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Abstract

Partial differential equations (PDEs) play a promi-
nent role in many disciplines of science and en-
gineering. PDEs are commonly derived based
on empirical observations. However, with the
rapid development of sensors, computational pow-
er, and data storage in the past decade, huge quan-
tities of data can be easily collected and efficiently
stored. Such vast quantity of data offers new op-
portunities for data-driven discovery of physical
laws. Inspired by the latest development of neu-
ral network designs in deep learning, we propose
a new feed-forward deep network, called PDE-
Net, to fulfill two objectives at the same time:
to accurately predict dynamics of complex sys-
tems and to uncover the underlying hidden PDE
models. Comparing with existing approaches, our
approach has the most flexibility by learning both
differential operators and the nonlinear response
function of the underlying PDE model. A special
feature of the proposed PDE-Net is that all filters
are properly constrained, which enables us to eas-
ily identify the governing PDE models while still
maintaining the expressive and predictive power
of the network. These constrains are carefully de-
signed by fully exploiting the relation between the
orders of differential operators and the orders of
sum rules of filters (an important concept originat-
ed from wavelet theory). Numerical experiments
show that the PDE-Net has the potential to un-
cover the hidden PDE of the observed dynamics,
and predict the dynamical behavior for a relatively
long time, even in a noisy environment.
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1. Introduction
Differential equations, especially partial differential equa-
tions(PDEs), play a prominent role in many disciplines to
describe the governing physical laws underlying a given
system of interest. Traditionally, PDEs are derived based on
simple physical principles such as conservation laws, mini-
mum energy principles, or based on empirical observations.
Important examples include the Navier-Stokes equations in
fluid dynamics, the Maxwell’s equations for electromagnet-
ic propagation, and the Schrödinger’s equations in quantum
mechanics. However, many complex systems in modern
applications (such as many problems in climate science,
neuroscience, finance, etc.) still have eluded mechanism-
s, and the governing equations of these systems are only
partially known. With the rapid development of sensors,
computational power, and data storage in the last decade,
huge quantities of data can be easily collected and efficiently
stored . Such vast quantity of data offers new opportunities
for data-driven discovery of potentially new physical laws.
Then, one may ask the following interesting and intriguing
question: can we learn a PDE model (if there exists one)
from a given data set and perform accurate and efficient
predictions using the learned model?

1.1. Related Work

Earlier attempts on data-driven discovery of hidden physical
laws include (Bongard & Lipson, 2007; Schmidt & Lipson,
2009). Their main idea is to compare numerical differen-
tiations of the experimental data with analytic derivatives
of candidate functions, and apply the symbolic regression
and the evolutionary algorithm to determining the nonlinear
dynamical system. Recently, (Brunton et al., 2016), (Scha-
effer, 2017), (Rudy et al., 2017) and (Wu & Zhang, 2017)
proposed an alternative approach using sparse regression.
They constructed a dictionary of simple functions and par-
tial derivatives that were likely to appear in the unknown
governing equations. Then, they took advantage of sparsity
promoting techniques to select candidates that most accu-
rately represent the data. When the form of the nonlinear
response of a PDE is known, except for some scalar parame-
ters, (Raissi & Karniadakis, 2017) presented a framework to
learn these unknown parameters by introducing regularity
between two consecutive time step using Gaussian process.
(de Bezenac et al., 2017) studied the problem of sea surface
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temperature prediction (SSTP). They assumed that the un-
derlying physical model is an advection-diffusion equation.
They designed a special neural network according to the gen-
eral solution of advection-diffusion equations. Comparing
with traditional numerical methods, their approach showed
improvements in accuracy and decrease in computational
time.

These recent work greatly advanced the progress of the
problem. However, symbolic regression is computationally
expensive and does not scale very well to large systems. The
sparse regression method requires to fix certain numerical
approximations of the spatial differentiations in the dictio-
nary beforehand, which limits the expressive and predictive
power of the dictionary. Although the framework present-
ed by Raissi & Karniadakis (2017); Raissi et al. (2017)
is able to learn hidden physical laws using less data than
the approach of sparse regression, the explicit form of the
PDEs is assumed to be known except for a few scalar learn-
able parameters. The approach of de Bezenac et al. (2017)
is specifically designed for advection-diffusion equations,
and cannot be readily extended to other types of equations.
Therefore, extracting governing equations from data in a
less restrictive setting remains a great challenge.

The main objective of this paper is to accurately predict
the dynamics of complex systems and to uncover the under-
lying hidden PDE models (should they exist) at the same
time, with minimal prior knowledge on the systems. Our
inspiration comes from the latest development of deep learn-
ing techniques in computer vision. An interesting fact is
that some popular networks in computer vision, such as
ResNet(He et al., 2016a;b), have close relationship with
PDEs (Chen et al., 2015; E, 2017; Haber & Ruthotto, 2017;
Sonoda & Murata, 2017; Lu et al., 2017). However, existing
deep networks designed in deep learning mostly emphasis
on expressive power and prediction accuracy. These net-
works are not transparent enough to be able to reveal the
underlying PDE models, although they may perfectly fit
the observed data and perform accurate predictions. There-
fore, we need to carefully design the network by combining
knowledge from deep learning and applied mathematics so
that we can learn the governing PDEs of the dynamics and
make accurate predictions at the same time.

1.2. Our Approach

In this paper, we design a deep feed-forward network,
named PDE-Net, based on the following generic nonlin-
ear evolution PDE

ut = F (x, u,∇u,∇2u, . . .), x ∈ Ω ⊂ R2, t ∈ [0, T ].

The objective of the PDE-Net is to learn the form of the non-
linear response F and to perform accurate predictions. Un-
like the existing work, the proposed network only requires

minor knowledge on the form of the nonlinear response
function F , and requires no knowledge on the involved d-
ifferential operators (except for their maximum possible
order) and their associated discrete approximations. The
nonlinear response function F can be learned using neural
networks or other machine learning methods, while discrete
approximations of the differential operators are learned us-
ing convolution kernels (i.e. filters) jointly with the learning
of the response function F . If we have a prior knowledge on
the form of the response function F , we can easily adjust the
network architecture by taking advantage of the additional
information. This may simplify the training and improve
the results.

A particular novelty of our approach is that we impose ap-
propriate constraints on the learnable filters in order to easily
identify the governing PDE models while still maintaining
the expressive and predictive power of the network. This
makes our approach different from existing deep convolu-
tional networks which mostly emphasis on the prediction
accuracy of the networks, as well as all the existing ap-
proaches of learning PDEs from data which assume either
the form of the response function is known or have fixed
approximations of the differential operators. In other words,
our proposed approach not only has vast flexibility in fitting
observed dynamics and is able to accurately predict its fu-
ture behavior, but is also able to reveal the hidden equations
driving the observed dynamics.

2. PDE-Net: A Flexible Deep Archtecture to
Learn PDEs from Data

Given a series of measurements of some physical quantities
{u(t, ·) : t = t0, t1, · · · } on the spatial domain Ω ⊂ R2,
with u(t, ·) : Ω 7→ R, we want to discover the governing
PDEs of the data. We assume that the observed data are
associated with a PDE that takes the following general form:

ut(t, x, y) = F (x, y, u, ux, uy, uxx, uxy, uyy, . . .), (1)

where (x, y) ∈ Ω ⊂ R2, t ∈ [0, T ]. Our objective is to
design a feed-forward network, named the PDE-Net, that
approximates the PDE (1) in the way that: 1) we can predict
the dynamical behavior of the equation for as long time as
possible; 2) we are able to reveal the form of the response
function F and the differential operators involved. There
are two main components of the PDE-Net that are combined
together in the same network: one is automatic determina-
tion on the differential operators involved in the PDE and
their discrete approximations; the other is to approximate
the nonlinear response function F . In this section, we start
with discussions on the relation between convolutions and
differentiations in discrete setting.
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2.1. Convolutions and Differentiations

A profound relationship between convolutions and differ-
entiations was presented by Cai et al. (2012); Dong et al.
(2017), where the authors discussed the connection between
the order of sum rules of filters and the orders of differen-
tial operators. Note that the order of sum rules is closely
related to the order of vanishing moments in wavelet the-
ory (Daubechies, 1992; Mallat, 1999). We first recall the
definition of the order of sum rules.
Definition 2.1 (Order of Sum Rules). For a filter q, we say
q to have sum rules of order α = (α1, α2), where α ∈ Z2

+,
provided that ∑

k∈Z2

kβq[k] = 0 (2)

for all β = (β1, β2) ∈ Z2
+ with |β| := β1 + β2 < |α| and

for all β ∈ Z2
+ with |β| = |α| but β 6= α. If (2) holds for

all β ∈ Z2
+ with |β| < K except for β 6= β̄ with certain

β̄ ∈ Z2
+ and |β̄| = J < K, then we say q to have total sum

rules of order K\{J + 1}.

In practical implementation, the filters are normally finite
and can be understood as matrices. For an N ×N filter q
(N is an odd number), assuming the indices of q start from
−N−1

2 , (2) can be written in the following simpler form

N−1
2∑

l=−N−1
2

N−1
2∑

m=−N−1
2

lβ1mβ2q[l,m] = 0.

The following proposition from Dong et al. (2017) links the
orders of sum rules with orders of differential operator.
Propositin 2.1. Let q be a filter with sum rules of order
α ∈ Z2

+. Then for a smooth function F (x) on R2, we have

1

ε|α|

∑
k∈Z2

q[k]F (x+ εk) = Cα
∂α

∂xα
F (x) +O(ε), as ε→ 0.

(3)
If, in addition, q has total sum rules of order K\{|α|+ 1}
for some K > |α|, then

1

ε|α|

∑
k∈Z2

q[k]F (x+εk) = Cα
∂α

∂xα
F (x)+O(εK−|α|), as ε→ 0.

(4)

According to Proposition 2.1, an αth order differential oper-
ator can be approximated by the convolution of a filter with
α order of sum rules. Furthermore, according to (4), one
can obtain a high order approximation of a given differential
operator if the corresponding filter has an order of total sum
rules with K > |α|+ k, k > 1. For example, consider filter

q =

 1 0 −1
2 0 −2
1 0 −1

 . It has a sum rules of order (1, 0),

and a total sum rules of order 3\{2}. Thus, up to a constant

and a proper scaling, q corresponds to a discretization of ∂
∂x

with second order approximation.

Now, we introduce the concept of moment matrix for a given
filter that will be used to constrain filters in the PDE-Net.
For an N ×N filter q, define the moment matrix of q as

M(q) = (mi,j)N×N , (5)

where mi,j = 1
(i−1)!(j−1)!

∑
k∈Z2 k

i−1
1 kj−1

2 q[k1, k2], for
i, j = 1, 2, . . . , N . We shall call the (i, j)-element of M(q)
the (i−1, j−1)-moment of q for simplicity. Combining (5)
and Proposition 2.1, one can easily see that filter q can be de-
signed to approximate any differential operator at any given
approximation order by imposing constraints on M(q). For
example, if we want to approximate ∂u

∂x (up to a constant) by
convolution q ~ u where q is a 3× 3 filter, we can consider
the following constrains on M(q): 0 0 ?

1 ? ?
? ? ?

 or

 0 0 0
1 0 ?
0 ? ?

 . (6)

Here, ? means no constraint on the corresponding entry.
The constraints described by the moment matrix on the left
of (6) guarantee the approximation accuracy is at least first
order, and the ones on the right guarantee an approximation
of at least second order. In particular, when all entries of

M(q) are constrained, e.g. M(q) =

 0 0 0
1 0 0
0 0 0

 , the

corresponding filter can be uniquely determined, in which
case we call it a “frozen” filter. In the PDE-Net which shall
be introduced in the next subsection, all filters are learned
subjected to partial constraints on their associated moment
matrices. It is worth noting that the approximation property
of a filter is limited by its size. Generally speaking, large
filters can approximate higher order differential operators
or lower order differential operators with higher approxima-
tion orders. However, larger filters lead to more memory
overhead and higher computation cost. It is a wisdom to
balance the trade-off in practice.

2.2. Architecture of PDE-Net

Given the evolution PDE (1), we consider forward Euler
as the temporal discretization. One may consider more so-
phisticated temporal discretization which leads to different
network architectures. For simplicity, we focus on forward
Euler in this paper.

ONE δt-BLOCK:

Let ũ(ti+1, ·) be the predicted value of u at time ti+1 based
on the value of u at ti. Then, we have

ũ(ti+1, ·) =D0u(ti, ·)+
∆t · F (x, y,D00u,D10u,D01u,D20u, . . .).

(7)
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Here, the operators D0 and Dij are convolution opera-
tors with the underlying filters denoted by q0 and qij , i.e.
D0u = q0 ~ u and Diju = qij ~ u. The operators
D10, D01, D11, etc. approximate differential operators,
i.e. Diju ≈ ∂i+ju

∂ix∂jy . The operators D0 and D00 are spatial
average operators. The purpose of introducing these aver-
age operators in stead of using the identity is to improve the
expressive power of the network and enables it to capture
more complex dynamics. Other than the assumption that
the observed dynamics is governed by a PDE of the form
(1), we assume that the highest order of the PDE is less than
some positive integer. Then, the task of approximating F
is equivalent to a multivariate regression problem, which
can be approximated by a point-wise neural network (with
shared weights across the computation domain Ω) or other
classical machine learning methods. Combining the approx-
imation of differential operators and the nonlinear function
F , we achieve an approximation framework of (7) which
will be referred to as a δt-block (see Figure 1).

Figure 1. The schematic diagram of a δt-block.

PDE-NET (MULTIPLE δt-BLOCKS):

One δt-block only guarantees the accuracy of one-step dy-
namics, which does not take error accumulation into con-
sideration. In order to facilitate a long-term prediction, we
stack multiple δt-blocks into a deep network, and call this
network the PDE-Net (see Figure 2). The importance of
stacking multiple δt-blocks will be demonstrated in Section
3.

The PDE-Net can be easily described as: (1) stacking one
δt-block multiple times; (2) sharing parameters in all δt-
blocks. Given an input data u(ti, ·), training a PDE-Net
with n δt-blocks needs to minimize the accumulated error
||u(ti+n, ·) − ũ(ti+n, ·)||22, where ũ(ti+n, ·) is the output
from the PDE-Net (i.e. n δt-blocks) with input u(ti, ·).

LOSS FUNCTION AND CONSTRAINTS:

Consider the data set {uj(ti, ·) : i, j = 0, 1, . . .}, where j
indicates the j-th solution path with a certain initial con-
dition of the unknown dynamics. We would like to train
the PDE-Net with n δt-blocks. For a given n ≥ 1, every
pair of the data {uj(ti, ·), uj(ti+n, ·)}, for each i and j, is a
training sample, where uj(ti, ·) is the input and uj(ti+n, ·)

Figure 2. The schematic diagram of the PDE-Net.

is the label that we need to match with the output from the
PDE-Net. We select the following simple `2 loss function
for training:

L =
∑
i,j

lij ,where lij = ||uj(ti+n, ·)− ũj(ti+n, ·)||22,

where ũj(ti+n, ·) is the output of the PDE-Net with uj(ti, ·)
as the input.

All the filters involved in the PDE-Net are properly con-
strained using their associated moment matrices. Let q0 and
qij be the underlying filters of D0 and Dij . We impose the
following constrains

(M(q0))1,1 = 1, (M(q00))1,1 = 1,

and for i+ j > 0, we set

(M(qi,j))k1,k2 = 0, k1+k2 ≤ i+j+2, (k1, k2) 6= (i+1, j+1);

(M(qi,j))i+1,j+1 = 1.

To demonstrate the necessity of learnable filters, we will
compare the PDE-Net having the aforementioned constrains
on the filters with the PDE-Net having frozen filters. To
differentiate the two cases, we shall call the PDE-Net with
frozen filters “the Frozen-PDE-Net”.

NOVELTY OF THE PDE-NET:

Different from fixing numerical approximations of differen-
tiations in advance in sparse regression methods (Schaeffer,
2017; Rudy et al., 2017), using learnable filters makes the
PDE-Net more flexible, and enables more robust approxi-
mation of unknown dynamics and longer time prediction
(see numerical experiments in Section 3 and Section 4).
Furthermore, the specific form of the response function F
is also approximated from the data, rather than assumed
to be known in advance (such as (Raissi & Karniadakis,
2017; Raissi et al., 2017)). On the other hand, by inflict-
ing constrains on moment matrices, we can identify which
differential operators are included in the underlying PDE
which helps with identifying the nonlinear response func-
tion F . This grants transparency to the PDE-Net and the
potential to reveal hidden physical laws. Therefore, the pro-
posed PDE-Net is distinct from the existing learning based
method to discover PDEs from data, as well as networks
designed in deep learning for computer vision tasks.
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2.3. Initialization and training

In the PDE-Net, parameters can be divided into three group-
s: 1) filters to approximate differential operators; 2) the
parameters of the point-wise neural network to approximate
F ; and 3) hyper-parameters, such as the number of filters,
the size of filters, the number of layers, etc. The parameters
of the point-wise neural network are shared across the com-
putation domain Ω, and are initialized by random sampling
from a Gaussian distribution. For the filters, we initialize
them by freezing them to their corresponding differential
operators.

Instead of training an n-layer PDE-Net directly, we adopt
layer-wise training, which improves the training speed. De-
tails on training can be found in (Long et al., 2018). All the
parameters in each of the δt-block are shared across layers.
In addition, we add a warm-up step before the training of the
first δt-block. The warm-up step is to obtain a good initial
guess of the parameters of the point-wise neural network
that approximates F by using frozen filters.

2.4. Relations to some existing networks

In recent years, a variety of deep neural networks have been
introduced with great success in computer vision. The struc-
ture of the proposed PDE-Net is similar to some existing
networks such as the Network-In-Network (NIN) (Lin et al.,
2013) and the deep Residual Neural Network (ResNet) (He
et al., 2016a;b).

The NIN is an improvement over the traditional convolution-
al neural networks. One of the special designs of NIN is the
use of multilayer perceptron convolution (mlpconv) layers
instead of the ordinary convolution layers. An mlpconv
layer contains the convolutions and small point-wise neural
networks. Such design can improve the ability of the net-
work to extract nonlinear features from shallow layers. The
inner structure of one δt-block of the PDE-Net is similar
to the mlpconv layer, and the multiple δt-blocks structure
is similar to the NIN structure, except for the pooling and
ReLU operations.

On the other hand, each δt-block of the PDE-Net has two
paths (see Figure 1 and Figure 2): one is for the averaged
quantity of u and the other is for the increment F . This
structure coincides with the “residual block” introduced in
ResNet. In fact, there has been a substantial study on the
relation between ResNet and dynamical systems recently (E,
2017; Haber & Ruthotto, 2017; Sonoda & Murata, 2017).

3. Numerical Studies: Convection-Diffusion
Equations

Convection-diffusion equations are classical PDEs that are
used to describe physical phenomena where particles, en-

ergy, or other physical quantities are transferred inside a
physical system due to two processes: diffusion and convec-
tion (Chandrasekhar, 1943).

3.1. Simulated data, training and testing

We consider a 2-dimensional linear variable-coefficient
convection-diffusion equation on Ω = [0, 2π] × [0, 2π],

{
∂u
∂t = a(x, y)ux + b(x, y)uy + 0.2uxx + 0.3uyy,
u|t=0 = u0(x, y),

(8)
with (t, x, y) ∈ [0, 0.2]× Ω, where

a(x, y) = 0.5(cos(y) + x(2π − x) sin(x)) + 0.6,

b(x, y) = 2(cos(y) + sin(x)) + 0.8.

Data is generated by solving problem (8) using a high pre-
cision numerical scheme by discretizing Ω using a 50× 50
grid and a time step size δt = 0.015. We assume peri-
odic boundary condition and the initial value u0(x, y) is
generated from

u0(x, y) =
∑

|k|,|l|≤N

λk,l cos(kx+ ly) + γk,l sin(kx+ ly), (9)

where N = 9, λk,l, γk,l ∼ N (0, 1
50 ), and k and l are

chosen randomly. We also add noise to the generated data:

û(x, y, t) = u(x, y, t) + 0.015×MW (10)

where M = maxx,y,t{u(x, y, t)}, W ∼ N (0, 1) and
N (0, 1) represents the standard normal distribution. De-
tails on the data generation and experiments on noise-free
case can be found in the supplement (Long et al., 2018).

Suppose we know a priori that the underlying PDE is linear
with order no more than 4. Then, the response function F
takes the following form

F =
∑

0≤i+j≤4

fij(x, y)
∂i+ju

∂xi∂yj
.

Each δt-block of the PDE-Net can be written as

ũ(tn+1, ·) =D0u(tn, ·)
+ δt · (c00D00u+ c10D10u+ . . .+ c04D04u),

where {D0, Dij : i + j ≤ 4} are convolution operators
and {cij : i + j ≤ 4} are 2D arrays which approximate
functions fij(x, y) on Ω. The approximation is achieved
using piecewise quadratic polynomial interpolation with
smooth transitions at the boundaries of each piece. The
filters associated to the convolution operators {D0, Dij :
i+ j ≤ 4} and the coefficients of the piecewise quadratic
polynomials are the trainable parameters of the network.

During training and testing, the data is generated on-the-fly.
The size of the filters that will be used is 5 × 5 or 7 × 7.
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The total number of trainable parameters for each δt-block
is approximately 17k. During training, we use LBFGS,
instead of SGD, to optimize the parameters. We use 28 data
samples per batch to train each layer (i.e. δt-block) and we
only construct the PDE-Net up to 20 layers, which requires
totally 560 data samples per batch.

3.2. Results and Discussions

3.2.1. PREDICTING LONG-TIME DYNAMICS

We first demonstrate the ability of the trained PDE-Net in
prediction, which in the language of machine learning is the
ability to generalize. After the PDE-Net with n δt-blocks
(1 ≤ n ≤ 20) is trained, we randomly generate 560 initial
guesses based on (9) and (10), feed them to the PDE-Net,
and measure the normalized error between the predicted
dynamics (i.e. the output of the PDE-Net) and the actual
dynamics (obtained by solving (8) using high precision
numerical scheme). The normalized error between the true
data u and the predicted data ũ is defined as ε =

‖ũ−u‖22
‖u−ū‖22

,

where ū is the spatial average of u. The error plots are
shown in Figure 3. Some of the images of the predicted
dynamics are presented in Figure 4.

From these results, we can see that:

• Even trained with noisy data, the PDE-Net is able to
perform long-term prediction (see Figure 4);

• Having multiple δt-blocks enables the network to fa-
cilitate long-term predictions (see Figure 3);

• The PDE-Net performs significantly better than Frozen-
PDE-Net, especially for 7× 7 filters (see Figure 3);

• The PDE-Net with 7 × 7 filters significantly outper-
forms the PDE-Net with 5 × 5 filters in terms of the
length of reliable predictions (see Figure 3). To reach
an O(1) error, the length of prediction for the PDE-
Net with 7× 7 filters is about 10 times of that for the
PDE-Net with 5× 5 filters.

3.2.2. DISCOVERING THE HIDDEN EQUATION

For the linear problem, identifying the PDE amounts to
finding the coefficients {cij : i+ j ≤ 4} that approximate
{fij : i + j ≤ 4}. The coefficients {cij : i + j ≤ 2}
of the trained PDE-Net are shown in Figure 5. Note that
{f11} ∪ {fij : 2 < i+ j ≤ 4} are absent from the PDE (8),
and the corresponding coefficients learned by the PDE-Net
are indeed close to zero. In order to have a more concise
demonstration of the results, we only show the image of
{cij : i+ j ≤ 2} in Figure 5. Images of all the coefficients
are presented in the supplement (Long et al., 2018).

Figure 3. Prediction errors of the PDE-Net (orange) and Frozen-
PDE-Net (blue) with 5×5 (first row) and 7×7 (second row) filters.
In each plot, the horizontal axis indicates the time of prediction
in the interval (0, 60× δt] = (0, 0.6], and the vertical axis shows
the normalized errors. The banded curves indicate the 25% & 75%
percentile of the normalized errors among 560 test samples.

Figure 4. The first row shows the images of the true dynamics. The
second row shows the images of the predicted dynamics using the
PDE-Net having 3 δt-blocks with 5×5(up) and 7×7(down) filters.
The third row shows the error maps. Time step δt = 0.015.

Comparing the first three rows of Figure 5, the coefficients
{cij} learned by the PDE-Net are close to the true coeffi-
cients {fij} except for some oscillations due to the presence
of noise in the training data. Furthermore, the last row of
Figure 5 indicates that having multiple δt-blocks helps with
estimation of the coefficients. However, having larger filters
does not seem to improve the learning of the coefficients,
though it helps tremendously in prolonging predictions of
the PDE-Net.

3.2.3. FURTHER EXPERIMENTS

The PDE (8) is of second order. In our previous experiments,
we assumed that the PDE does not exceed the 4th order.
If we know that the PDE is of second order, we will be
able to have a more accurate estimation of the variable
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Figure 5. First row: the true coefficients of the equation. From
the left to right are coefficients of u, ux, uy , uxx, uxy and uyy .
Second row: the learned coefficients by the PDE-Net with 6 δt-
blocks and 5× 5 filters. Third row: the learned coefficients by the
PDE-Net with 6 δt-blocks and 7× 7 filters. Last row: the errors
between true and learned coefficients v.s. number of δt-blocks
with different sizes of filters (5× 5 blue and 7× 7 orange).

coefficients of the convection and diffusion terms. However,
the prediction errors are slightly higher since we have fewer
trainable parameters. Nonetheless, since we are using a
more accurate prior knowledge on the unknown PDE, the
variance of the prediction errors are smaller than before.
These results are summarized in Figure 6 (green curves) and
Figure 7.

To further demonstrate the importance of the moment con-
straints on the filters in the PDE-Net, we trained the network
without any moment constraints. For simplicity, we call
the PDE-Net train in this way as the Freed-PDE-Net. The
prediction errors of the Freed-PDE-Net are shown as the red
curves in Figure 6. Since without moment constraints, we do
not know the correspondence of the filters with differential
operators. Therefore, we cannot identify the correspondence
of the learned variable coefficients either. We plot all the
15 variable coefficients (assuming the underlying PDE is
of order ≤ 4) in Figure 8. As one can see that the Freed-
PDE-Net is better in prediction than the PDE-Net since it
has more trainable parameters than the PDE-Net. However,
we are unable to identify the PDE from the Free-PDE-Net.
More experiments can be found in the supplement (Long
et al., 2018).

Figure 6. Prediction errors of the PDE-Net assuming the underly-
ing PDE has order ≤ 4 (orange), order ≤ 2 (green) and Freed-
PDE-Net (red) with 7×7 filters. In each plot, the horizontal axis in-
dicates the time of prediction in the interval (0, 80×δt] = (0, 0.8],
and the vertical axis shows the normalized errors.

Figure 7. First row: the true coefficients of the equation. From
the left to right are coefficients of u, ux, uy , uxx, uxy and uyy .
Second row: the learned coefficients by the PDE-Net assuming the
order of the PDE is ≤ 4 (same as the third row of Figure 5). Third
row: the learned coefficients by the PDE-Net assuming the order
of the PDE is ≤ 2. Last row: the errors between true and learned
coefficients v.s. number of δt-blocks (1, 2, . . . , 13) for PDE-Net
assuming the PDE is of order ≤ 4 (orange) and ≤ 2 (green).

Figure 8. The images of all the variable coefficients learned from
the Freed-PDE-Net.

4. Numerical Studies: Diffusion Equations
with Nonlinear Source

When modeling physical processes like particle transporta-
tion or energy transfer, in addition to convection and dif-
fusion, we have to consider source/sink terms. In some
problems, the source/sink plays an important role. For ex-
ample, when convection-diffusion equations are used to
describe the distribution and flow of pollutants in water or
atmosphere, identifying the intensity of pollution source is
equivalent to finding the source term, which is important for
environmental pollution control problems.

4.1. Simulated data, training and testing

We consider a 2-dimensional linear diffusion equation with
a nonlinear source on Ω = [0, 2π]× [0, 2π],

{
∂u
∂t = c∆u+ fs(u),
u|t=0 = u0(x, y),

with (t, x, y) ∈ [0, 0.2]×Ω,

(11)
where c = 0.3 and fs(u) = 15 sin(u). Data is generated
similarly as before, except with a time step δt = 0.0009 and
zero boundary condition.
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We assume the following form of the response function F

F =
∑

1≤i+j≤2

fij(x, y)
∂i+ju

∂xi∂yj
+ fs(u).

Each δt-block of the PDE-Net can be written as

ũ(tn+1, ·) = D0u(tn, ·) + δt · (
∑

1≤i+j≤2

cijDiju+ f̃s(u)),

where {D0, Dij : 1 ≤ i+j ≤ 2} are convolution operators
and {cij : 1 ≤ i + j ≤ 2} are 2D arrays which approxi-
mate functions fij(x, y) on Ω. The approximation of f̃s is
obtained by piecewise 4th order polynomial approximation.
The training and testing strategy is exactly the same as in
Section 3. In our experiments, the size of the filters is 7× 7.
The number of parameters for each δt-block is ≈ 1.2k.

4.2. Results and Discussions

4.2.1. PREDICTING LONG-TIME DYNAMICS

We first demonstrate the ability of the trained PDE-Net in
prediction. The testing method is exactly the same as the
method described in Section 3. Comparisons between PDE-
Net and Frozen-PDE-Net are shown in Figure 9, where we
can clearly see the advantage of learning the filters. Visual-
ization of the predicted dynamics is given in Figure 10. All
these results show that the learned PDE-Net performs well
in prediction.

Figure 9. Prediction errors of the PDE-Net (orange) and Frozen-
PDE-Net (blue) with 7 × 7 filters. In each plot, the horizontal
axis indicates the time of prediction in the interval (0, 0.6], and the
vertical axis shows the normalized errors.

Figure 10. The first row shows the images of the true dynamics.
The second row shows the images of the predicted dynamics using
the PDE-Net having 3 δt-blocks with 7× 7 filters. The third row
shows the error maps. Here, δt = 0.015.

4.2.2. DISCOVERING THE HIDDEN EQUATION

For the PDE (11), identifying the PDE amounts to finding
the coefficients {cij : 1 ≤ i+j ≤ 2} that approximate {fij :

1 ≤ i+ j ≤ 2}, and f̃s that approximates fs. The computed
coefficients {cij : 1 ≤ i+j ≤ 2} of the trained PDE-Net are
shown in Figure 11, and the computed f̃s is shown in Figure
12 (left). Note that the first order terms are absent from the
PDE (11), and the corresponding coefficients learned by the
PDE-Net are indeed close to zero. The approximation of fs
is more accurate near the center of the interval than near the
boundary. This is because the value of u in the data set is
mostly distributed near the center (Figure 12(right)).

Figure 11. First row: the true coefficients {fij : 1 ≤ i + j ≤ 2}
of the equation. Second row: the learned coefficients {cij : 1 ≤
i+ j ≤ 2} by the PDE-Net with 3 δt-blocks and 7× 7 filters.

Figure 12. Left: the true source function fs and estimated source
function f̃s. Right: distribution of the values of u during training.

5. Conclusion and Discussion
In this paper, we designed a deep feed-forward network,
called the PDE-Net, to discover the hidden PDE model from
the observed dynamics and to predict the dynamical behav-
ior. The PDE-Net consists of two major components which
are jointly trained: to approximate differential operations by
convolutions with properly constrained filters, and to approx-
imate the nonlinear response by deep neural networks or oth-
er machine learning methods. The PDE-Net is suitable for
learning PDEs as general as in (1). As an example, we con-
sidered a linear variable-coefficient convection-diffusion e-
quation. The results show that the PDE-Net can uncover the
hidden equation of the observed dynamics, and predict the
dynamical behavior for a relatively long time, even in a noisy
environment. PyTorch codes of the PDE-Net are available
at https://github.com/ZichaoLong/PDE-Net.
As part of the future work, we will try the proposed frame-
work on real data sets. One of the important directions is
to uncover hidden variables which cannot be measured by
sensors directly, such as in data assimilation. Another inter-
esting direction which is worth exploring is to learn stable
and consistent numerical schemes for a given PDE model
based on the architecture of the PDE-Net.
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