
Stats300b Étude 3 Solution
Due: Thursday, February 4 at 5:00pm on Gradescope.

Question 7.14 (Uniform convergence in a quantile regression problem): Let pairs z = (x, y) ∈
Rd × R and for a fixed q ∈ (0, 1) consider the “pinball” loss

`(θ, z) = `(θ, x, y) = q
[
θTx− y

]
+

+ (1− q)
[
y − θTx

]
+
− q [−y]+ − (1− q) [y]+ , (7.1)

where [a]+ = max{a, 0} is the positive part of its argument. (One uses this loss to fit models that
predict quantiles.) Define the population expectation L(θ) := EP [`(θ,X, Y )].

(a) Show that if Θ ⊂ Rd is compact and E[‖X‖] <∞ for some norm ‖·‖ on Rd, then

sup
θ∈Θ
|Pn`(θ,X, Y )− L(θ)| p→ 0.

(b) Explain why we must normalize the losses (7.1) by subtracting q [−y]+ + (1− q) [y]+ to achieve
the preceding convergence. (This should only take a sentence or two.)

Now, we derive asymptotics of the empirical minimizer θ̂n of Ln(θ) := Pn`(θ,X, Y ), that is,
θ̂n ∈ argminθ∈Θ Ln(θ). You may use the following result:

Lemma 7.14.1 (Bertsekas [1]). If H : Rd × Z → R is a convex function with EP [|H(θ, Z)|] < ∞
and ∇θH(θ, x) exists for P -almost all x, then h(θ) := EP [H(θ, Z)] is differentiable with gradient

∇h(θ) = EP [∇H(θ, Z)] =

∫
∇H(θ, z)dP (z) =

∫
z∈Z:∇H(θ,z) exists

∇H(θ, z)dP (z).

Assume that conditional on X = x, the random variable Y has cumulative distribution Fx(·)
with continuous bounded positive density fx(·) on R. Assume additionally that Cov(X) � 0,
that is, X has full rank covariance with E[‖X‖22] < ∞, and that the population minimizer θ? =
argminθ∈Θ L(θ) ∈ int Θ.

(c) Show that θ̂n is consistent for θ?. Hint: argue that the Hessian ∇2L(θ) is positive definite
in a neighborhood of θ?. Then apply van der Vaart [2, Thm. 5.7]. You may assume you can
exchange the order of expectation and differentiation in any integrals you desire. (It is possible
to use dominated convergence to prove this valid in any case.)

(d) Show that
√
n(θ̂n − θ?)

d→ N
(
0,∇2L(θ?)−1Cov(∇`(θ?, X, Y ))∇2L(θ?)−1

)
.

In addition, express the covariance Cov(∇`(θ?, X, Y )) and Hessian ∇2L(θ?) in terms of expec-
tations involving q and the random variables X, fX(〈θ?, X〉), and FX(〈θ?, X〉). Hint: you may
use van der Vaart [2, Thm. 5.23] to show the claimed convergence.

(e) Suppose there exists θ0 ∈ int Θ such that

Fx(θT0 x) = 1− q

for P -almost all x, and that the density fx(θT0 x) = ρ > 0 for P -almost all x. This would occur,
for example, in the model

Y = 〈β?, X〉+ ε, ε
iid∼ N(0, 1)

so long as x includes the intercept term that x1 = 1 (feel free to convince yourself of this!).
Show that your result in part (d) simplifies to

√
n(θ̂n − θ?)

d→ N

(
0,
q(1− q)
ρ2

E[XXT ]−1

)
.
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Answer:

(a) This we essentially did in class. Let ε > 0 be arbitrary, and let C = {θ1, . . . , θN} be an ε-cover
of Θ of size N for the `2-norm. Then define the bracketing functions

li(x, y) = q
[
〈θi, x〉 − y

]
+

+ (1− q)
[
y − 〈θi, x〉

]
+
− q [−y]+ − (1− q) [y]+ − ε ‖x‖2

ui(x, y) = q
[
〈θi, x〉 − y

]
+

+ (1− q)
[
y − 〈θi, x〉

]
+
− q [−y]+ − (1− q) [y]+ + ε ‖x‖2 .

Then as t 7→ [t]+ is 1-Lipschitz, it is evident that for any θ ∈ Θ, there exists θi such that
‖θi − θ‖2 ≤ ε, and for this i, we have

li(x, y) ≤ `(θ, x, y) ≤ ui(x, y) while 0 ≤ ui(x, y)− li(x, y) = 2ε ‖x‖2 .

Evidently the class of functions has finite bracketing number, so van der Vaart [2, Thm. 19.4]
gives the result.

(b) If we do not normalize the losses, consider the case that Y has Cauchy distribution while X is
a point mass at 0. Then the expectation L(θ) is not defined as E[|Y |] = +∞.

(c) We compute the gradient and Hessian of the population loss near θ = θ?. We use Lemma 7.14.1,
which gives

∇L(θ) = qE[1
{
θTX − Y ≥ 0

}
X]− (1− q)E[1

{
θTX − Y ≤ 0

}
X],

which follows by the assumption that Y has a density. Now, we note that

E[1
{
θTX − Y ≥ 0

}
X | X = x] = P(Y ≤ θTX | X = x) = Fx(θTx)

and ∇θFx(θTx) = fx(θTx)x, and similarly,

P(Y ≥ θTX | X = x) = 1− Fx(θTx),

so that

∇2L(θ) = qE[fX(θTX)XXT ] + (1− q)E[fX(θTX)XXT ] = E[fX(θTX)XXT ].

As the density fX is assumed positive, we have

∇2L(θ?) = E[fX(〈θ?, X〉)XXT ] � 0.

Now, we argue that consistency θ̂n
p→ θ? holds. That L is convex and f is bounded and contin-

uous implies (e.g., by dominated convergence) that there is some λ > 0 such that ∇2L(θ) � λI
for all θ in a neighborhood of θ?. In particular, for some c > 0 we have

L(θ) ≥ L(θ?) +
λ

2
min{‖θ − θ?‖22 , c ‖θ − θ

?‖2}

by Question 2.5. Using the uniform convergence result that supθ∈Θ |Ln(θ)− L(θ)| p→ 0 allows

us to apply van der Vaart [2, Thm. 5.7] immediately to give θ̂n
p→ θ?.
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(d) With consistency assured, we verify the conditions of [2, Thm. 5.23]. By construction and
Lipschitz continuity we have |`(θ, x, y) − `(θ′, x, y)| ≤ ‖θ − θ′‖2 ‖x‖2, and E[‖X‖22] < ∞.
We have already shown the second-order Taylor expansion required in the theorem, that is,
∇2L(θ) = E[fX(θTX)XXT ] � 0 in a neighborhood of θ?. Thus, by the theorem,

√
n(θ̂n − θ?) = −∇2L(θ?)−1 1√

n

n∑
i=1

∇θ`(θ?, Xi, Yi) + oP (1).

As

E[1 {Y ≤ 〈θ?, X〉}XXT ] = E[FX(〈θ?, X〉)XXT ] and

E[1 {Y ≥ 〈θ?, X〉}XXT ] = E[(1− FX(〈θ?, X〉))XXT ],

we have Cov(∇`(θ?, X, Y )) = E[(q2FX(〈θ?, X〉)+(1−q)2(1−FX(〈θ?, X〉)))XXT ]. This implies

√
n(θ̂n − θ?)

d→ N
(
0,∇2L(θ?)−1Cov(∇`(θ?, X, Y ))∇2L(θ?)−1

)
.

We have evidently written each of these in terms of q, FX(〈θ?, X〉), X, and fX(〈θ?, X〉) as
desired.

(e) If there is a point θ0 such that FX(〈θ0, X〉) = (1 − q) with P -probability 1 over X, we may
simplify our expressions. First, we must have θ? = θ0, as E[∇`(θ0, X, Y )] = q(1− q)E[X]− (1−
q)qE[X] = 0. The covariance becomes

Cov(∇`(θ?, X, Y )) = E[q2(1− q)XXT + (1− q)2qXXT ] = E[q(1− q)XXT ],

while the second derivative becomes ∇2`(θ?) = ρE[XXT ], giving the claimed result.
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