
Stats300b Problem Set 4
Due: Thursday, February 11 at 5:00pm on Gradescope

Question 7.6 (Smallest eigenvalue of a random, possibly heavy-tailed matrix): Let Xi be i.i.d.
Rd-valued random vectors, mean zero, where Cov(Xi) = Σ for a positive definite Σ. Assume also
that E[|〈v,X〉|] ≥ κ

√
vTΣv for any vector v ∈ Rd, where κ > 0 is a constant.

(a) Show that for any vector v ∈ Rd,

P
(
|〈v,X〉| ≥ κ

2

√
vTΣv

)
≥ κ2

4
.

(b) Let Σ̂n = 1
n

∑n
i=1XiX

T
i denote the empirical second-moment matrix of the Xi, and for a

symmetric matrix A, let

λmin(A) := inf
v

{
vTAv | v ∈ Sd−1

}
denote the minimum eigenvalue of A, where Sd−1 = {v ∈ Rd | ‖v‖2 = 1} denotes the sphere in
Rd. Show that there exist constants C1, C2, C3 ∈ (0,∞), which may depend on κ, such that

P

(
λmin(Σ̂n) ≥

(
C1 − C2

√
d

n
− C3t

)
+

λmin(Σ)

)
≥ 1− e−nt2

for all t ≥ 0.

Answer:

(a) We use the Paley-Zygmund inequality (Question 1.11), which states that

P(|〈v,X〉| ≥ θE[|〈v,X〉|]) ≥ (1− θ)2 E[|〈v, x〉|]2

vTΣv − θ(2− θ)E[|〈v,X〉|]2
.

Using that E[|〈v, x〉|] ≥ κ
√
vTΣv for a constant κ > 0 and setting θ = 1

2 above, we have

P(|〈v,X〉| ≥ κ

2
‖v‖Σ) ≥ 1

4

κ2vTΣv

vTΣv − (3/4)κvTΣv
=

κ2

4− 3κ
.

(b) Let ‖v‖2Σ = vTΣv for shorthand, and recall that λmin(Σ) = infv∈Sd−1

√
vTΣv. The set of half-

planes in Rd has VC-dimension at most d+ 1, while ‖v‖Σ ≥ λmin for all v ∈ Sd−1. Thus if we
define the random variable

Bi(v) = 1
{
〈v,Xi〉 ≥

κ

2
λmin

}
+ 1

{
〈v,Xi〉 ≤ −

κ

2
λmin

}
,

then

E[Bi(v)] ≥ κ2

4− 3κ

by the first part of the question. Using the VC-dimension bounds from class, for a numerical
constant C, we have

P

(
∃ v ∈ Sd−1 s.t.

1

n

n∑
i=1

Bi(v)− E[Bi(v)] ≤ −C
√
d

n
− t

)
≤ e−2nt2 .
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Written differently,

P

(
∃ v ∈ Sd−1 s.t.

1

n
card({i ∈ [n] | 〈v,Xi〉2 ≥ κ2λmin(Σ)/4}) ≤ κ2

4− 3κ
− C

√
d

n
− t

)
≤ e−2nt2 .

On the complement of the event within the probability above, we have

vT Σ̂nv ≥

(
κ2

4− 3κ
− C

√
d

n
− t

)
+

· κ
2

4
λmin(Σ)

for all v ∈ Rd.

Question 7.8 (Covering numbers for low-rank matrices): Let Mr,d be the collection of rank r
matrices A ∈ Rd×d with ‖A‖Fr = 1, where we recall that the Frobenius norm ‖A‖2Fr =

∑
i,j A

2
ij =

tr(ATA) is the usual Euclidean norm applied to the entries of A. Show that the covering numbers
N(Mr,d, ‖·‖Fr , ε) of Mr,d in the Frobenius norm satisfy

logN(Mr,d, ‖·‖Fr , ε) ≤ 2rd log

(
1 +

4r

ε

)
.

Hint: Our solution uses the singular value decomposition that A = UΣV T =
∑r

i=1 uiσiv
T
i , where

Σ � 0 is diagonal and U = [u1 · · ·ur] and V = [v1 · · · vr] ∈ Rd×r are orthogonal, i.e., UTU = Ir
and V TV = Ir. Note: It is possible to get slightly sharper bounds than these, but we won’t worry
about that.

Answer: We use the hint, that is, that any matrix A ∈Mr,d has a singular value decomposition
A = UΣV T . Let B = WSQT be the singular value decomposition of B, so that A =

∑r
i=1 uiσiv

T
i

and B =
∑r

i=1wisiq
T
i , where we note that

∑r
i=1 σ

2
i ≤ 1 and

∑r
i=1 s

2
i ≤ 1 by construction. Then

for any such A,B we have

‖A−B‖Fr

(i)

≤
r∑
i=1

∥∥uiσivTi − wisiqTi ∥∥Fr

(ii)

≤
r∑
i=1

∥∥(uiσi − wisi)vTi
∥∥

Fr
+
∥∥wisi(vi − qi)T∥∥Fr

=

r∑
i=1

‖uiσi − wisi‖2 ‖vi‖2 + ‖wisi‖2 ‖vi − qi‖2

(iii)

≤
r∑
i=1

‖uiσi − wisi‖2 + ‖vi − qi‖2 , (7.1)

where inequality (i) is the triangle inequality, (ii) is the triangle inequality after adding and sub-
tracting wisiv

T
i , and (iii) follows because ‖wisi‖2 ≤ 1 and ‖vi‖2 = 1.

Each of the vectors uiσi, wisi, vi, qi all belong to the `2-ball Bd2. Let N = {τi}Ni=1 be an ε-cover
of Bd2 in ‖·‖2, which has cardinality at most N ≤ (1 + 2/ε)d by our arguments in class. Then for
every 2r-tuple α = (i1, . . . , i2r) ∈ {1, . . . , N}2r, we define

Aα :=

r∑
j=1

τijτ
T
r+ij .
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Given any SVD of UΣV T = A ∈Mr,d, there is evidently a tuple α with∥∥ujσj − τij∥∥2
≤ ε and

∥∥vj − τr+ij∥∥2
≤ ε

for j = 1, . . . , r. For this tuple, we obtain

‖A−Aα‖Fr ≤
r∑
j=1

(2ε) = 2rε

by inequality (7.1).
The cardinality of such 2r-tuples is at most N2r ≤ (1 + 2/ε)2rd. Now we simply replace ε by

ε/2r to get the claimed covering.

Question 7.13 (Moduli of continuity and high probability rates of convergence): In this question,
we show how convexity can be extremely helpful for many reasons in estimation and proving rates
of convergence, including (more or less) free guarantees of consistency, as well as high-probability
convergence possibilities. Let θ ∈ Rd and define

f(θ) := E[F (θ;X)] =

∫
X
F (θ;x)dP (x)

be a function, where F (·;x) is convex in its first argument (in θ) for all x ∈ X , and P is a probability
distribution. We assume F (θ; ·) is integrable for all θ. Recall that a function h is convex

h(tθ + (1− t)θ′) ≤ th(θ) + (1− t)h(θ′) for all θ, θ′ ∈ Rd, t ∈ [0, 1].

Let θ0 ∈ argminθ f(θ), and assume that f satisfies the following ν-strong convexity guarantee:

f(θ) ≥ f(θ0) +
ν

2
‖θ − θ0‖2 for θ s.t. ‖θ − θ0‖ ≤ β,

where β > 0 is some constant. We also assume that the instantaneous functions F (·;x) are L-
Lipschitz with respect to the norm ‖·‖.

Let X1, . . . , Xn be an i.i.d. sample according to P , and define fn(θ) := 1
n

∑n
i=1 F (θ;Xi) and let

θ̂n ∈ argmin
θ

fn(θ).

(a) Show that for any convex function h, if there is some r > 0 and a point θ0 such that h(θ) > h(θ0)
for all θ such that ‖θ − θ0‖ = r, then h(θ′) > h(θ0) for all θ′ with ‖θ′ − θ0‖ > r.

(b) Show that f and fn are convex.

(c) Show that θ0 is unique.

(d) Let
∆(θ, x) := [F (θ;x)− f(θ)]− [F (θ0;x)− f(θ0)] .

Show that ∆(θ,X) (i.e. the random version where X ∼ P ) is 4L2 ‖θ − θ0‖2-sub-Gaussian.

(e) Show that for some constant σ <∞, which may depend on the parameters of the problem (you
should specify this dependence in your solution)

P
(
‖θ̂n − θ0‖ ≥ σ ·

1 + t√
n

)
≤ C exp

(
−t2
)

for all t ≤ σ′
√
nβ, where σ′ > 0 is a constant depending on the parameters of the problem and

C <∞ is a numerical constant. Hint: The quantity ∆n(θ) := 1
n

∑n
i=1 ∆(θ,Xi) may be helpful,

as may be the bounded differences inequality in Question 6.4.
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Answer:

(a) Fix θ′ such that ‖θ′ − θ0‖ > r. Then there is some θ ∈ [θ0, θ
′] such that ‖θ − θ0‖ = r, that is,

there is a t ∈ (0, 1) with

θ = tθ0 + (1− t)θ′, so h(θ) ≤ th(θ0) + (1− t)h(θ′).

Rearranging by subtracting h(θ0) from both sides yields h(θ)− h(θ0) ≤ (1− t)(h(θ′)− h(θ0)).
Noting that h(θ0) < h(θ) and that t ∈ (0, 1), we thus obtain

0 < h(θ)− h(θ0) ≤ (1− t)[h(θ′)− h(θ0)], or h(θ′) > h(θ0).

(b) This is immediate: for any (positive) measure µ, including P and Pn, we have∫
F (tθ + (1− t)θ′;x)dµ(x) ≤

∫
tF (θ;x) + (1− t)F (θ′;x)dµ(x).

(c) The uniqueness of θ0 is immediate by part (b) and (a), because f(θ) ≥ f(θ0) + νβ2

2 > f(θ0) for
all θ with ‖θ − θ0‖ = β.

(d) We have that E[∆(θ,X)] = 0, and that

|∆(θ, x)| ≤ |F (θ;x)− F (θ0;x)|+ |f(θ)− f(θ0)| ≤ 2L ‖θ − θ0‖ ,

that is, ∆ is bounded by 2L ‖θ − θ0‖. Using the standard result that a variable Z ∈ [a, b] is
(b−a)2

4 -sub-Gaussian, we have that ∆ is 16L2 ‖θ − θ0‖2 /4 = 4L2 ‖θ − θ0‖2 sub-Gaussian.

(e) Fix δ ≤ β and let Θδ = {θ : ‖θ − θ0‖ ≤ δ}. Suppose that θ̂n is not within δ of θ0, that is,
‖θ̂n − θ0‖ ≥ δ. Then by part (a), there must be some θδ ∈ Θδ such that fn(θδ) ≤ fn(θ0). Then

fn(θδ) ≤ fn(θ0) = fn(θ0)− f(θ0) + f(θδ) + f(θ0)− f(θδ)

≤ fn(θ0)− f(θ0) + f(θδ)−
ν

2
‖θδ − θ0‖2.

Rearranging, we have

ν

2
‖θδ − θ0‖2 ≤ fn(θ0)− f(θ0) + f(θδ)− fn(θδ) ≤ |∆n(θδ)| ≤ sup

θ∈Θδ

|∆n(θ)|.

In particular, if we have that
‖θ̂n − θ0‖ ≥ δ,

then it must be the case that
ν

2
δ2 ≤ sup

θ∈Θδ

|∆n(θ)|. (7.2)

Now, let us understand this last event (7.2). Let ∆′n be ∆n with the point xi swapped for x′i.
Then

sup
θ∈Θδ

|∆n(θ)| − sup
θ∈Θδ

|∆′n(θ)| ≤ sup
θ∈Θδ

|∆n(θ)−∆′n(θ)|

=
1

n
sup
θ∈Θδ

∣∣(F (θ;xi)− f(θ))− (F (θ0;xi)− f(θ0)− (F (θ;x′i)− f(θ)) + (F (θ0);x′i − f(θ0))
∣∣

≤ 1

n
sup
θ∈Θδ

{
|F (θ;xi)− F (θ0;xi)|+ |F (θ;x′i)− F (θ0;x′i)|

}
≤ 2L

n
sup
θ∈Θδ

‖θ − θ0‖ =
2L

n
δ.
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That is, supθ∈Θδ
|∆n(θ)| satisfies bounded differences, and we have

P

(
sup
θ∈Θδ

|∆n(θ)| ≥ E

[
sup
θ∈Θδ

|∆n(θ)|

]
+ t

)
≤ exp

(
− nt2

2L2δ2

)
.

Thus, we control the expected supremum of the errors ∆n(θ) over the neighborhood Θδ.
We note by our standard symmetrization inequalities, and the fact that θ 7→

√
n∆n(θ) is

4L2 ‖θ − θ0‖2-sub-Gaussian process, that

E

[
sup
θ∈Θδ

|∆n(θ)|

]
≤ CL√

n

∫ ∞
0

√
logN(Θδ, ‖·‖ , ε)dε,

where N denotes the covering numbers of Θδ in norm ‖·‖ at radius ε as usual. But then we
have logN(Θδ, ‖·‖ , ε) ≤ d log(1 + δ

ε ) for ε < δ, and 0 otherwise, so that

E

[
sup
θ∈Θδ

|∆n(θ)|

]
≤ CL

√
d√

n

∫ δ

0

√
log

(
1 +

δ

ε

)
dε ≤ CL

√
dδ√
n
.

That is, for some numerical constant C, we have

P

(
sup
θ∈Θδ

|∆n(θ)| ≥ C Lδ√
n

(
√
d+ t)

)
≤ e−t2 (7.3)

for all t ≥ 0.

On the event that supθ∈Θδ
|∆n(θ)| ≤ L

√
d√
n
δ +

√
2L√
n
δt, which occurs with probability at least

1− e−t2 by inequality (7.3), we have by inequality (7.2)

δ2 ≤ C L

ν
√
n

(√
d+ t

)
δ,

where C < ∞ is an absolute constant, as long as δ ≤ β (where β is the radius of strong
convexity). Setting σ = CL

√
d/ν
√
n, that

δ ≤ σ(1 + t).

That is,

P
(
‖θ̂n − θ0‖ ≤ C

L

ν
√
n

(√
d+ t

))
≥ 1− e−t2

so long as L
ν
√
n

(
√
d+ t) ≤ cβ, where c > 0 is a numerical constant.

Question 7.15: We consider a few different contraction inequalities and complexities, relating
Gaussian to Rademacher complexities. For this problem, define the Rademacher and Gaussian
complexities of a set T ⊂ Rn by

Rn(T ) := E[sup
t∈T
|〈ε, t〉|] and Gn(T ) := E[sup

t∈T
〈g, t〉]

where εi
iid∼ Uni{±1} and g ∼ N(0, In). Note the lack of an absolute value in the Gaussian complex-

ity.

5



(a) Let X ∼ N(0,Σ) be a Gaussian vector. Argue that for any index i0,

E[max
i,j
|Xi −Xj |] = 2E[max

i
Xi] and E[max

i
|Xi|] ≤ 2E[max

i
Xi] + E[|Xi0 |].

(b) Show that for any1 set T ⊂ Rn,

Rn(T ) ≤
√

2πGn(T ) +

√
π

2
inf
t0∈T

E[|〈g, t〉|].

If T is symmetric (so T = −T ) show that Rn(T ) ≤
√

π
2Gn(T ).

(c) Let φi : R → R, i = 1, . . . , n, be a M -Lipschitz functions, meaning |φi(x)− φi(y)| ≤ M |x− y|
for x, y ∈ R, and define φ(t) = (φi(ti))

n
i=1 to be the elementwise application of φ. Using the

result of part (b), show that

Rn(φ(T )) ≤M
√

2πGn(T ) +

√
π

2
inf
t∈T

E[|〈g, φ(t)〉|].

(d) For a function class F ⊂ {Rd → R}, define the Rademacher and Gaussian complexities

Rn(F | xn1 ) = E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]

and Gn(F | xn1 ) = E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

gif(xi)

∣∣∣∣∣
]

for any collection xn1 = {xi}ni=1 ⊂ Rd. Let the function class F = {f(x) = 〈θ, x〉 | ‖θ‖1 ≤ 1},
and let φ be 1-Lipschitz with φ(0) = 0. Show that for σ2

n,j =
∑n

i=1 x
2
i,j (the sum of squares of

the jth component of the vectors xi ∈ Rd),

Rn(φ ◦ F | xn1 ) ≤ C
√

max
j≤d

σ2
n,j log(2d)

for a numerical constant C.

Answer:

(a) For the first question, we use the symmetry of the differences to see that maxi,j |Xi − Xj | =
maxi,j(Xi −Xj), and so by symmetry

E[max
i,j
|Xi −Xj |] = E[max

i,j
(Xi −Xj)] = E[max

i
Xi + max

j
(−Xj)] = 2E[max

i
Xi].

For the second, we use the triangle inequality to obtain

E[max
i
|Xi|] ≤ E[max

i
|Xi −Xi0 |] + E[|Xi0 |] ≤ E[max

i,j
|Xi −Xj |] + E[|Xi0 |],

as claimed.

1ignoring measurability issues, and assuming that for any random vector X and function f we require that
E[supt∈T f(t,X)] = supk∈N sup|T0|≤k,T0⊂T E[maxt∈T0 f(t,X)]
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(b) Note that E[|gi|] =
√

2/π for gi ∼ N(0, 1). Then the Rademacher complexity satisfies

Rn(T ) = E[sup
t∈T
|〈ε, t〉|] = E

[
sup
t∈T

∣∣∣∣∣
n∑
i=1

√
π

2
εiE[|gi|]ti

∣∣∣∣∣
]

(?)

≤
√
π

2
E

[
sup
t∈T

∣∣∣∣∣
n∑
i=1

εi|gi|ti

∣∣∣∣∣
]
,

where (?) uses Jensen’s inequality. As εi|gi|
iid∼ N(0, 1), whenever T is symmetric this gives the

result. When T may be non-symmetric, we apply part (a) to give the claimed result.

(c) We develop a comparison inequality. Define the processes

Zt :=
n∑
i=1

φ(ti)gi and Yt := M〈t, g〉

on T , where g ∼ N(0, In). Then

E[(Zt − Zu)2] =

n∑
i=1

(φ(ti)− φ(ui))
2 ≤M2 ‖u− t‖22 = E[(Yt − Yu)2].

Applying the Sudakov-Fernique comparison inequality gives

Gn(φ ◦ T ) ≤MGn(T ),

and so by applying part (b) we have

Rn(φ(T )) ≤
√

2πGn(φ(T )) +

√
π

2
inf
t∈T

E[|〈g, φ(t)〉|]

Applying the comparison inequality gives the result.

(d) We use that t = 0 ∈ T , and apply the previous parts; we immediately obtain

Rn(φ◦F | xn1 ) ≤ O(1)Gn(φ◦F | xn1 ) ≤ O(1)Gn(F | xn1 ) = E

[
sup
‖t‖1≤1

n∑
i=1

gix
T
i t

]
= E

[∥∥∥∥∥
n∑
i=1

gixi

∥∥∥∥∥
∞

]
.

Each coordinate j of
∑n

i=1 gixi,j is N(0,
∑n

i=1 x
2
i,j), and so standard Gaussian maxima (Ques-

tion 1.7) give

Gn(F | xn1 ) ≤

√√√√2 max
j≤d

n∑
i=1

x2
i,j

√
log(2d).
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