
Stats300b Étude 4 Solution
Due: Thursday, February 11 at 5:00pm on Gradescope.

Question 7.10 (Low-rank matrix sensing): In this question, we consider the problem of recovering
a low-rank matrix from linear observations, showing that (with high probability) this is possible
under a Gaussian random measurement model. We assume we observe triples (Xi, Zi, Yi) ∈ Rd ×
Rd × R where

Yi = 〈XiZ
T
i ,Θ

?〉 = tr(ZiX
T
i Θ?) = XT

i Θ?Zi (7.1)

for Xi and Zi
iid∼ N(0, Id) and independent, where Θ? ∈ Rd is an unknown rank r matrix. (Here we

use the standard notation on matrices that 〈A,B〉 = tr(ATB).) There is no noise in this observation
model. We would like to recover Θ? from n such measurements.

(a) Show that for any d× d matrix A,

E[|XTAZ|] ≥ 2

π
‖A‖Fr and E[|XTAZ|2] = ‖A‖2Fr .

Hint: To prove the first inequality, first condition on Z. Then note that for any norm ‖·‖ and
random vector W , E[‖W‖] ≥ ‖E[|W |]‖, where |W | is the elementwise absolute value of W .

Recognize that ‖w‖ :=
√∑d

i=1 σ
2
iw

2
i is a norm on w ∈ Rd.

(b) Argue that there exist numerical constants c0, c1 > 0 such that for any fixed matrix A ∈ Rd×d,
we have

P

(
1

n

n∑
i=1

|〈XiZ
T
i , A〉| ≤ c0 ‖A‖Fr

)
≤ exp (−c1n) .

Hint: For a constant c > 0, define the random variables Bi = 1 if |〈XiZ
T
i , A〉| ≥ c ‖A‖Fr and

Bi = 0 otherwise. Use the Paley-Zygmund inequality (Ex. 1.11) to show that P(Bi = 1) ≥ p,
where p > 0 is a numerical constant, and then bound P(Bn ≤ E[B]/2).

(c) Using the covering number bounds in Ex. 7.8, show there exist numerical constants 0 < c0, c1

and C <∞ such that with probability at least 1− e−c1n,

1

n

n∑
i=1

|XT
i AZi| ≥ c0 ‖A‖Fr (7.2)

for all rank r matrices A ∈ Rd×d as long as n ≥ Cdr log(dr). You may assume dr is large if
that is convenient. You may also use that

1

n

n∑
i=1

∥∥ZiXT
i

∥∥
Fr

=
1

n

n∑
i=1

‖Zi‖2 ‖Xi‖2 ≤
1

n

n∑
i=1

(
1

2
‖Zi‖22 +

1

2
‖Xi‖22

)
(?)

≤ 2d

where inequality (?) holds with probability at least 1− e−c0dn. Hint: note that inequality (7.2)
is homogeneous in A.

(d) Assume that Θ? is rank r in the sensing model (7.1). Argue that there exist numerical constants
0 < c0, c1 and C <∞ such that with probability at least 1− e−cn,

1

n

n∑
i=1

|XT
i ΘZi − Yi| ≥ c0 ‖Θ−Θ?‖Fr

simultaneously for all rank r matrices Θ as long as n ≥ Cdr log(dr).
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(e) For loss `(t) = |t|, explain what part (d) tells us about the empirical minimizer

Θ̂n := argmin
Θ∈Rd×d

{
Pn`(〈XZT ,Θ〉 − Y ) | rank(Θ) ≤ r

}
.

In one sentence, compare the sample size n versus the number of parameters in Θ? ∈ Rd×d.

Answer:

(a) We have E[|XTAZ| | Z = z] =
√

2/π ‖Az‖2. For Z ∼ N(0, I), we have AZ ∼ N(0, AAT ).
Letting AAT have eigenvalue decomposition AAT = UΣUT for a diagonal Σ = diag(σ2

1, . . . , σ
2
d),

we have E[‖AZ‖2] = E[
∥∥Σ1/2W

∥∥
2
] for W ∼ N(0, I), and E[

∥∥Σ1/2W
∥∥

2
] = E[

√∑d
j=1 σ

2
jW

2
j ].

The function t 7→
√∑d

j=1 σ
2
j t

2
j is a Mahalanobis norm and so is convex, and it is invariant to

signs, so Jensen’s inequality gives

E
[∥∥∥Σ1/2W

∥∥∥
2

]
≥

√√√√ d∑
j=1

σ2
jE[|Wj |]2 =

√
2

π
tr(Σ),

which gives the first result.

The second is trivial: we have E[(XTAZ)2] = E[tr(XTAZZTATX)] = E[tr(XXTAZZTAT )] =
tr(AAT ) as desired.

(b) By Exercise (1.11), we have

P
(
|XTAZ| ≥ 1

2
E[|XTAZ|]

)
≥ 1

4

E[|XTAZ|]2

E[(XTAZ)2]
≥ 1

π2

by part (a), and substituting the lower bound E[|XTAZ|] ≥ 2
π ‖A‖Fr gives that with probability

at least π−2, we have |XTAZ| ≥ 1
π ‖A‖Fr. Define the binary random variables Bi = 1 if

|XT
i AZi| ≥ 1

π ‖A‖Fr and Bi = 0 otherwise, so that E[Bi] ≥ 1
π2 . Then for Bn = 1

n

∑n
i=1Bi,

P(Bn ≤ E[B1]/2) ≤ exp(−c1n)

for a numerical constant c1 > 0 by Hoeffding’s inequality. As 1
n

∑n
i=1 |XT

i AZi| ≤ 1
2π ‖A‖Fr

implies we must have Bn ≤ 1
2E[B1], this gives the claimed bound.

(c) First, we use the covering number bounds. Let {A1, . . . , AN} be an ε-cover of the rank r
matrices on the Frobenius sphere {A | ‖A‖Fr = 1}, which by Q. 7.8 has cardinality N ≤
(Cr/ε)2rd. Define the good event

E :=

N⋂
j=1

{
1

n

n∑
i=1

|〈XiZ
T
i , Aj〉| ≥ c0 ‖Aj‖Fr

}
∩
{
Pn
∥∥XZT∥∥

Fr
≤ 2d

}
,

which by a union bound occurs with probability at least 1 − (N + 1)e−cn. Then for any rank
r matrix A ∈ {A | ‖A‖Fr = 1}, there exists Aj such that ‖A−Aj‖Fr ≤ ε, and

Pn|〈XZT , A〉| ≥ Pn|〈XZT , Aj〉|−Pn|〈XZT , A−Aj〉|
(i)

≥ Pn|〈XZT , Aj〉|−εPn
∥∥XZT∥∥

Fr

(ii)

≥ c0 ‖Aj‖Fr−2dε,
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where inequality (i) is Cauchy-Schwarz and inequality (ii) uses the event E . Notably minj ‖Aj‖Fr ≥
1− ε, and so taking ε = c0

4d gives that

Pn|〈XZT , A〉| ≥ c0 ‖A‖Fr (7.3)

for all rank r matrices A with ‖A‖Fr = 1 on the event E . This event occurs with probability at
least

1− (N + 1) exp(−c1n) ≥ 1− exp (−cn+ Cdr log(dr)) ,

where the numerical constants c, C may change their values from inequality to inequality.

Finally, note that inequality (7.3) is homogeneous in ‖A‖Fr and so must hold for all rank r
matrices A ∈ Rd×d.

(d) The difference Θ−Θ? is rank 2r, so we simply apply the previous part of the question to

Pn|〈XZT ,Θ〉 − 〈XZT ,Θ?〉| = Pn|〈XZT ,Θ−Θ?︸ ︷︷ ︸
=:A

〉|.

(e) Evidently, with probability at least 1 − e−cn, as soon as n ≥ Cdr log(dr) we have Θ̂n = Θ?.
This is both surprising—the raw number of parameters in Θ? is d2, as it is a d×d matrix, so in
n = dr log dr � d2 rank-1 observations of Θ? we get perfect recovery—and unsurprising, as the
matrix is rank r and so effectively only has O(dr) parameters to estimate, and we are getting
a bit more than that.
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