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Abstract

In this lecture note, we aim to review the peeling technique and corresponding
learning rate we can achieve.

1 Problem Setting

To have an oracle error of learning algorithms in terms of a data-dependent notion of complexity, in
this paper we review two paper using the localization technique

We aim to learn a function f : X → R from finite samples (X1, Y1), · · · , (Xn, Yn) which are
ndependent random variables distributed according distribution P . We define

Pn =
1

n

n∑
i=1

f(Xi), Pf = Ef(X), Rnf =
1

n

n∑
i=1

σif(Xi)

Let σ1, · · · , σn to be n to be n independent Rademacher random variables, that is, independent
random variables for which P (σi = 1) = P (i= 0) = 0.5 and the Rademencher complexity for a
function class F is defined as RnF = supf∈F Rnf . The empirical (or conditional) Rademacher
averages of of F is defined as EσRnF = 1

nE(supf∈F

∑n
i=1 σif(Xi)|X1, · · · , Xn). In this paper,

using localization technique, we can achieve a generalization bound depend on r, the fixed point of
the following equation

r = 20EσRn
(
{f ∈ star(lf , 0) : Pnf

2 ≤ 2r}
)

+
13x

n

2 Main Theorems

Theorem 1 Let F be a function class maps from X to [a, b] and assume that there are some
functional T : F → R and some constant B such that for every f ∈ F , Varf ≤ T (f) ≤ BPf . Let
ψ be a sub-root function and

ψ(r) ≥ ERn{f ∈ F , T (f) ≤ r}

Let r∗ to be the fix point of function ψ, then for every K > 1 with probability at least1− e−x we have

Pf ≤ K

K − 1
Pnf +

C1K

B
r∗ +

x(11(b− a) + C2BK)

n

2.1 Technique Overview

The two main technique used in the paper is the peeling lemma and the Talagrand Concentration
Inequality. In this section, we have a slightly simpler version of the proof instead of the original one
in the paper.
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Lemma 1 (Peeling Technique) If there is a function φ : [0,∞)→ [0,∞) and r∗ > 0 s.t. ∀r > r̂∗,
we have

• φ(4r) ≤ 2φ(r)

• Rn(Gr)) ≤ φ(r)

Then we have for all r > r̂∗ we have

Eσi,zi
[ 1
n

∑n
i=1 σig(zi)

Pg + r

]
≤ 4φ(r)

r

Proof: Denote G(r) to be the localized set with radius r. Then we have

Eσi,zi
[ 1
n

∑n
i=1 σig(zi)

Pg + r

]
≤ sup
g∈G ()

1
n

∑n
i=1 σig(zi)

r

+

∞∑
j=0

sup
g∈G (r4j+1)\G (r4j)

1
n

∑n
i=1 σig(zi)

r4j + r

≤ Rn(Gr)

r
+

∞∑
j=0

Rn(Gr4j+1+r)

r4j + r
≤ φ(r)

r
+

∞∑
j=0

φ(r4j+1 + r)

r4j + r

≤ φ(r)

r
+

∞∑
j=0

2j+1φ(r)

r4j + r
≤ 4φ(r)

r

�

Theorem 2 (Talagrand Concentration Inequality) G is a set of measurable functions on prob-
ability space (Z,A , P ) and for every function in G are bounded, mean zero and with bounded
variance:

• E[g] = 0,E[g2] ≤ v, ‖g‖∞ ≤ B, ∀g ∈ G

Then for ∀t > 0 we have

Pz

[
sup
g∈T

1

n

n∑
i=1

g(zi) ≥ 2Ez′ [ sup
g∈T

1

n

n∑
i=1

g(zi)] +

√
2tv

n
+

2tB

n

]
≤ e−t

Using Peeling technique to bound the Ez′ [supg∈T
1
n

∑n
i=1 g(zi)] term in Talagrand concentration

inequality, then we can get the bound we have here. The key idea behind the prove is using the
ratio type concentration inequation

1
n

∑n
i=1 σig(zi)

Pg+r so that onece we do a peeling, we get a decaying
exponential decay probability in each local sets and then we can apply a union bound.

2.2 Application To Empirical Risk Minimization

The main theorem can be used for bounding the generalization error for empricial risk minimization
via considering the following straightforward decomposition of the generalization error

L (f) = (P − Pn)`(f(x); y) +
(
Pn`(f(x); y)− Pn`(f∗(x); y)

)
+ (Pn − P )`(f∗(x); y).

Strong Convexity Implies Fast Rate The condition Varf ≤ T (f) ≤ BPf always means strongly
convex loss function. Then we apply the techinque to f − f∗.

Theorem 3 For a strongly convex loss function l : Y × Y → [0, 1]. Define

φn(r) = 20EσRn
(
{f : Pn(f − f∗)2 ≤ 2r}

)
+

13x

n
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and r̂∗ be the fixed point of function φn. Then for the minimizer f̂ = arg minf∈F Pnlf with
probablity at least 1− e−x we have

Plf̂ < L∗ + c(r̂∗ +
x

n
)

Here L∗ = inff∈F Plf

Slow rate without strong convexity When the loss function is not strongly convex, we can still
meet Varf ≤ T (f) ≤ BPf via using the boundness of the the loss function. In this case, the rate we
get is

Theorem 4 For a loss function l : Y × Y → [0, 1]. Define

φn(r) = 20EσRn
(
{f ∈ star(lf , 0) : Pnf

2 ≤ 2r}
)

+
13x

n

and r̂∗ be the fixed point of function φn. Then for the minimizer f̂ = arg minf∈F Pnlf we have

Plf̂ < L∗ + c(
√
L∗r∗ + r∗)

Here L∗ = inff∈F Plf

3 Examples

3.1 VC Classes

Our next example considers VC-type classes. Although this classical example has been extensively
studied in learning theory, our results provide strict improvements over antecedents.

One general definition of VC-type classes (which is not necessarily binary) uses the metric entropy
condition. Consider a loss class l ◦H that satisfies

log N (ε, l ◦H , L2(Pn)) ≤ O
(
d log

1

ε

)
,

where d is th so-called the Vapnik–Chervonenkis (VC) dimension. Using Dudley’s integral bound to
find the surrogate ψ and solving r ≤ O(ψ(r; δ)), it can be proven that

r∗ ≤ O
(
d log n

n

)
.

Note: we get log(n)/n rate which is faster than the 1/
√
n rate we get in the class.

Application We can have d log(n)
n rate for learning linear regression on bounded features.

3.2 Complexity Assumptions

Next we consider the function space with complexity assumption

log N (ε, l ◦H , L2(Pn)) ≤ O(ε−2ρ)

Then using duely integral we know Rn(G(r)) ≤ r
1−ρ
2√
n

, then the solution to the fixed point equation

is r̂ = n−
1

1+ρ .

Comparison with nδ2n = log N (δn,F , ‖ · ‖2) . Notice that the radius we select in local
radamecher complexity is r∗ = δ2n. Thus we exactly get the same rate as the traitional nonparametric
statistics get using nδ2n = log N (δn,F , ‖ · ‖2) and get δ2n rate when the loss is strongly convex.

3



3.3 Kernel Classifiers

Denote (λ̂i)
n
i=1 as the eigenvalue of the normalized Gram matrix T̂ = 1

n (k(Xi, Xj))i,j=1,··· ,n,

then the local radamecher complexity is ERn(G(r)) =
(
2
n

∑∞
i=1 min{r, λi}

)1/2
. If we have a

assumption on the polynoimal decay on (λ̂i)
n
i=1, then with optimal selection of r we can get min-max

optimal rates for kernel classifiers.

3.4 Neural Networks

Let’s consider the function space of Relu neural network.

Lemma 2 For the function space

Φ(L,W, S,B) := {(W (L)η(·) + b(L)) ◦ · · · ◦ (W (1)η(·) + b(1))

|W (l) ∈ RW×W , b(l) ∈ RW ,
L∑
l=1

(‖W l‖0 + ‖bl‖0) ≤ S,max
l
‖W l‖∞ + ‖b(l)‖∞ = B}

We have the covering number bound

logN(ε,F2, ‖ · ‖∞) ≤ O(SL log(
LB(W + 1)

ε
))

To estimate the local rademacher complexity of a deep neural network, we always use the duley
integral

E[R̂n(Gr)] ≤ E

[
inf
α>0
{4α+

√
n

12

∫ √2r/α

α

√
log 2N (ε,Φ(L,W, S,B), ‖ · ‖n,2)dε}

]

≤ 1

n
+

1√
n

∫ √2r/α

1/n

√
CSSL log(LB(W + 1)ε−1)dε

≤
√
SLr

n
log(L(B)(W + 1)n)

Applications Using the local rademencher complexity with approximation power of the neural
network, we can obtain oracle rate for learning Neural network in many function spaces:

• Nonparametric learning deep Relu NN in Holder space[3]: N−p/d + N(log(N)+log(n))
n + 1

n

• Nonparametric learning deep Relu NN in Besov space [4]:N−2s/d + N(log(N)+log(n))
n + 1

n

Here N is the size of the Neural Network. With the optimal selection of N , we can achieve the
min-max rate of using Neural network for non-parametric learning using ERM.

4 Limitations and future work

Local radamecher complexity can’t deal with r regression with square loss and general classes
of functions without the boundedness assumptions. To achieve the fast rate, the strong convexity
assumption and the lipschitz condition to have contraction inequatily make the loss function to be
bounded. This makes localization techinques hard to be used in heavy-tail cases and robustness
setting.

It’s also interesting to consider how to use the localization technique for the interpolation estimators
with implicit regularisation.
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5 Setting for Optimal Problem Dependent Generalization Error Bounds

This paper aims to provide generalization errors that scale near-optimally with the variance, the
effective loss, or the gradient norms evaluated at the "best hypothesis.", i.e. we get learning rate
depend on

V ∗ := Var[`(h∗; z)], L ∗ := P [`(h∗; z)− inf
H
`(h; z)].

In the previous paper review, we already get

Statement 1 (current blueprint) Assume that ψ is a sub-root function, i.e., ψ(r; δ)/
√
r is non-

increasing with respect to r ∈ R+. Assume the Bernstein condition T (f) ≤ BePf , Be > 0,
∀f ∈ F . Then with probability at least 1− δ, for all f ∈ F and K > 1,

(P − Pn)f ≤ 1

K
Pf +

C(K − 1)r∗

Be
,

where r∗ is the “fixed point" solution of the equation r = Beψ(r; δ).

Statement 1 has become a standard tool in learning theory. However, it requires a rather technical
proof, and it appears to be loose when compared with the original assumption

sup
f∈F :T (f)≤r

(P − Pn)f ≤ ψ(r; δ). (1)

In this section, we would like to directly extend (1) to hold uniformly without sacrificing any accuracy.

6 Main Theorem

6.1 Technique Overview:uniform localized convergence

The key intuition behind this paper is that the uniform restatement of the "localized" argument (1)
is nearly cost-free, because the deviations (P − Pn)gf can be controlled solely by the real valued
functional T (f). The intuition can be shown in the following lemma

Lemma 3 ( the "uniform localized convergence" argument) For a function class G = {gf : f ∈
F} and functional T : F → [0, R], assume there is a function ψ(r; δ), which is non-decreasing with
respect to r and satisfies that ∀δ ∈ (0, 1), ∀r ∈ [0, R], with probability at least 1− δ,

sup
f∈F :T (f)≤r

(P − Pn)gf ≤ ψ(r; δ). (2)

Then, given any δ ∈ (0, 1) and r0 ∈ (0, R], with probability at least 1 − δ, for all f ∈ F , either
T (f) ≤ r0 or

(P − Pn)gf ≤ ψ

(
2T (f); δ

(
log2

2R

r0

)−1)
. (3)

Proof: To formalize the idea that the deviations (P − Pn)gf can be controlled solely by the
real valued functional T (f). The author apply a “peeling" technique: we take rk = 2kr0, where
k = 1, 2, . . . , dlog2

R
r0
e and then apply a union bound to extend (1) to hold for all rk.

For any f ∈ F such that T (f) > r0 is true, there exists a non-negative integer k such that 2kr0 <
T (f) ≤ 2k+1r0. Then we have

(P − Pn)gf ≤ ψ

(
rk+1; δ

(
log2

2R

r0

)−1)
≤ ψ

(
2T (f); δ

(
log2

2R

r0

)−1)
,

�
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Slow rate Regime Taking optimal choice of K in Statement 1, we can re-write the conclusion as

(P − Pn)f ≤ 20

√
r∗Pf

Be
− r∗

Be
.

where the right hand side is of order
√
r∗Pf/Be when Pf < r∗/Be, and order r∗/Be when

Pf ≤ r∗/Be.
At the same time,

ψ(2T (f); δ) ≤ ψ(2BePf ; δ) ≤
√

2BePf√
r∗

ψ(r∗; δ) ≤
√

2r∗Pf

Be
. (4)

This means that the “uniform localized convergence" argument (3) strictly improves over Statement 1
(ignoring negligible O(log log n) factors).

Fast rate Regime In the fast rate regime, the removal of the "sub-root" requirement on ψ allows
one to achieve parameter localization which added flexibility in the choice of one-sided uniform
inequalities and uniform convergence of gradient vectors. This bring us several benefits

• In traditional analysis, a loose "sub-root" surrogate function is often obtained via two-sided
concentration and Lipchitz contraction, making global Lipchitz constants unavoidable.

• The removal of the "sub-root" restriction is crucial because under curvature and smoothness
conditions, the uniform error of excess loss typically grows "faster" than the square root
function.

• Simple "truncated" functions can be used to established one-sided uniform inequalities
that are sharper than two-sided ones, which enable recovery of results in unbounded and
heavy-tailed regression problems.

Principle of uniform localized convergence. First, determine the concentrated functions, the
measurement functional and the surrogate ψ, and obtain a sharp "uniform localized convergence"
argument. Then, perform localization analysis that is customized to the problem setting and the
learning algorithm. Distinct from the blueprint, the right hand side of "uniform localized convergence"
argument (3) contains a "free" variable T (f) rather than a fixed value r∗.

6.2 Loss-dependent rates via empirical risk minimization

Theorem 5 ( loss-dependent rate of ERM) For the excess loss class F in (??), assume there is a
meaningful surrogate function ψ(r; δ) that satisfies ∀δ ∈ (0, 1) and ∀r > 0, with probability at least
1− δ,

sup
f∈F :P [f2]≤r

(P − Pn)f ≤ ψ(r; δ).

Then the empirical risk minimizer ĥERM ∈ arg minH{Pn`(h; z)} satisfies for any fixed δ ∈ (0, 1)
and r0 ∈ (0, 4B2), with probability at least 1− δ,

L (ĥERM) ≤ ψ
(

24BL ∗;
δ

Cr0

)
∨ r∗

6B
∨ r0

48B
,

where Cr0 = 2 log2
8B2

r0
, and r∗ is the fixed point of 6Bψ

(
8r; δ

Cr0

)
.

6.3 Variance-dependent rates via moment penalization

In this section, this paper consider the following algorithm:

• At the first-stage, we derive a preliminary estimate of L∗0 := P`(h∗; z) via the "auxiliary"
data set S′, which we refer to as L̂∗0. Then, at the second stage, we perform regularized
empirical risk minimization on the "primal" data set S, which penalizes the centered second
moment Pn[(`(h; z)− L̂∗0)2].
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• Let ψ(r; δ) be a meaningful surrogate function that satisfies ∀δ ∈ (0, 1), ∀r > 0, with
probability at least 1− δ,

4Rn{f ∈ F : Pn[f2] ≤ 2r}+

√
2r log 8

δ

n
+

9B log 8
δ

n
≤ ψ(r; δ).

Denote Cn = 2 log2 n+ 5. Given a fixed δ ∈ (0, 1), let the estimator ĥMP be

ĥMP ∈ arg min
H

{
Pn`(h; z) + ψ

(
16Pn[(`(h; z)− L̂∗0)2];

δ

Cn

)}
.

Then we have

Theorem 6 ( variance-dependent rate) Let L̂∗0 = infH PS′`(h; z) be attained via empirical risk
minimization on the auxiliary data set S′. Assume that the meaningful surrogate function ψ(r; δ) is

“sub-root," i.e. ψ(r;δ)√
r

is non-increasing over r ∈ [0, 4B2] for all fixed δ. Then for any δ ∈ (0, 12 ), by
performing the moment-penalized estimator, with probability at least 1− 2δ,

E (ĥMP) ≤ 2ψ

(
c1V

∗;
δ

Cn

)
∨ c1r

∗

8B
,

where r∗ is the fixed point of Bψ(r; δ
Cn

) and c1 is an absolute constant.

Comparison with existing results. The best variance-dependent rate attained by existing estima-
tors is of the order √

V ∗r∗

B2
∨ r
∗

B
,

which is strictly worse than the rate proved in Theorem 6. The reasoning is similar to what we shown
before: the bound can perform much better when V ∗ ≥ Ω(r∗) for

ψ(V ∗; δ)
sub-root
≤

√
V ∗

r∗
ψ(r∗; δ)

fixed point
= O

(√
V ∗r∗

B2

)
.

7 Examples

VC Classes For the VC classes satisfies

log N (ε, l ◦H , L2(Pn)) ≤ O
(
d log

1

ε

)
,

where d is th so-called the Vapnik–Chervonenkis (VC) dimension. Using Dudley’s integral bound to
find the surrogate ψ and solving r ≤ O(ψ(r; δ)), it can be proven that

ψ(r; δ) ≤ O

(√
dr

n
log

8B2

r
∨ Bd

n
log

8B2

r

)
, r∗ ≤ O

(
B2d log n

n

)
.

Thus we can get the result

E (ĥMP) ≤ O

√dV ∗ log 8B2

V ∗

n
∨ Bd log n

n

 . (5)

The result matches the Ω(
√

dV ∗

n ) lower bound and closes the O(log n) gap in the regime V ∗ ≥
Ω( B2

(logn)α ) in the previous results.
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Non-parametric classes of polynomial growth Consider the metric entropy condition

log N (ε, ` ◦H, ‖ · ‖n,2) ≤ O
(
ε−2ρ

)
, ρ ∈ (0, 1) (6)

Using Dudley’s integral we can verify that

ψ(r; δ) ≤ O

(√
r1−ρ

n

)
, r∗ ≤ O

(
B

2
1+ρ

n
1

1+ρ

)
.

As a result, the bound using the technique here can get the order

E (ĥMP) ≤ O
(
V ∗

1−ρ
2 n−

1
2 ∨ r

∗

B

)
, (7)

which is O
(
V ∗

1−ρ
2 n−

1
2

)
when V ∗ ≥ Ω(r∗).

Compared with the previous results

E (ĥprevious) ≤ O
(√

V ∗B−
ρ

1+ρn−
1

2+2ρ ∨ r
∗

B

)
, (8)

We consider the improvement of the algorithm in the following two regimes

The "traditional" regime. The more "traditional" regime: B ≈ 1, V ∗ ≈ n−a where a > 0 is
a fixed constant. The improvement is 1 ∨ (V ∗n

1
1+ρ )

ρ
2 . If V ∗ ≈ n−a where 0 < a < 1

1+ρ , the
variance-dependent rate improves by orders polynomial in n.

The "high-risk" regime. B ≈ nb where b > 0 is a fixed constant, and V ∗ � B2 (i.e., V ∗ is much
smaller than order n2b). Under the simple situation B

2
1+ρ ≤ V ∗ � 4B2, an improvement of order

O(n
ρ
2 (

1
1+ρ )) relative to the previous result has been achieved. By letting ρ→ 1 our improvement can

be as large as O(n
1
4 ) and the larger ρ, the more improvement can be provided.

Remark. The "high-risk" regime captures modern contains problems such as counterfactual risk
minimization, policy learning, and supervised learning with limited number of samples which are
"high-risk" learning problems.
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