Stats300b Etude 4 Solution ´ Due: Thursday, February 11 at 5:00pm on Gradescope.

Question 7.10 (Low-rank matrix sensing): In this question, we consider the problem of recovering a low-rank matrix from linear observations, showing that (with high probability) this is possible under a Gaussian random measurement model. We assume we observe triples $(X_i, Z_i, Y_i) \in \mathbb{R}^d \times$ $R^d \times \mathbb{R}$ where

$$
Y_i = \langle X_i Z_i^T, \Theta^{\star} \rangle = \text{tr}(Z_i X_i^T \Theta^{\star}) = X_i^T \Theta^{\star} Z_i
$$
\n(7.1)

for X_i and $Z_i \stackrel{iid}{\sim} \mathsf{N}(0, I_d)$ and independent, where $\Theta^* \in \mathbb{R}^d$ is an unknown rank r matrix. (Here we use the standard notation on matrices that $\langle A, B \rangle = \text{tr}(A^T B)$.) There is no noise in this observation model. We would like to recover Θ^* from n such measurements.

(a) Show that for any $d \times d$ matrix A,

$$
\mathbb{E}[|X^T A Z|] \geq \frac{2}{\pi} ||A||_{\text{Fr}} \text{ and } \mathbb{E}[|X^T A Z|^2] = ||A||_{\text{Fr}}^2.
$$

Hint: To prove the first inequality, first condition on Z. Then note that for any norm $\lVert \cdot \rVert$ and random vector W, $\mathbb{E}[\|W\|] \geq \|\mathbb{E}[|W|] \|$, where $|W|$ is the elementwise absolute value of W. Recognize that $||w|| := \sqrt{\sum_{i=1}^d \sigma_i^2 w_i^2}$ is a norm on $w \in \mathbb{R}^d$.

(b) Argue that there exist numerical constants $c_0, c_1 > 0$ such that for any fixed matrix $A \in \mathbb{R}^{d \times d}$, we have

$$
\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n |\langle X_i Z_i^T, A\rangle| \le c_0 \|A\|_{\text{Fr}}\right) \le \exp\left(-c_1 n\right).
$$

Hint: For a constant $c > 0$, define the random variables $B_i = 1$ if $|\langle X_i Z_i^T, A \rangle| \ge c ||A||_{\text{Fr}}$ and $B_i = 0$ otherwise. Use the Paley-Zygmund inequality (Ex. 1.11) to show that $\mathbb{P}(B_i = 1) \geq p$, where $p > 0$ is a numerical constant, and then bound $\mathbb{P}(\overline{B}_n \leq \mathbb{E}[B]/2)$.

(c) Using the covering number bounds in Ex. 7.8, show there exist numerical constants $0 < c_0, c_1$ and $C < \infty$ such that with probability at least $1 - e^{-c_1 n}$,

$$
\frac{1}{n} \sum_{i=1}^{n} |X_i^T A Z_i| \ge c_0 \|A\|_{\text{Fr}} \tag{7.2}
$$

for all rank r matrices $A \in \mathbb{R}^{d \times d}$ as long as $n \geq C dr \log(dr)$. You may assume dr is large if that is convenient. You may also use that

$$
\frac{1}{n}\sum_{i=1}^{n} \|Z_i X_i^T\|_{\text{Fr}} = \frac{1}{n}\sum_{i=1}^{n} \|Z_i\|_2 \|X_i\|_2 \le \frac{1}{n}\sum_{i=1}^{n} \left(\frac{1}{2} \|Z_i\|_2^2 + \frac{1}{2} \|X_i\|_2^2\right) \le 2d
$$

where inequality (\star) holds with probability at least $1 - e^{-c_0}$. Hint: note that inequality [\(7.2\)](#page-0-0) is homogeneous in A.

(d) Assume that Θ^* is rank r in the sensing model [\(7.1\)](#page-0-1). Argue that there exist numerical constants $0 < c_0, c_1$ and $C < \infty$ such that with probability at least $1 - e^{-cn}$,

$$
\frac{1}{n}\sum_{i=1}^{n} |X_i^T \Theta Z_i - Y_i| \ge c_0 \left\|\Theta - \Theta^{\star}\right\|_{\text{Fr}}
$$

simultaneously for all rank r matrices Θ as long as $n \geq C dr \log(dr)$.

(e) For loss $\ell(t) = |t|$, explain what part [\(d\)](#page-0-2) tells us about the empirical minimizer

$$
\widehat{\Theta}_n := \underset{\Theta \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \left\{ P_n \ell(\langle XZ^T, \Theta \rangle - Y) \mid \operatorname{rank}(\Theta) \le r \right\}.
$$

In one sentence, compare the sample size *n* versus the number of parameters in $\Theta^* \in \mathbb{R}^{d \times d}$.

Answer:

(a) We have $\mathbb{E}[|X^T A Z| | Z = z] = \sqrt{2/\pi} ||Az||_2$. For $Z \sim \mathbb{N}(0, I)$, we have $A Z \sim \mathbb{N}(0, AA^T)$. Letting AA^T have eigenvalue decomposition $AA^T = U\Sigma U^T$ for a diagonal $\Sigma = \text{diag}(\sigma_1^2, \ldots, \sigma_d^2)$, we have $\mathbb{E}[\|AZ\|_2] = \mathbb{E}[\|\Sigma^{1/2}W\|_2]$ for $W \sim \mathsf{N}(0, I)$, and $\mathbb{E}[\|\Sigma^{1/2}W\|_2] = \mathbb{E}[\sqrt{\sum_{j=1}^d \sigma_j^2 W_j^2}]$. The function $t \mapsto \sqrt{\sum_{j=1}^d \sigma_j^2 t_j^2}$ is a Mahalanobis norm and so is convex, and it is invariant to signs, so Jensen's inequality gives

$$
\mathbb{E}\left[\left\|\Sigma^{1/2}W\right\|_2\right] \ge \sqrt{\sum_{j=1}^d \sigma_j^2 \mathbb{E}[|W_j|]^2} = \sqrt{\frac{2}{\pi}} \operatorname{tr}(\Sigma),
$$

which gives the first result.

The second is trivial: we have $\mathbb{E}[(X^T A Z)^2] = \mathbb{E}[\text{tr}(X^T A Z Z^T A^T X)] = \mathbb{E}[\text{tr}(X X^T A Z Z^T A^T)] =$ $tr(AA^T)$ as desired.

(b) By Exercise (1.11) , we have

$$
\mathbb{P}\left(\left|X^T A Z\right| \geq \frac{1}{2}\mathbb{E}[\left|X^T A Z\right|]\right) \geq \frac{1}{4}\frac{\mathbb{E}[\left|X^T A Z\right|]^2}{\mathbb{E}[(X^T A Z)^2]} \geq \frac{1}{\pi^2}
$$

by part (a), and substituting the lower bound $\mathbb{E}[|X^T A Z|] \geq \frac{2}{\pi}$ $\frac{2}{\pi}$ $||A||_{\text{Fr}}$ gives that with probability at least π^{-2} , we have $|X^T A Z| \geq \frac{1}{\pi} ||A||_{\text{Fr}}$. Define the binary random variables $B_i = 1$ if $|X_i^T A Z_i| \geq \frac{1}{\pi} ||A||_{\text{Fr}}$ and $B_i = 0$ otherwise, so that $\mathbb{E}[B_i] \geq \frac{1}{\pi^2}$. Then for $\overline{B}_n = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n B_i,$

$$
\mathbb{P}(\overline{B}_n \le \mathbb{E}[B_1]/2) \le \exp(-c_1 n)
$$

for a numerical constant $c_1 > 0$ by Hoeffding's inequality. As $\frac{1}{n} \sum_{i=1}^n |X_i^T A Z_i| \leq \frac{1}{2\pi} ||A||_{\text{Fr}}$ implies we must have $\overline{B}_n \leq \frac{1}{2}$ $\frac{1}{2}\mathbb{E}[B_1]$, this gives the claimed bound.

(c) First, we use the covering number bounds. Let $\{A_1, \ldots, A_N\}$ be an ϵ -cover of the rank r matrices on the Frobenius sphere $\{A \mid ||A||_{\text{Fr}} = 1\}$, which by Q. [7.8](#page-0-3) has cardinality $N \leq$ $(Cr/\epsilon)^{2rd}$. Define the good event

$$
\mathcal{E} := \bigcap_{j=1}^N \left\{ \frac{1}{n} \sum_{i=1}^n |\langle X_i Z_i^T, A_j \rangle| \ge c_0 \|A_j\|_{\text{Fr}} \right\} \cap \left\{ P_n \|X Z^T\|_{\text{Fr}} \le 2d \right\},
$$

which by a union bound occurs with probability at least $1 - (N + 1)e^{-cn}$. Then for any rank r matrix $A \in \{A \mid ||A||_{\text{Fr}} = 1\}$, there exists A_j such that $||A - A_j||_{\text{Fr}} \leq \epsilon$, and

$$
P_n|\langle XZ^T, A\rangle| \ge P_n|\langle XZ^T, A_j\rangle| - P_n|\langle XZ^T, A - A_j\rangle| \stackrel{(i)}{\ge} P_n|\langle XZ^T, A_j\rangle| - \epsilon P_n \|XZ^T\|_{\text{Fr}} \stackrel{(ii)}{\ge} c_0 \|A_j\|_{\text{Fr}} - 2d\epsilon,
$$

where inequality (i) is Cauchy-Schwarz and inequality (ii) uses the event \mathcal{E} . Notably $\min_j ||A_j||_{\text{Fr}} \geq$ $1 - \epsilon$, and so taking $\epsilon = \frac{c_0}{4d}$ gives that

$$
P_n|\langle XZ^T, A\rangle| \ge c_0 \|A\|_{\text{Fr}} \tag{7.3}
$$

for all rank r matrices A with $||A||_{\text{Fr}} = 1$ on the event \mathcal{E} . This event occurs with probability at least

$$
1 - (N + 1) \exp(-c_1 n) \ge 1 - \exp(-cn + C dr \log(dr)),
$$

where the numerical constants c, C may change their values from inequality to inequality.

Finally, note that inequality [\(7.3\)](#page-2-0) is homogeneous in $||A||_{\text{Fr}}$ and so must hold for all rank r matrices $A \in \mathbb{R}^{d \times d}$.

(d) The difference $\Theta - \Theta^*$ is rank 2r, so we simply apply the previous part of the question to

$$
P_n|\langle XZ^T,\Theta\rangle - \langle XZ^T,\Theta^*\rangle| = P_n|\langle XZ^T,\underbrace{\Theta-\Theta^*}_{=:A}\rangle|.
$$

(e) Evidently, with probability at least $1 - e^{-cn}$, as soon as $n \geq C dr \log(dr)$ we have $\widehat{\Theta}_n = \Theta^*$. This is both surprising—the raw number of parameters in Θ^* is d^2 , as it is a $d \times d$ matrix, so in $n = dr \log dr \ll d^2$ rank-1 observations of Θ^* we get perfect recovery—and unsurprising, as the matrix is rank r and so effectively only has $O(dr)$ parameters to estimate, and we are getting a bit more than that.

 \Box