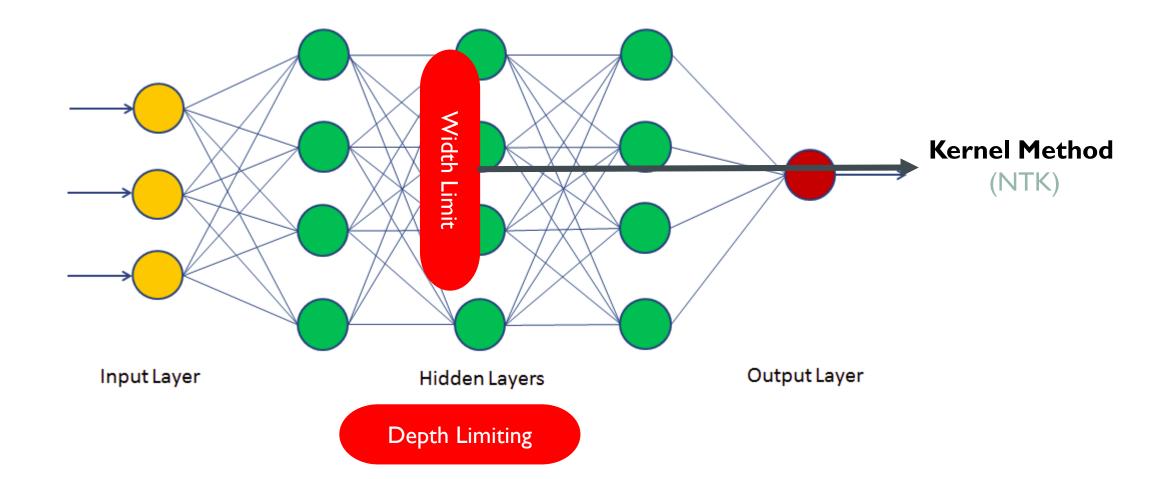
LARGER THE BETTER?



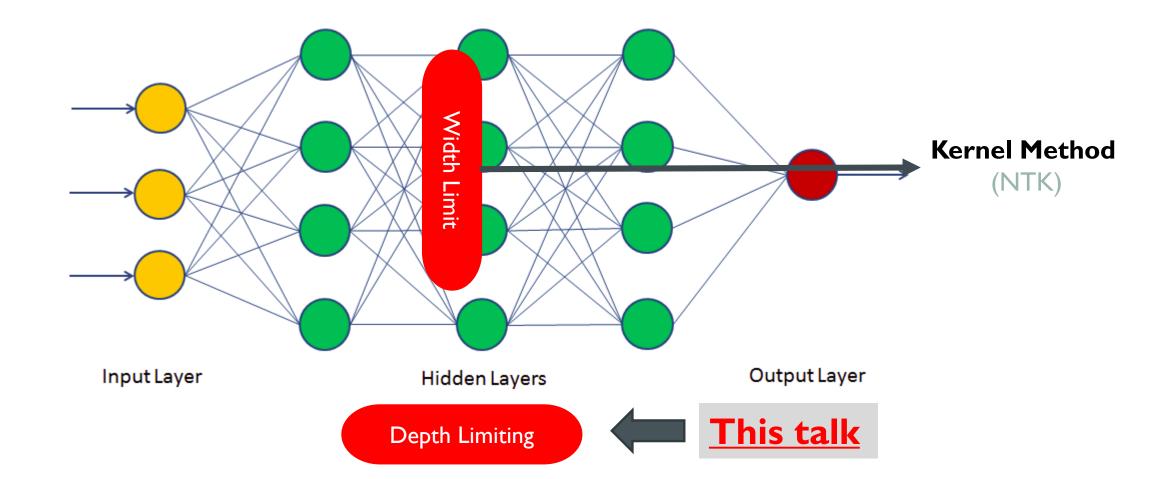
TWO LIMITING



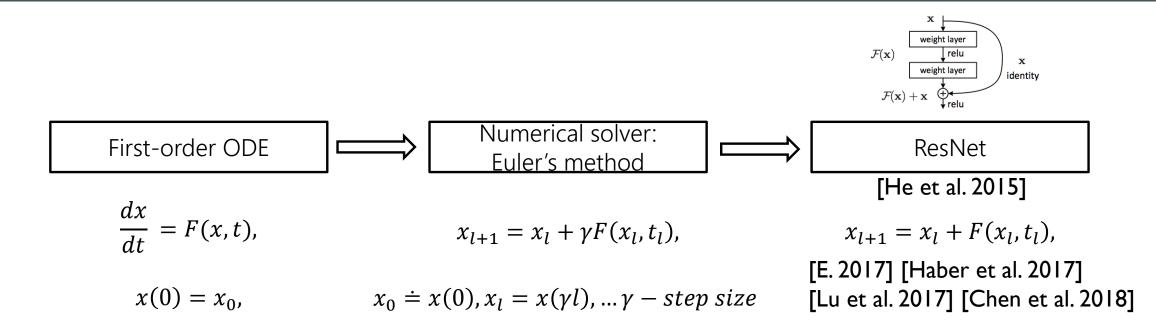
TWO LIMITING



TWO LIMITING



DEPTH LIMITING: **ODE**



ALSO THEORETICAL GUARANTEED

Deep Limits of Residual Neural Networks

Matthew Thorpe1 and Yves van Gennip2

¹Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK

> ²Delft Institute of Applied Mathematics, Delft University of Technology, 2628 XE Delft, The Netherlands

> > March 2019

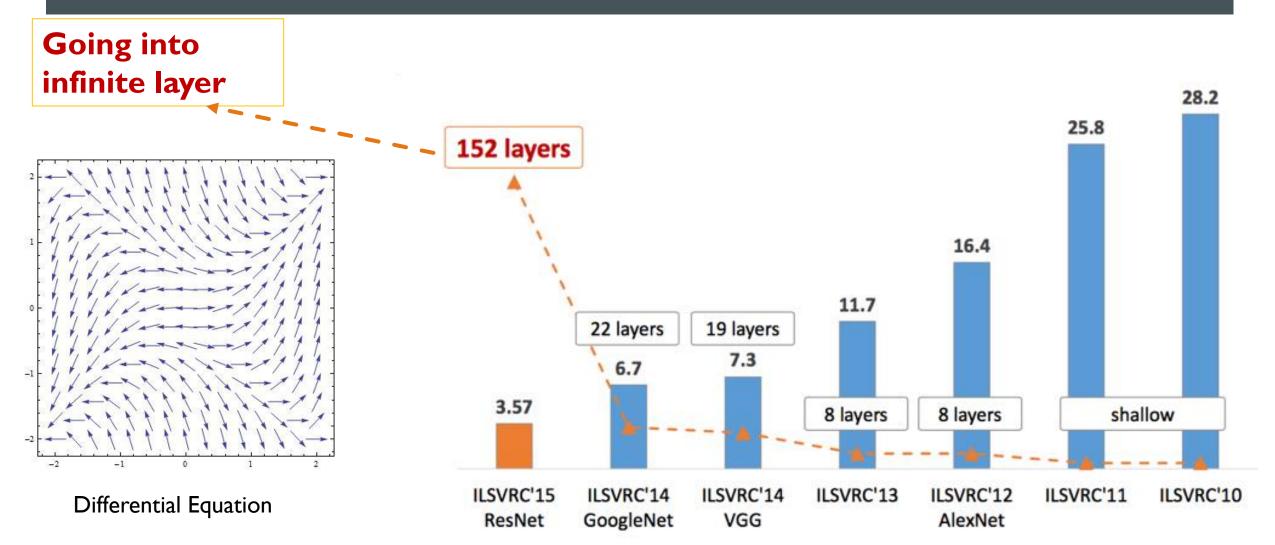
Abstract

Neural networks have been very successful in many applications; we often, however, lack a theoretical understanding of what the neural networks are actually learning. This problem emerges when trying to generalise to new data sets. The contribution of this paper is to show that, for the residual neural network model, the deep layer limit coincides with a parameter estimation problem for a nonlinear ordinary differential equation. In particular, whilst it is known that the residual neural network model is a discretisation of an ordinary differential equation, we show convergence in a variational sense. This implies that optimal parameters converge in the deep layer limit. This is a stronger statement than saying for a fixed parameter the residual neural network model converges (the latter does not in general imply the former). Our variational analysis provides a discrete-to-continuum Γ -convergence result for the objective function of the residual neural network training step to a variational problem constrained by a system of ordinary differential equations; this rigorously connects the discrete setting to a continuum problem.

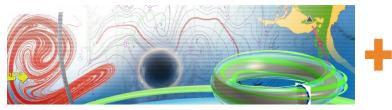
Compactness yields convergence

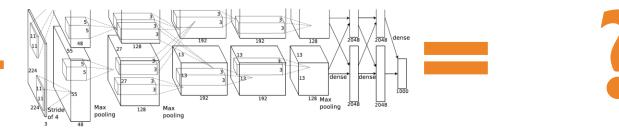
Gamma Convergence

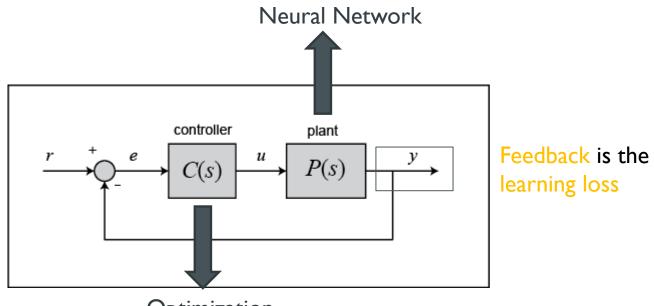
BEYOND FINITE LAYER NEURAL NETWORK



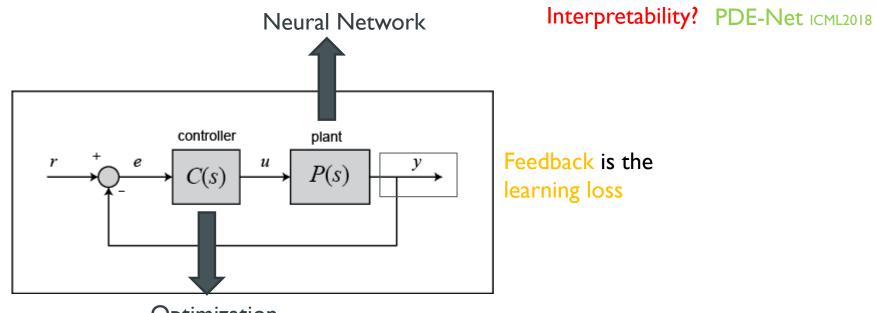
TRADITIONAL WISDOM IN DEEP LEARNING



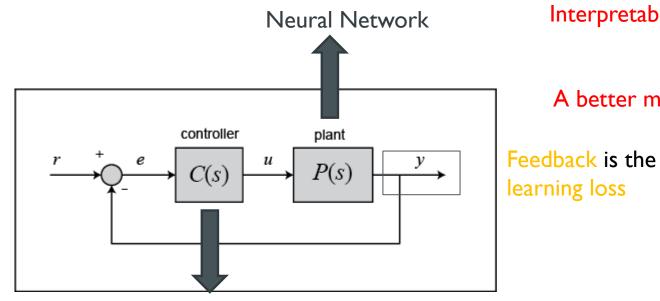




Optimization



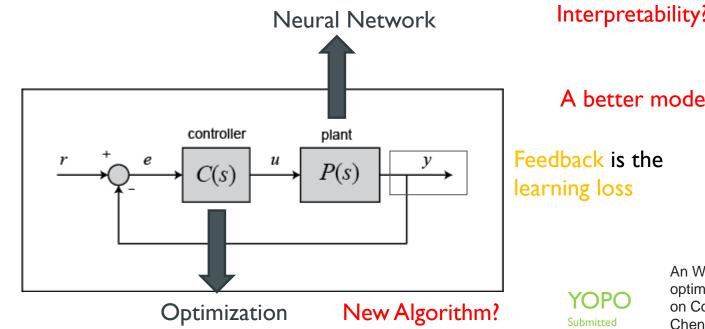
Optimization



Optimization

Interpretability? PDE-Net ICML2018

LM-ResNet ICML2018 A better model?DURR ICLR2019 Macaroon submitted Iback is the Chang B, Meng L, Haber E, et al. Reversible architectures for arbitrarily deep residual neura networks[C]//Thirty-Second AAAI Conference on Artificial Intelligence. 2018. Tao Y, Sun Q, Du Q, et al. Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling[C]//Advances in Neural Information Processing Systems. 2018: 496-506.



Interpretability? PDE-Net ICML2018

LM-ResNet ICML2018 A better model?DURR ICLR2019 Macaroon submitted Iback is the hing loss Chang B, Meng L, Haber E, et al. Reversible architectures for arbitrarily deep residual neur networks[C]//Thirty-Second AAAI Conference on Artificial Intelligence. 2018. Tao Y, Sun Q, Du Q, et al. Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling[C]//Advances in Neural Information Processing Systems. 2018: 496-506.

An W, Wang H, Sun Q, et al. A pid controller approach for stochastic optimization of deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8522-8531. Chen T Q, Rubanova Y, Bettencourt J, et al. Neural ordinary differential equations[C]//Advances in Neural Information Processing Systems. 2018: 6571-6583.

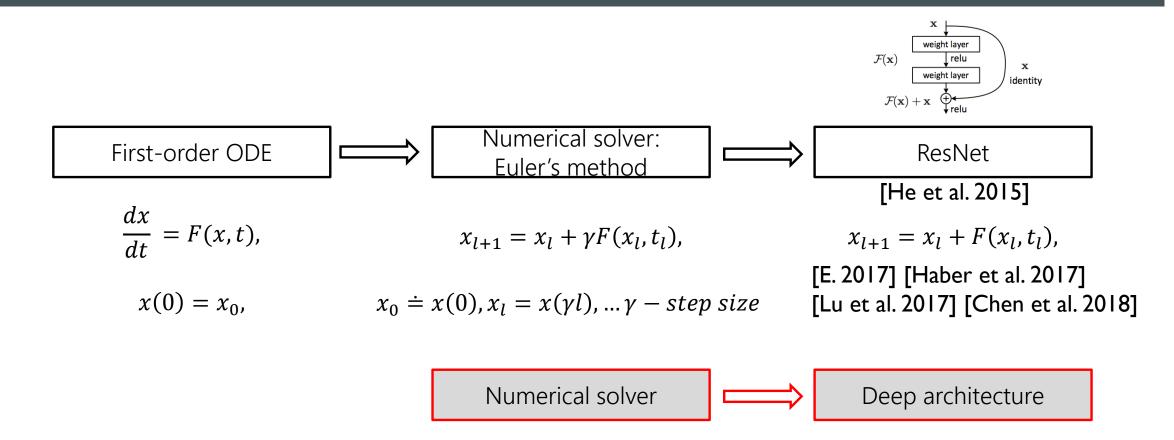
Li Q, Hao S. An optimal control approach to deep learning and applications to discrete-weight neural networks[J]. arXiv preprint arXiv:1803.01299, 2018.

Chang B, Meng L, Haber E, et al. Multi-level residual networks from dynamical systems view[J]. arXiv preprint arXiv:1710.10348, 2017.

HOW DIFFERENTIAL EQUATION VIEW HELPS DEEP LEARNING SYSTEM DESIGNING

PRINCIPLED NEURAL ARCHITECTURE DESIGN

DEPTH LIMITING: **ODE**



NEURAL NETWORK AS SOLVING ODES

Dynamic System

Nueral Network

Continuous limit

Numerical Approximation

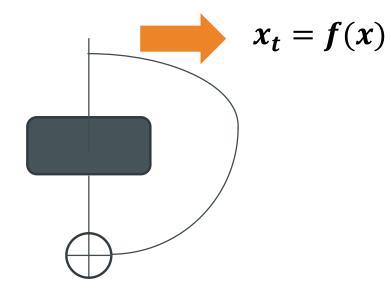
Table 1: In this table, we list a few popular deep networks, their associated ODEs and the numerical schemes that are connected to the architecture of the networks.

Network	Related ODE	Numerical Scheme		
ResNet, ResNeXt, etc.	$u_t = f(u)$	Forward Euler scheme		
PolyNet	$u_t = f(u)$	Approximation of backward Euler scheme		
FractalNet	$u_t = f(u)$	Runge-Kutta scheme		
RevNet	$\dot{X} = f_1(Y), \dot{Y} = f_2(X)$	Forward Euler scheme		

WRN, ResNeXt, Inception-ResNet, PolyNet, SENet etc.....:

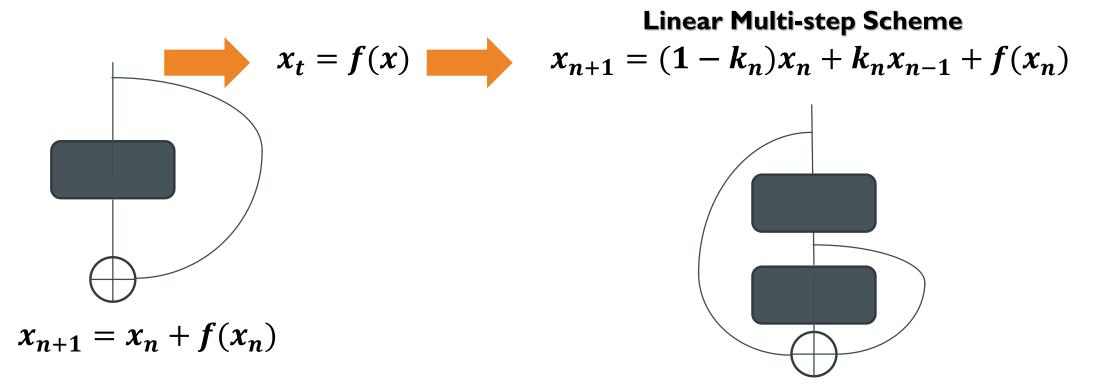
New scheme to Approximate the right hand side term Why not change the way to discrete u_t?

MULTISTEP ARCHITECTURE?



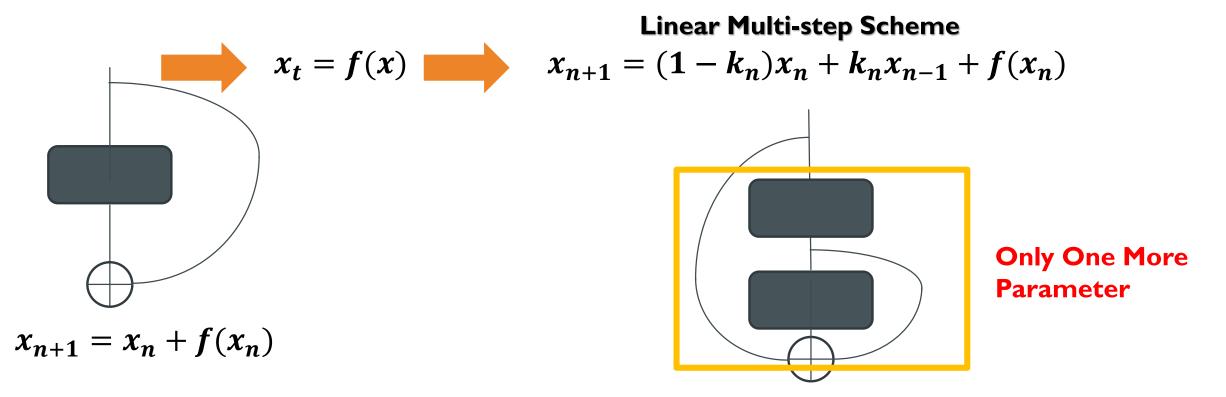
 $x_{n+1} = x_n + f(x_n)$

MULTISTEP ARCHITECTURE?



Linear Multi-step Residual Network

MULTISTEP ARCHITECTURE?



Linear Multi-step Residual Network

EXPERIMENT

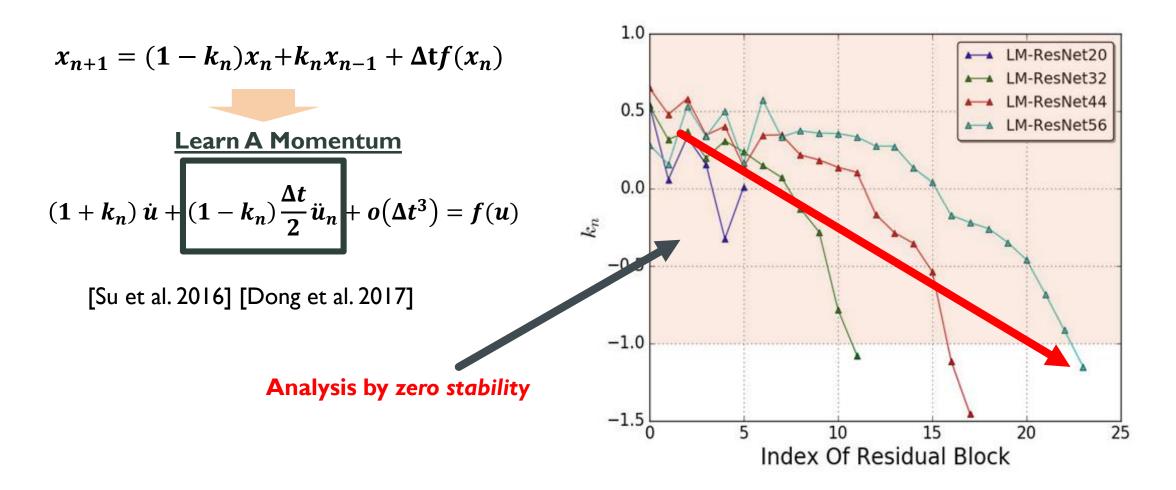
Table 2: Linear Multi-step Resnet Test On Cifar							
Model	Layer	Accuracy	Params	Dataset			
Resnet	20	91.25	0.27M	Cifar10			
Resnet	32	92.49	0.46M	Cifar10			
Resnet	44	92.83	0.66M	Cifar10			
Resnet	56	93.03	0.85M	Cifar10			
Resnet	110	93.63	1.7M	Cifar10			
LM-Resnet(Ours)	20	91.67	0.27M	Cifar10			
LM- Resnet(Ours)	32	92.82	0.46M	Cifar10			
LM- Resnet(Ours)	44	92.98	0.66M	Cifar10			
LM- Resnet(Ours)	56	93.69	0.85M	Cifar10			
EM- Resnet(Ours)	40	91.75	0.27M	Cifar10			
Resnet	110	72.24	1.7M	Cifar100			
Resnet	164	75.67	2.55M	Cifar100			
Resnet	1202	77.29	18.88M	Cifar100			
ResneXt	29(8×64d)	82.23	34.4M	Cifar100			
ResneXt	29(16×64d)	82.69	68.1M	Cifar100			
LM-Resnet(Ours)	110	73.16	1.7M	Cifar100			
LM-Resnet(Ours)	164	76.74	2.55M	Cifar100			
LM-ResneXt(Ours)	29(8×64d)	82.51	34.4M	Cifar100			
LM-ResneXt(Ours)	29(16×64d)	83.21	68.1M	Cifar100			

Table 2: Linear Multi-step Resnet Test On Cifar

Table 3: Single-crop error rate on ImageNet (validation set)

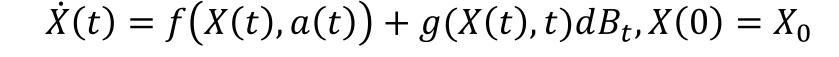
Model	Layer	top-1	top-5
ResNet (He et al. (2015b))	50	24.7	7.8
ResNet (He et al. (2015b))	101	23.6	7.1
ResNet (He et al. (2015b))	152	23.0	6.7
LM-ResNet (Ours)	50, pre-act	23.8	7.0
LM-ResNet (Ours)	101, pre-act	22.6	6.4

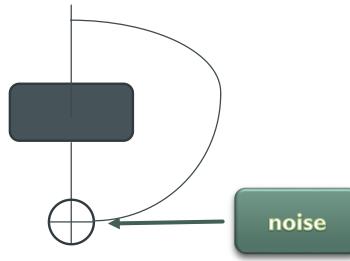
MODIFIED EQUATION VIEW



UNDERSTANDING DROPOUT

Noise can avoid overfit?





The numerical scheme is only need to be <u>weak convergence</u>!

 $E_{data}(loss(X(T)))$

STOCHASTIC DEPTH AS AN EXAMPLE

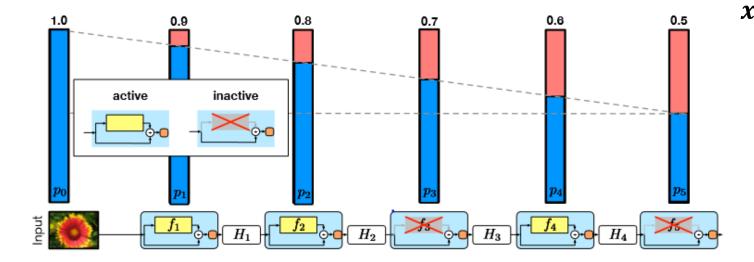
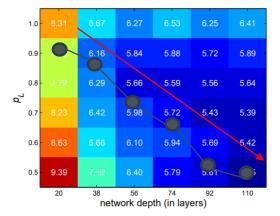


Fig. 2. The linear decay of p_{ℓ} illustrated on a ResNet with stochastic depth for $p_0 = 1$ and $p_L = 0.5$. Conceptually, we treat the input to the first ResBlock as H_0 , which is always active.

$$\begin{aligned} x_{n+1} &= x_n + \eta_n f(x) & \text{noise} \\ &= x_n + E\eta_n f(x_n) + (\eta_n - E\eta_n) f(x_n) \\ &\text{mean} \end{aligned}$$

$$\sqrt{p(t)(1 - p(t))} f(X) \odot [\mathbf{1}_{N \times 1}, \mathbf{0}_{N, N-1}] dB_t.$$
We need $1 - 2p_n = O(\sqrt{\Delta t})$

Hyper-parameter setting meets convergence condition



Neural Ordinary Differential Equations

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud

SOME RECENT WORK

arXiv.org > cs > arXiv:1812.00174

Computer Science > Machine Learning

Stochastic Training of Residual Networks: a Differential Equation Viewpoint

Qi Sun, Yunzhe Tao, Qiang Du

(Submitted on 1 Dec 2018)

arXiv.org > cs > arXiv:1906.02355 Computer Science > Machine Learning

Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise

Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh

(Submitted on 5 Jun 2019)

Search

Search...

Help | Advand

Computer Science > Machine Learning

ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies

Bao Wang, Binjie Yuan, Zuoqiang Shi, Stanley J. Osher

Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit

Belinda Tzen, Maxim Raginsky

Neural Stochastic Differential Equations

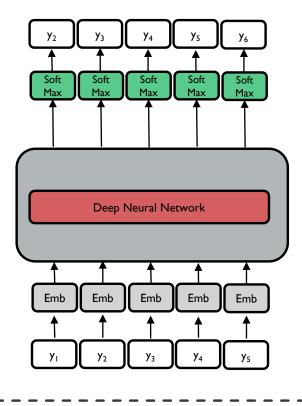
Stefano Peluchetti, Stefano Favaro

Neural Jump Stochastic Differential Equations

Junteng Jia, Austin R. Benson

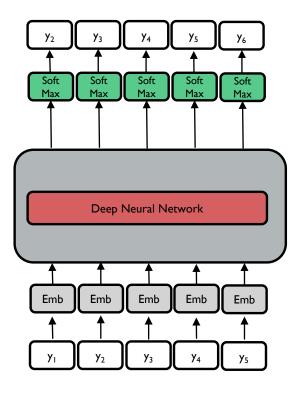
Ingilpeen

UNDERSTANDING SEQUENCE TO SEQUENCE MODELING

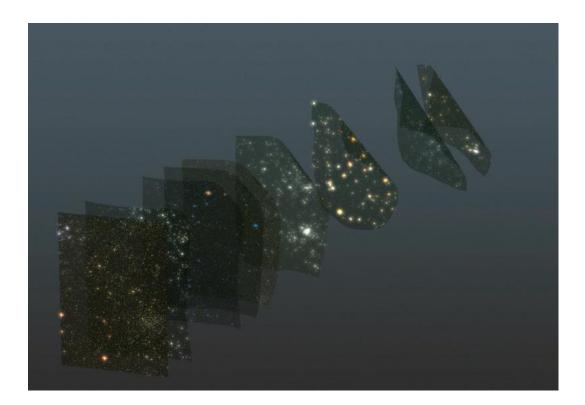


The input shape is different ((sentences of different length)

UNDERSTANDING SEQUENCE TO SEQUENCE MODELING

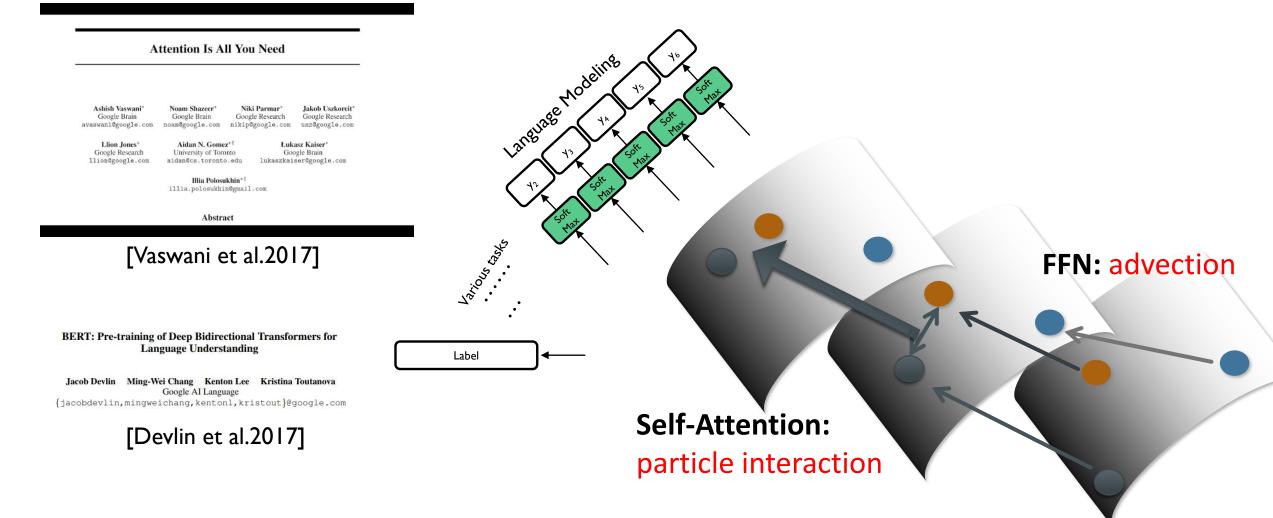


The input shape is different (sentences of different length)

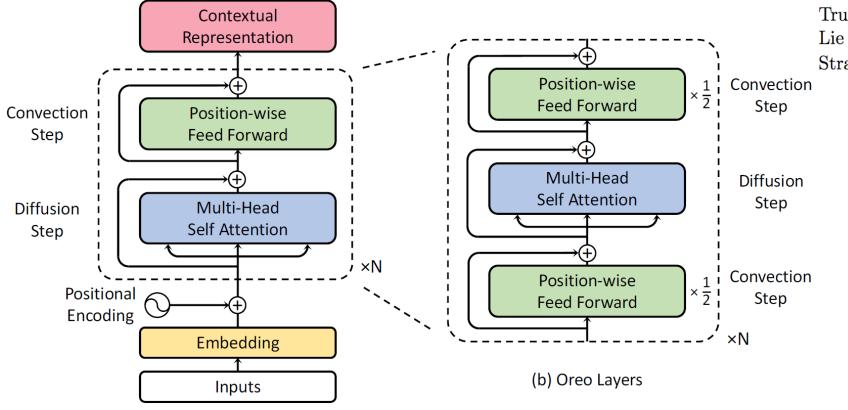


Idea: Consider every **word** in a document as a **particle** in the n-body system.

TRANSFORMER AS A SPLITTING SCHEME



A BETTER SPLITTING SCHEME



True solution: $u(t + \Delta t) = e^{\Delta t(A+B)}u(t)$ Lie splitting: $u_L(t + \Delta t) = e^{\Delta tA}e^{\Delta tB}u(t)$ Strang splitting: $u_S(t + \Delta t) = e^{\frac{1}{2}\Delta tA}e^{\Delta tB}e^{\frac{1}{2}\Delta tA}u(t)$

(a) Original Transformer

RESULT

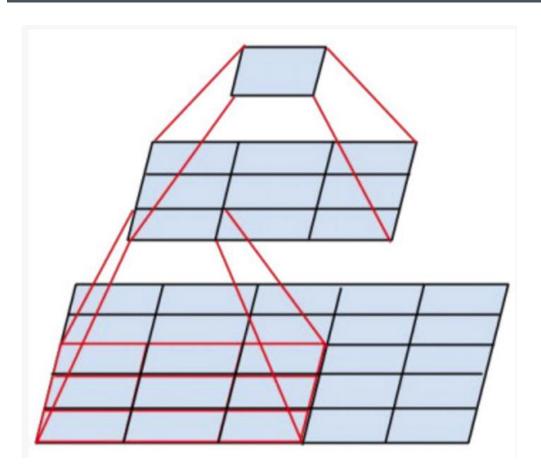
	IWSLT14 De-En	WMT14 En-De		
Method	small	base	big	
Transformer [3]	34.4	27.3	28.4	
Weighted Transformer [30]	/	28.4	28.9	
Relative Transformer [31]	/	26.8	29.2	
Universal Transformer [4]	/	28.9	/	
Scaling NMT [32]	/	/	29.3	
Dynamic Conv [33]	35.2	/	29.7	
Ours	35.43	28.91	30.22	

Table 1: Performance on the testsets of WMT14 En-De and IWSLT14 De-En tasks.

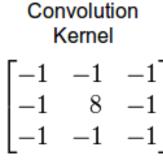
Table 2: The test results on the GLUE benchmark (except WNLI).

Method	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	GLUE
Existinng systems									
ELMo [8] OpenAI GPT [35] BERT _{BASE} [7]	33.6 47.2 52.1	90.4 93.1 93.5	84.4/78.0 87.7/83.7 88.9/84.8	74.2/72.3 85.3/84.8 87.1/85.8	63.1/84.3 70.1/88.1 71.2/89.2	74.1/74.5 80.7/80.6 84.6/83.4	79.8 87.2 90.5	58.9 69.1 66.4	70.0 76.9 78.3
Our systems									
BERT _{BASE} (ours) Ours _{BASE}	52.8 57.6	92.8 94.0	87.3/83.0 88.4/84.4	81.2/80.0 87.5/86.3	70.2/88.4 70.8/89.0	84.4/83.7 85.4/84.5	90.4 91.6	64.9 70.5	77.4 79.7

CONVOLUTION?



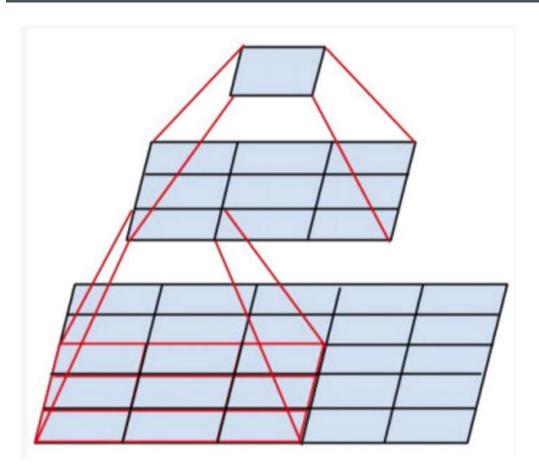
Input image



Feature map

How to interpret **Convolution**?

CONVOLUTION?



Input image Convolution Feature map Kernel -1 $^{-1}$ 8 How to interpret **Convolution**? NN DE **CNN** PDE

Gradient

CONV FILTERS AS DIFFERENTIAL OPERATORS

Propositin 2.1. Let q be a filter with sum rules of order $\alpha \in \mathbb{Z}_+^2$. Then for a smooth function F(x) on \mathbb{R}^2 , we have

$$\frac{1}{\varepsilon^{|\alpha|}} \sum_{k \in \mathbb{Z}^2} q[k] F(x + \varepsilon k) = C_\alpha \frac{\partial^\alpha}{\partial x^\alpha} F(x) + O(\varepsilon), \text{ as } \varepsilon \to 0,$$
(3)

where C_{α} is the constant defined by

$$C_{\alpha} = \frac{1}{\alpha!} \sum_{k \in \mathbb{Z}^2} k^{\alpha} q[k].$$

If, in addition, q has total sum rules of order $K \setminus \{|\alpha| + 1\}$ for some $K > |\alpha|$, then

$$\frac{1}{\varepsilon^{|\alpha|}} \sum_{k \in \mathbb{Z}^2} q[k] F(x + \varepsilon k) = C_\alpha \frac{\partial^\alpha}{\partial x^\alpha} F(x) + O(\varepsilon^{K - |\alpha|}), \text{ as } \varepsilon \to 0.$$
(4)

 I
 I

 I
 -4

 I
 I

$$\Delta u = u_{xx} + u_{yy}$$

PHYSICS DISCOVERY



NEW MATH DISCOVERY

The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants

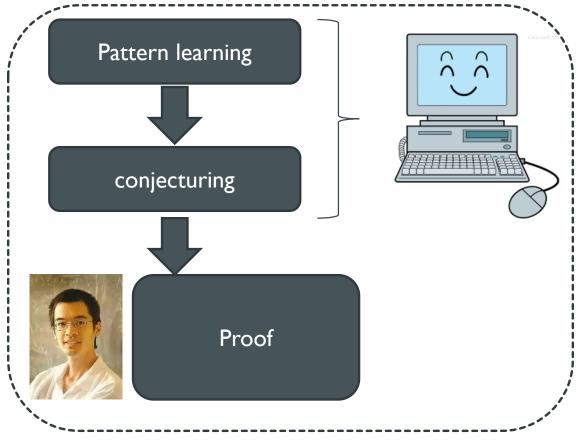
Gal Raayoni¹, George Pisha¹, Yahel Manor¹, Uri Mendlovic², Doron Haviv¹, Yaron Hadad¹, and Ido Kaminer¹

¹Technion - Israel Institute of Technology, Haifa 3200003, Israel ²Google Inc., Tel Aviv 6789141, Israel

Abstract

Fundamental mathematical constants like e and π are ubiquitous in diverse fields of science, from abstract mathematics and geometry to physics, biology and chemistry. Nevertheless, for centuries new mathematical formulas relating fundamental constants have been scarce and usually discovered sporadically. In this paper we propose a novel and systematic approach that leverages algorithms for deriving new mathematical formulas for fundamental constants and help reveal their underlying structure. Our algorithms find dozens of well-known as well as previously unknown continued fraction representations of π , e, and the Riemann zeta function values. Two new conjectures produced by our algorithm, along with many others, are:

$$e = 3 + \frac{-1}{4 + \frac{-2}{5 + \frac{-3}{6 + \frac{-4}{7 + \dots}}}} \qquad , \qquad \frac{4}{\pi - 2} = 3 + \frac{1 \cdot 3}{5 + \frac{2 \cdot 4}{7 + \frac{3 \cdot 5}{9 + \frac{1 \cdot 4 \cdot 6}{11 + \dots}}}$$



PDE-NET VERSION I.0 AND 2.0

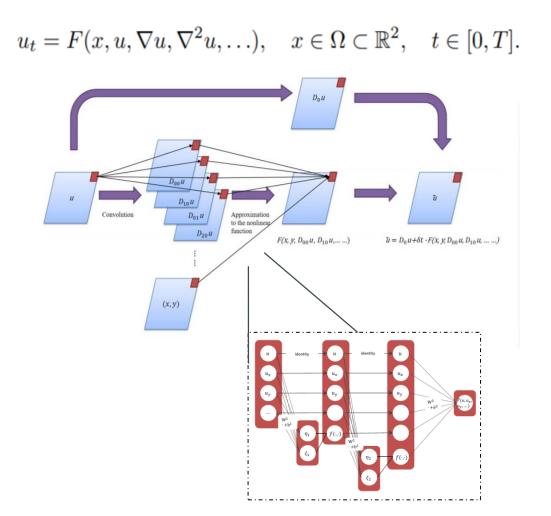
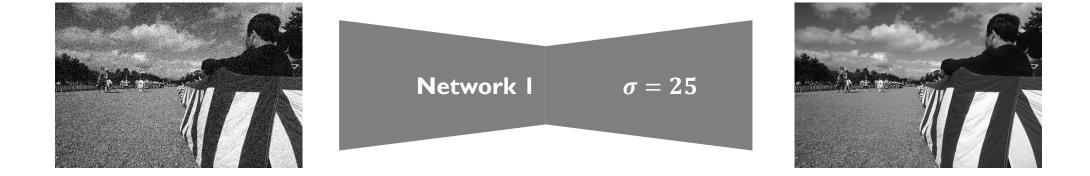


Table 1: PDE model identification.

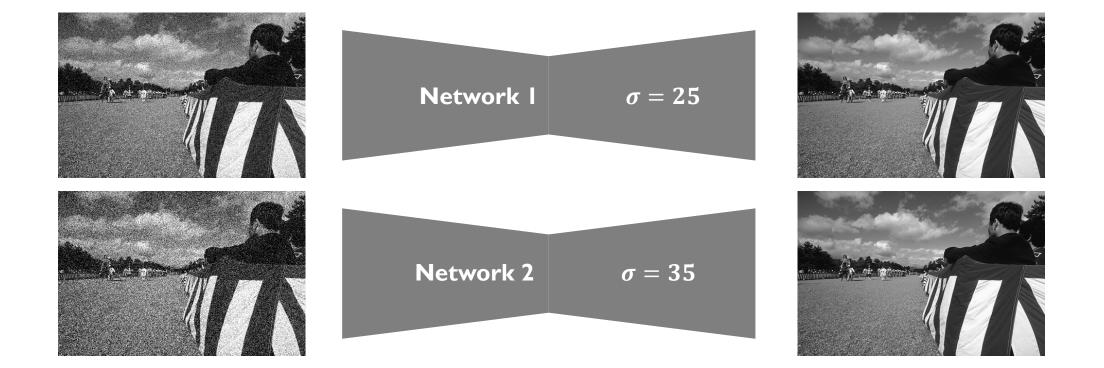
Correct PDE	$ \begin{aligned} u_t &= -uu_x - vu_y + 0.05(u_{xx} + u_{yy}) \\ v_t &= -uv_x - vv_y + 0.05(v_{xx} + v_{yy}) \end{aligned} $
Frozen-PDE-Net 2.0	$\begin{aligned} u_t &= -0.906uu_x - 0.901vu_y + 0.033u_{xx} + 0.037u_{yy} \\ v_t &= -0.907vv_y - 0.902uv_x + 0.039v_{xx} + 0.032v_{yy} \end{aligned}$
PDE-Net 2.0	$\begin{aligned} u_t &= -0.986uu_x - 0.972u_yv + 0.054u_{xx} + 0.052u_{yy} \\ v_t &= -0.984uv_x - 0.982vv_y + 0.055v_{xx} + 0.050v_{yy} \end{aligned}$

- Constrain the function space
- Theoretical Recover Guarantee(Coming Soon)
- Symbolic Discovery

ONE NOISE LEVEL ONE NET



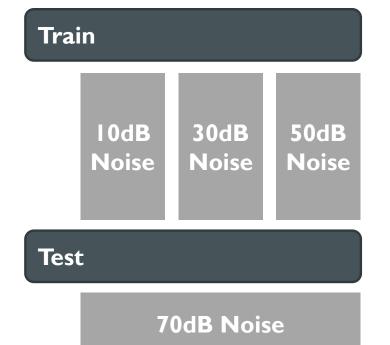
ONE NOISE LEVEL ONE NET

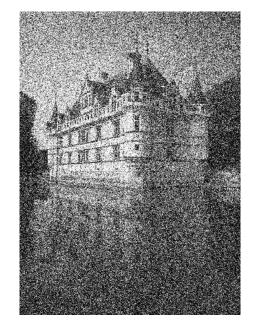


WEWANT

One Model

WE ALSO WANT GENERALIZATION





BM3D

Traditional Method VS

Deep Learning

input

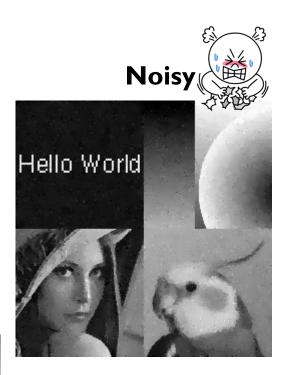
$$\frac{\partial u}{\partial t} = \operatorname{div}\left(\begin{array}{c} c(|\nabla u|^2) \\ \nabla u \end{array} \right) \text{ in } \Omega \times (0, \mathbf{T}),$$
$$\frac{\partial u}{\partial N} = 0 \quad \operatorname{on} \ \partial \Omega \times (0, T),$$
$$u(0, x) = u_0(x) \quad \operatorname{in} \ \Omega,$$

Perona-Malik Equation

input

 $\frac{\partial u}{\partial t} = \operatorname{div}\left(\begin{array}{c} c(|\nabla u|^2) \ \nabla u\right) \text{ in } \Omega \times (0, \mathrm{T}), \\
\frac{\partial u}{\partial N} = 0 \text{ on } \partial\Omega \times (0, T), \\
u(0, x) = u_0(x) \text{ in } \Omega,
\end{array}$

Perona-Malik Equation



processing

input

 $\begin{cases} \frac{\partial u}{\partial t} = \operatorname{div}\left(\left|\nabla u\right|^{2}\right) \nabla u\right) & \text{in } \Omega \times (0, \mathrm{T}), \\ \frac{\partial u}{\partial N} = 0 & \text{on } \partial\Omega \times (0, T), \\ u(0, x) = u_{0}(x) & \text{in } \Omega, \end{cases}$

Perona-Malik Equation

processing

processing

Perona-Malik Equation

 $u(0,x) = u_0(x) \text{ in } \Omega,$

Supervised Loss

$$\min_{W} L(X(T)) + \int_{0}^{\tau} R(w(t), t) dt \text{ Weight Decay}$$

$$\int_{0}^{t} s. t. \dot{X} = f(X(t), w(t)),$$

Learn the weight

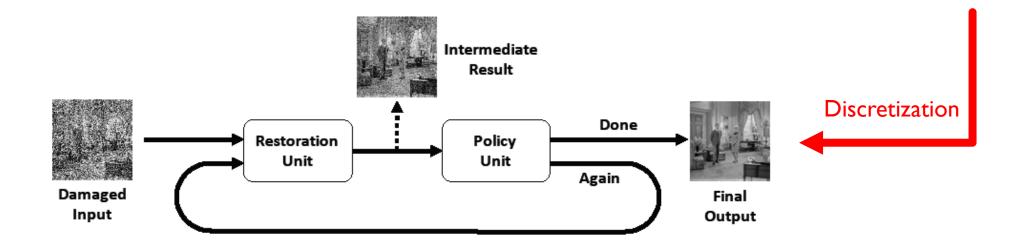
Deep Neural Network

$$\min_{w} L(X(T)) + \int_0^\tau R(w(t), t) dt$$

$$\min_{w,\tau} L(X(T)) + \int_0^\tau R(w(t), t) dt$$

$$s.t.\dot{X} = f(X(t), w(t)),$$

$$s.t.\dot{X} = f(X(t), w(t)),$$

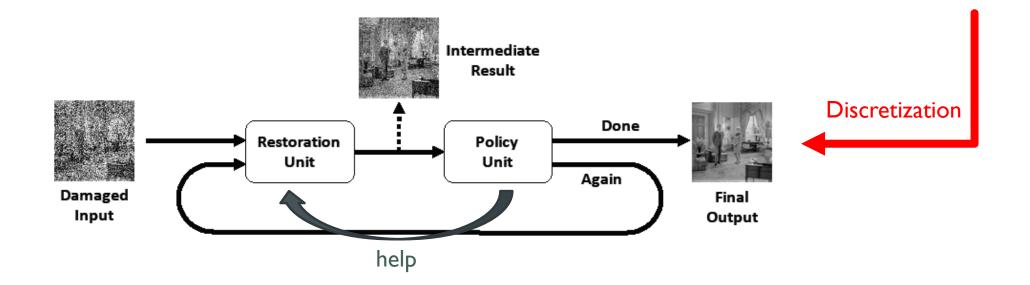


$$\min_{w} L(X(T)) + \int_0^\tau R(w(t), t) dt$$

$$\min_{w,\tau} L(X(T)) + \int_0^\tau R(w(t), t) dt$$

$$s.t.\dot{X} = f(X(t), w(t)),$$

$$s.t.\dot{X} = f(X(t), w(t)),$$



RESULT

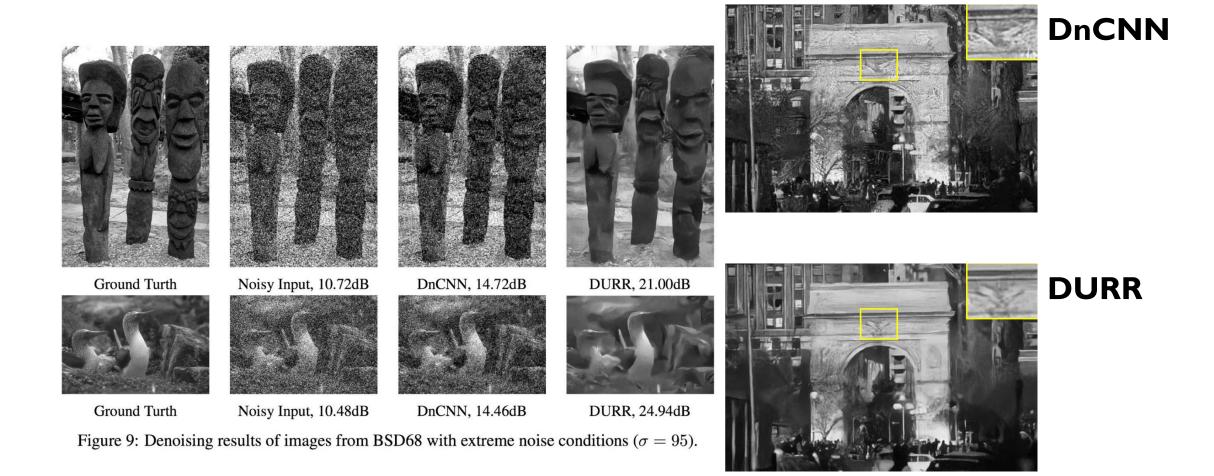
	BM3D	WNNM	DnCNN-B	UNLNet ₅	DURR
$\sigma = 25$	28.55	28.73	29.16	28.96	29.16
$\sigma = 35$	27.07	27.28	27.66	27.50	27.72
$\sigma = 45$	25.99	26.26	26.62	26.48	26.71
$\sigma = 55$	25.26	25.49	25.80	25.64	25.91
$\sigma = 65$	24.69	24.51	23.40*	-	25.26*
$\sigma=75$	22.63	22.71	18.73*	-	24.71*

_Q	F JPEG	SA-DCT	AR-CNN	AR-CNN-B	DnCNN-3	DURR
1	0 27.77	28.65	28.98	28.53	29.40	29.23*
2	0 30.07	30.81	31.29	30.88	31.59	31.68
- 3	0 31.41	32.08	32.69	32.31	32.98	33.05
4	0 32.45	32.99	33.63	33.39	33.96	34.01*

Denoising

JPEG

GENERALIZE TO UNSEEN NOISE LEVEL

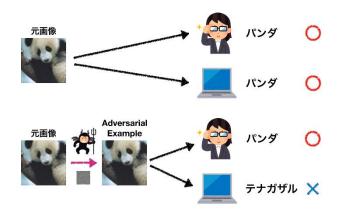


HOW DIFFERENTIAL EQUATION VIEW HELPS OPTIMIZATION ALGORITHM

NEURAL NETWORK AWARE OPTIMIZATION METHODS

$$\begin{split} \min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) &= \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\max_{\delta\in\mathcal{S}} L(\theta, x+\delta, y)\right] \\ \\ \text{Robust Optimization} \end{split}$$

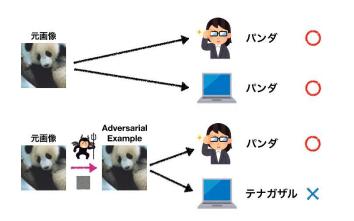
- More capacity and stronger adversaries decrease transferability. Always 10 times wider
- PGD training is expansive!

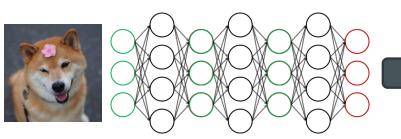


$$\min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\delta \in \mathcal{S}} L(\theta, x + \delta, y) \right]$$
Robust Optimization

Problem:

- More capacity and stronger adversaries decrease transferability. Always 10 times wider
- PGD training is expansive!

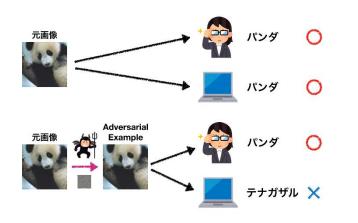


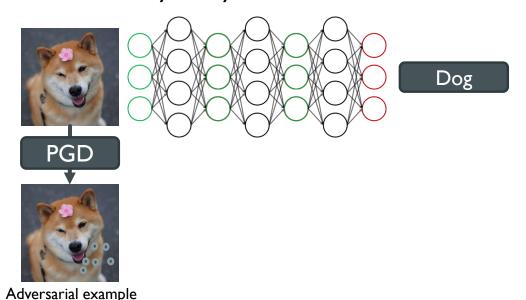


Dog

$$\min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\delta \in \mathcal{S}} L(\theta, x + \delta, y) \right]$$

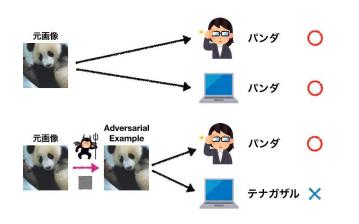
- More capacity and stronger adversaries decrease transferability. Always 10 times wider
- PGD training is expansive!

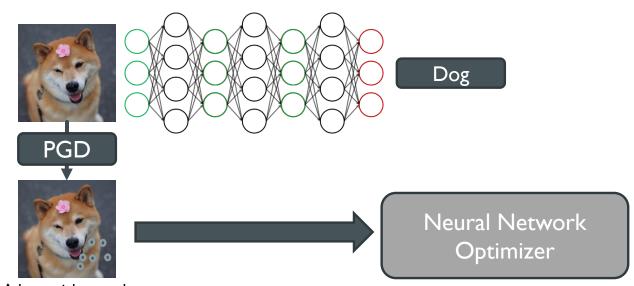




$$\min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\delta \in \mathcal{S}} L(\theta, x + \delta, y) \right]$$
Robust Optimization

- More capacity and stronger adversaries decrease transferability. Always 10 times wider
- PGD training is expansive!

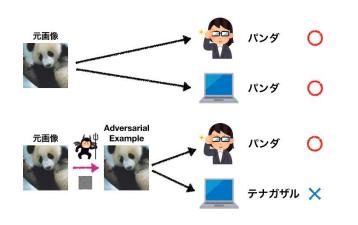


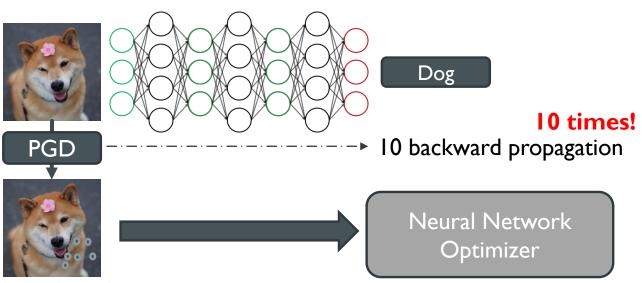


Adversarial example

$$\min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\delta \in \mathcal{S}} L(\theta, x + \delta, y) \right]$$
Robust Optimization

- More capacity and stronger adversaries decrease transferability. Always 10 times wider
- PGD training is expansive!

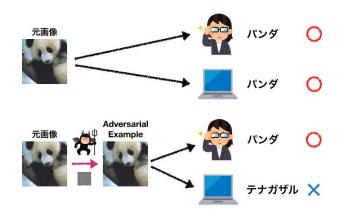




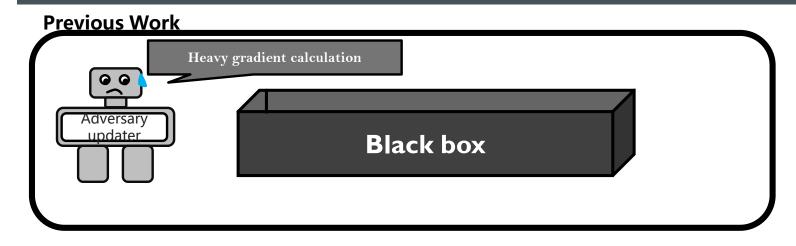
Adversarial example

$$\begin{split} \min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) &= \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\max_{\delta\in\mathcal{S}} L(\theta, x+\delta, y)\right] \\ \\ \text{Robust Optimization} \end{split}$$

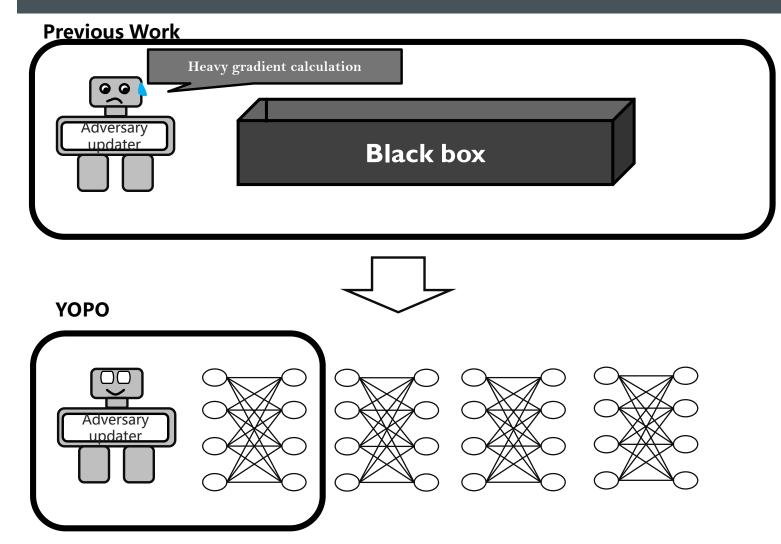
- More capacity and stronger adversaries decrease transferability. Always 10 times wider
- PGD training is expansive!



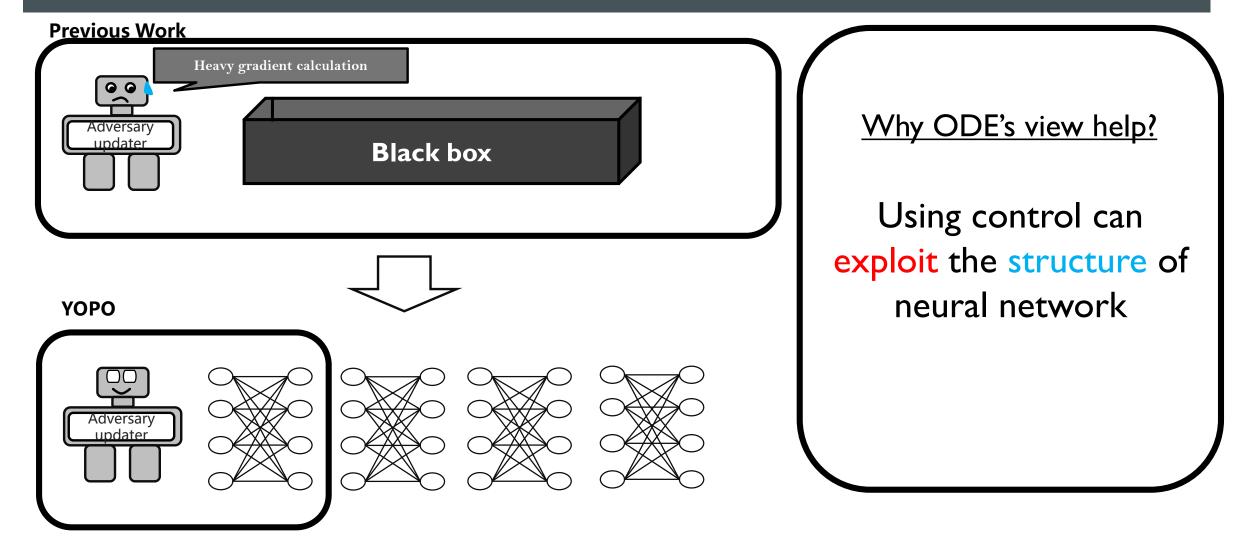
TAKE NEURAL NETWORK ARCHITECTURE INTO CONSIDERATION



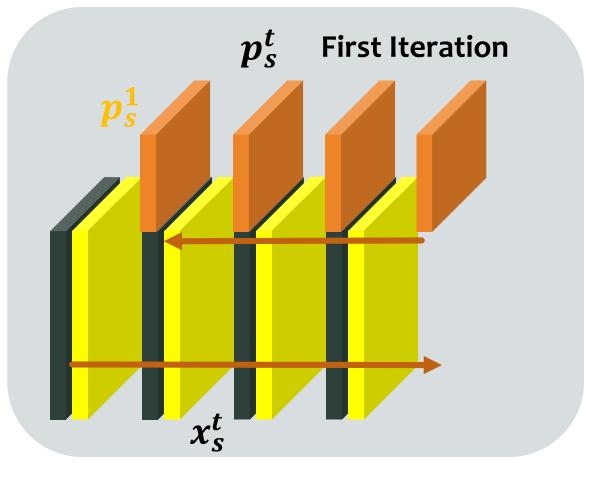
TAKE NEURAL NETWORK ARCHITECTURE INTO CONSIDERATION



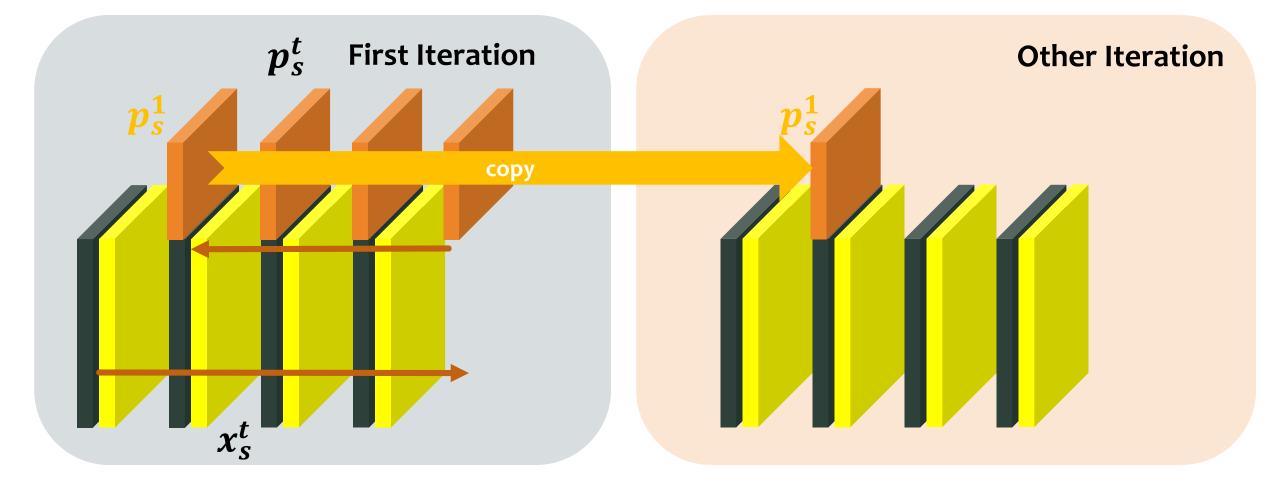
TAKE NEURAL NETWORK ARCHITECTURE INTO CONSIDERATION



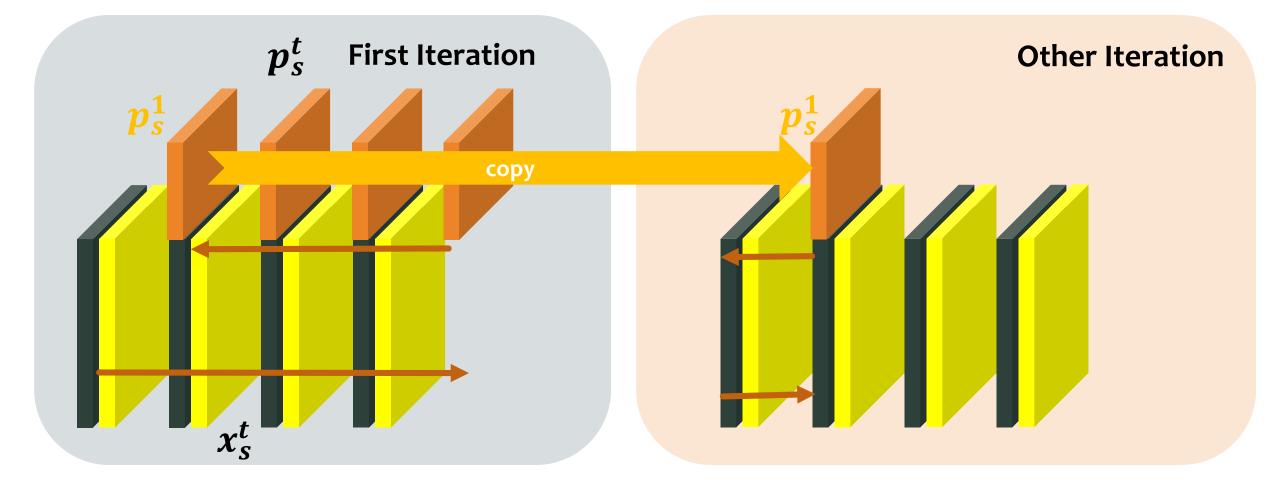
YOPO(YOU ONLY PROPAGATE ONCE)



YOPO(YOU ONLY PROPAGATE ONCE)

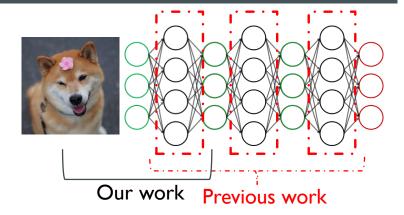


YOPO(YOU ONLY PROPAGATE ONCE)



DECOUPLE TRAINING

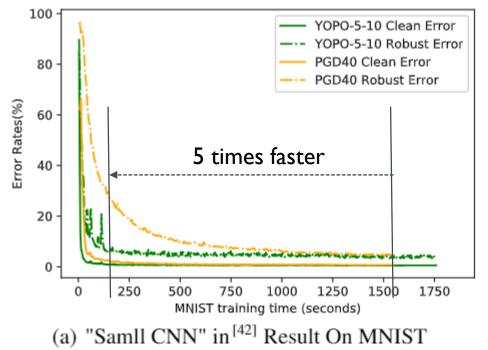
- Synthetic gradients [Jaderberg et al.2017]
- Lifted Neural Network [Askari et al.2018] [Gu et al.2018] [li et al.2019]
- Delayed Gradient [Huo et al.2018]
- Block Coordinate Descent Approach [Lau et al. 2018]
- Our idea: Control can decouple the gradient back propagation with the adversary updating.



RESULT

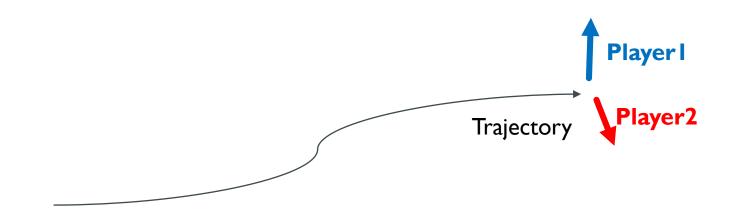
Training Methods	Clean Data	PGD-20 Attack	Training Time (mins)
Natural train	95.03%	0.00%	233
PGD-3 [24]	90.07%	39.18%	1134
PGD-5 [24]	89.65%	43.85%	1574
PGD-10 [24]	87.30%	47.04%	2713
Free-8 [28] ¹	86.29%	47.00%	667
YOPO-3-5 (Ours)	87.27%	43.04%	299
YOPO-5-3 (Ours)	86.70%	47.98%	476

¹Code from https://github.com/ashafahi/free_adv_train. Table 3: Results of Wide ResNet34 for CIFAR10.



DIFFERENTIAL GAME

$$\min_{\theta} \max_{\|\eta\|_{\infty} \leq \epsilon} J(\theta, \eta) := \frac{1}{N} \sum_{i=1}^{N} \ell_i(x_{i,T}) + \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T-1} R_t(x_{i,t}; \theta_t)$$
subject to $x_{i,1} = f_0(x_{i,0} + \eta; \theta_0), i = 1, 2, \cdots, N$
 $x_{i,t+1} = f_t(x_{i,t}, \theta_t), t = 1, 2, \cdots, T-1$
(2)



DIFFERENTIAL GAME

$$\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon} J(\boldsymbol{\theta}, \boldsymbol{\eta}) := \frac{1}{N} \sum_{i=1}^{N} \ell_i(x_{i,T}) + \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T-1} R_t(x_{i,t}; \boldsymbol{\theta}_t)$$
subject to $x_{i,1} = f_0(x_{i,0} + \boldsymbol{\eta}; \boldsymbol{\theta}_0), i = 1, 2, \cdots, N$

$$x_{i,t+1} = f_t(x_{i,t}, \boldsymbol{\theta}_t), t = 1, 2, \cdots, T-1$$

$$(2)$$

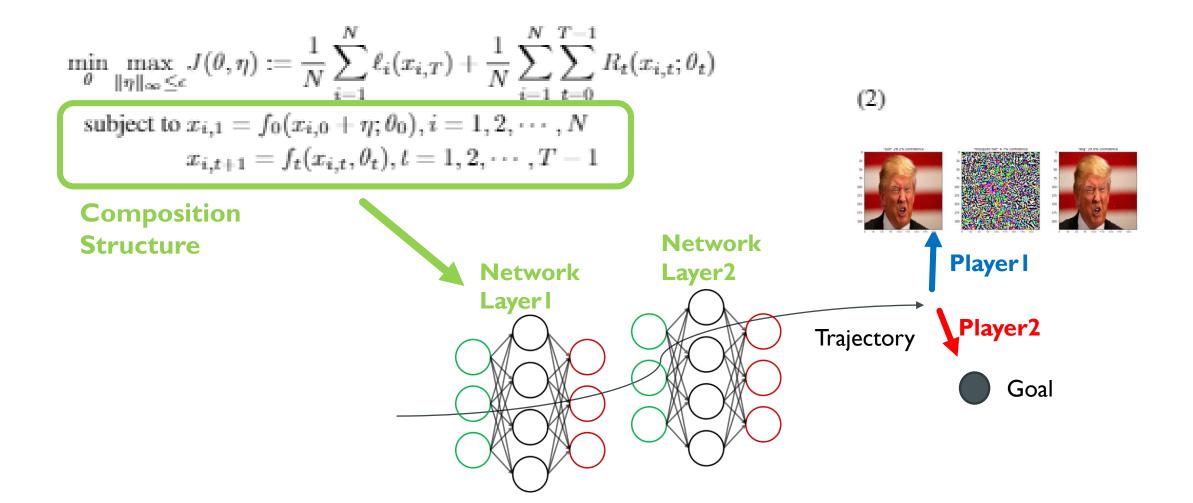
$$Player I$$

$$Player I$$

$$Trajectory Player 2$$

$$Goal$$

DIFFERENTIAL GAME



WHY DECOUPLING

Theorem 1. (PMP for adversarial defense) There exists co-state processes $p_s^* := p_{s,t}^* : t = 0, \dots, T$ such that the following holds for all $t \in [T]$ and $s \in [S]$:

$$x_{s,t+1}^* = \nabla_p H_t(x_{s,t}^*, p_{s,t+1}^*, \theta_t^*), \qquad x_{s,0}^* = x_{s,0} + \eta$$
(5)

$$p_{s,t}^* = \nabla_x H_t(x_{s,t}^*, p_{s,t+1}^*, \theta_t^*), \qquad p_{s,T}^* = -\frac{1}{S} \nabla \Phi(x_{s,T}^*) \qquad (6)$$

KKT Condition

At the same the the parameter of the first layer θ_0^* satisfies Adversary only appears here $\sum_{s=1}^{S} H_t(x_{s,0} + \hat{\eta}, p_{s,t+1}^*, \theta_0^*), \forall \theta \in \Theta_t \ge \sum_{s=1}^{S} H_0(x_{s,0}^*, p_{s,1}^*, \theta_0^*) \ge \sum_{s=1}^{S} H_0(x_{s,0}^*, p_{s,1}^*, \theta), \forall \theta \in \Theta_0, \|\hat{\eta}\|_{\infty} \le \epsilon$ (7)

and parameter of the other layers $\theta_t^*, t = 1, 2, \cdots, T$ will maximize the Hamiltonian functions

$$\sum_{s=1}^{S} H_t(x_{s,t}^*, p_{s,t+1}^*, \theta_t^*) \ge \sum_{s=1}^{S} H_t(x_{s,t}^*, p_{s,t+1}^*, \theta), \forall \theta \in \Theta_t$$
(8)

WHY DECOUPLING

Theorem 1. (PMP for adversarial defense) There exists co-state processes $p_s^* := p_{s,t}^* : t = 0, \dots, T$ such that the following holds for all $t \in [T]$ and $s \in [S]$:

$$x_{s,t+1}^{*} = \nabla_{p} H_{t}(x_{s,t}^{*}, p_{s,t+1}^{*}, \theta_{t}^{*}), \qquad x_{s,0}^{*} = x_{s,0} + \eta$$
(5) Forward propagation
$$p_{s,t}^{*} = \nabla_{x} H_{t}(x_{s,t}^{*}, p_{s,t+1}^{*}, \theta_{t}^{*}), \qquad p_{s,T}^{*} = -\frac{1}{S} \nabla \Phi(x_{s,T}^{*})$$
(6) Backward propagation

At the same the the parameter of the first layer θ_0^* satisfies

$$\sum_{s=1}^{S} H_t(x_{s,0} + \hat{\eta}, p_{s,t+1}^*, \theta_0^*), \forall \theta \in \Theta_t \ge \sum_{s=1}^{S} H_0(x_{s,0}^*, p_{s,1}^*, \theta_0^*) \ge \sum_{s=1}^{S} H_0(x_{s,0}^*, p_{s,1}^*, \theta), \forall \theta \in \Theta_0, \|\hat{\eta}\|_{\infty} \le \epsilon$$
(7)

and parameter of the other layers $\theta_t^*, t = 1, 2, \cdots, T$ will maximize the Hamiltonian functions

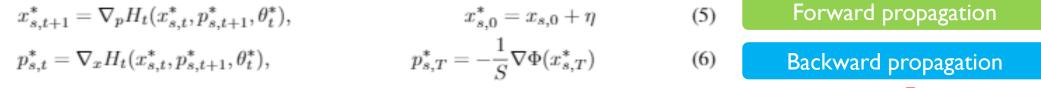
$$\sum_{s=1}^{S} H_t(x_{s,t}^*, p_{s,t+1}^*, \theta_t^*) \ge \sum_{s=1}^{S} H_t(x_{s,t}^*, p_{s,t+1}^*, \theta), \forall \theta \in \Theta_t$$
(8)

Weight space

Feature space

WHY DECOUPLING

Theorem 1. (PMP for adversarial defense) There exists co-state processes $p_s^* := p_{s,t}^* : t = 0, \dots, T$ such that the following holds for all $t \in [T]$ and $s \in [S]$:



At the same the the parameter of the first layer θ_0^* satisfies

$$\sum_{s=1}^{S} H_{t}(x_{s,0} + \hat{\eta}, p_{s,t+1}^{*}, \theta_{0}^{*}), \forall \theta \in \Theta_{t} \geq \sum_{s=1}^{S} H_{0}(x_{s,0}^{*}, p_{s,1}^{*}, \theta_{0}^{*}) \geq \sum_{s=1}^{S} H_{0}(x_{s,0}^{*}, p_{s,1}^{*}, \theta), \forall \theta \in \Theta_{0}, \|\hat{\eta}\|_{\infty} \leq \epsilon$$

$$POPO-m-n: Gradient way to^{7} Solve KKT$$

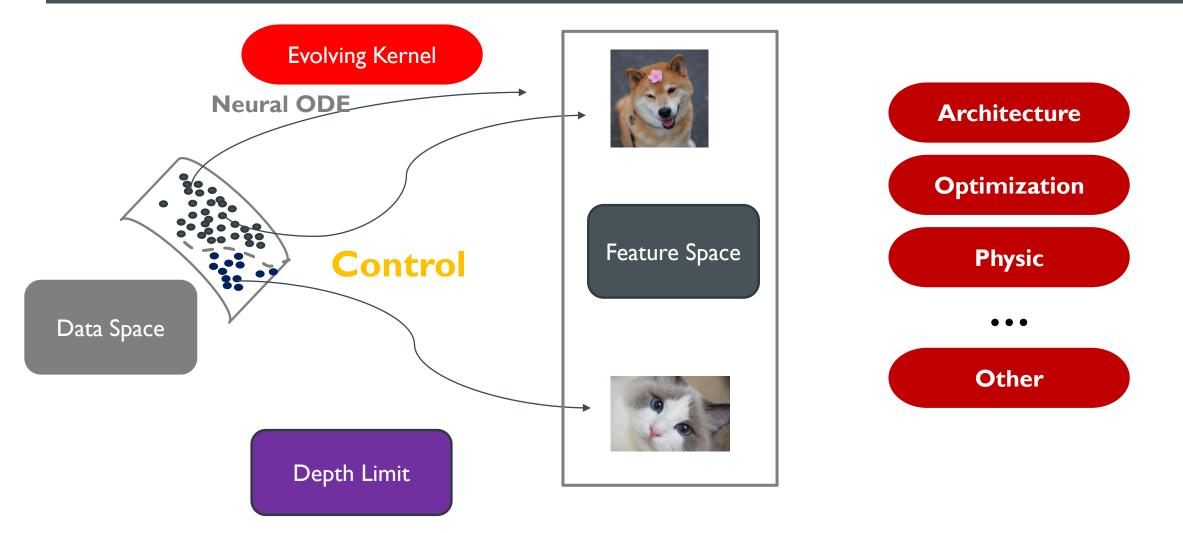
$$Weight space$$

$$G_{s} Factor ascent to argmax of functions$$

$$\sum_{s=1}^{S} H_{t}(x_{s,t}^{*}, p_{s,t+1}^{*}, \theta_{t}^{*}) \geq \sum_{s=1}^{S} H_{t}(x_{s,t}^{*}, p_{s,t+1}^{*}, \theta), \forall \theta \in \Theta_{t}$$

$$(8)$$

TAKE HOME MESSAGE



THANK YOU AND QUESTIONS?

Long Z, Lu Y, Ma X, Dong B. PDE-Net: Learning PDEs from Data arXiv:1710.09668. ICML2018

Lu Y, Zhong A, Li Q, Dong B. Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations arXiv:1710.10121. ICML2018

Zhang S, Lu Y, Liu J, Dong B. Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration arXiv:1805.07709. ICLR2019

Long Z, Lu Y, Dong B. " PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network"arXiv:1812.04426. Major Revision JCP.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, Bin Dong. You Only Propogate Once: Accelerating Adversarial Training via Maximal Principle arXiv:1905.00877

Yiping Lu, Di He, Zhuohan Li, Zhiqing Sun, Bin Dong, Tao Qin, Liwei Wang, Tieyan Liu. Understanding and Improving Transformer From a Multi-Particle Dynamic System Point of View. arXiv preprint arXiv:1906.02762, 2019.

Bin Dong, Haochen Ju, Yiping Lu, Zuoqiang Shi. CURE: Curvature Regularization For Missing Data Recovery arXiv preprint arXiv:1901.09548, 2019.

Bin Dong, Jikai Hou, Yiping Lu, Zhihua Zhang. Distillation \$\approx\$ Early Stopping? Extracting Knowledge Utilizing Anisotropic Information Retrieval.(Submitted)

Always looking forward to cooperation opportunities Contact: **yplu@stanford.edu**

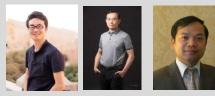
Acknowledgement

Di He Aoxiao Z



Dinghuai Zhang

Zhiqing Sun



Zhanxing Zhu Liwei Wang Quanzheng Li