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ABSTRACT

In this paper, we propose a new control framework called the moving endpoint
control to restore images corrupted by different degradation levels using a single
model. The proposed control problem contains an image restoration dynamic which
is modeled by a convolutional RNN. The moving endpoint, which is essentially
the terminal time of the associated dynamic, is determined by a policy network.
We call the proposed model the dynamically unfolding recurrent restorer (DURR).
Numerical experiments show that DURR is able to achieve state-of-the-art per-
formances on blind image denoising and JPEG image deblocking. Furthermore,
DURR can well generalize to images with higher degradation levels that are not
included in the training stage.1

1 INTRODUCTION

Image restoration, including image denoising, deblurring, inpainting, etc., is one of the most important
areas in imaging science. Its major purpose is to obtain high quality reconstructions of images
corrupted in various ways during imaging, acquisiting, and storing, and enable us to see crucial but
subtle objects that reside in the images. Image restoration has been an active research area. Numerous
models and algorithms have been developed for the past few decades. Before the uprise of deep
learning methods, there were two classes of image restoration approaches that were widely adopted
in the field: transformation based approach and PDE approach. The transformation based approach
includes wavelet and wavelet frame based methods (Elad et al., 2005; Starck et al., 2005; Daubechies
et al., 2007; Cai et al., 2009), dictionary learning based methods (Aharon et al., 2006), similarity
based methods (Buades et al., 2005; Dabov et al., 2007), low-rank models (Ji et al., 2010; Gu et al.,
2014), etc. The PDE approach includes variational models (Mumford & Shah, 1989; Rudin et al.,
1992; Bredies et al., 2010), nonlinear diffusions (Perona & Malik, 1990; Catté et al., 1992; Weickert,
1998), nonlinear hyperbolic equations (Osher & Rudin, 1990), etc. More recently, deep connections
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between wavelet frame based methods and PDE approach were established (Cai et al., 2012; 2016;
Dong et al., 2017).

One of the greatest challenge for image restoration is to properly handle image degradations of
different levels. In the existing transformation based or PDE based methods, there is always at least
one tuning parameter (e.g. the regularization parameter for variational models and terminal time for
nonlinear diffusions) that needs to be manually selected. The choice of the parameter heavily relies
on the degradation level.

Recent years, deep learning models for image restoration tasks have significantly advanced the
state-of-the-art of the field. Jain & Seung (2009) proposed a convolutional neural network (CNN)
for image denoising which has better expressive power than the MRF models by Lan et al. (2006).
Inspired by nonlinear diffusions, Chen & Pock (2017) designed a deep neural network for image
denoising and Zhang et al. (2017a) improves the capacity by introducing a deeper neural network
with residual connections. Chen et al. (2017) use the CNN to simulate a wide variety of image
processing operators, achieving high efficiencies with little accuracy drop. However, these models
cannot gracefully handle images with varied degradation levels. Although one may train different
models for images with different levels, this may limit the application of these models in practice due
to lack of flexibility.

Taking blind image denoising for example. Zhang et al. (2017a) designed a 20-layer neural network for
the task, called DnCNN-B, which had a huge number of parameters. To reduce number of parameters,
Lefkimmiatis (2017) proposed the UNLNet5, by unrolling a projection gradient algorithm for a
constrained optimization model. However, Lefkimmiatis (2017) also observed a drop in PSNR
comparing to DnCNN. Therefore, the design of a light-weighted and yet effective model for blind
image denoising remains a challenge. Moreover, deep learning based models trained on simulated
gaussian noise images usually fail to handle real world noise, as will be illustrated in later sections.

Another example is JPEG image deblocking. JPEG is the most commonly used lossy image com-
pression method. However, this method tend to introduce undesired artifacts as the compression rate
increases. JPEG image deblocking aims to eliminate the artifacts and improve the image quality.
Recently, deep learning based methods were proposed for JPEG deblocking (Dong et al., 2015; Zhang
et al., 2017a; 2018). However, most of their models are trained and evaluated on a given quality
factor. Thus it would be hard for these methods to apply to Internet images, where the quality factors
are usually unknown.

In this paper, we propose a single image restoration model that can robustly restore images with
varied degradation levels even when the degradation level is well outside of that of the training set.
Our proposed model for image restoration is inspired by the recent development on the relation
between deep learning and optimal control. The relation between supervised deep learning methods
and optimal control has been discovered and exploited by Weinan (2017); Lu et al. (2018); Chang
et al. (2017); Fang et al. (2017). The key idea is to consider the residual block xn+1 = xn + f(xn)

as an approximation to the continuous dynamics Ẋ = f(X). In particular, Lu et al. (2018); Fang
et al. (2017) demonstrated that the training process of a class of deep models (e.g. ResNet by He et al.
(2016), PolyNet by Zhang et al. (2017b), etc.) can be understood as solving the following control
problem:

min
w

(
L(X(T ), y) +

∫ τ

0

R(w(t), t)dt

)
s.t. Ẋ = f(X(t), w(t)), t ∈ (0, τ) (1)

X(0) = x0.

Here x0 is the input, y is the regression target or label, Ẋ = f(X,w) is the deep neural network with
parameter w(t), R is the regularization term and L can be any loss function to measure the difference
between the reconstructed images and the ground truths.

In the context of image restoration, the control dynamic Ẋ = f(X(t), ω(t)), t ∈ (0, τ) can be, for
example, a diffusion process learned using a deep neural network. The terminal time τ of the diffusion
corresponds to the depth of the neural network. Previous works simply fixed the depth of the network,
i.e. the terminal time, as a fixed hyper-parameter. However Mrázek & Navara (2003) showed that
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the optimal terminal time of diffusion differs from image to image. Furthermore, when an image
is corrupted by higher noise levels, the optimal terminal time for a typical noise removal diffusion
should be greater than when a less noisy image is being processed. This is the main reason why
current deep models are not robust enough to handle images with varied noise levels. In this paper,
we no longer treat the terminal time as a hyper-parameter. Instead, we design a new architecture (see
Fig. 3) that contains both a deep diffusion-like network and another network that determines the
optimal terminal time for each input image. We propose a novel moving endpoint control model to
train the aforementioned architecture. We call the proposed architecture the dynamically unfolding
recurrent restorer (DURR).

We first cast the model in the continuum setting. Let x0 be an observed degraded image and y be
its corresponding damage-free counterpart. We want to learn a time-independent dynamic system
Ẋ = f(X(t), w) with parameters w so that X(0) = x and X(τ) ≈ y for some τ > 0. See Fig. 2
for an illustration of our idea. The reason that we do not require X(τ) = y is to avoid over-fitting.
For varied degradation levels and different images, the optimal terminal time τ of the dynamics may
vary. Therefore, we need to include the variable τ in the learning process as well. The learning of the
dynamic system and the terminal time can be gracefully casted as the following moving endpoint
control problem:

min
w,τ(x)

L(X(τ), y) +

∫ τ(x)

0

R(w(t), t)dt

s.t. Ẋ = f(X(t), w(t)), t ∈ (0, τ(x)) (2)
X(0) = x.

Different from the previous control problem, in our model the terminal time τ is also a parameter
to be optimized and it depends on the data x. The dynamic system Ẋ = f(X(t), w) is modeled
by a recurrent neural network (RNN) with a residual connection, which can be understood as a
residual network with shared weights (Liao & Poggio, 2016). We shall refer to this RNN as the
restoration unit. In order to learn the terminal time of the dynamics, we adopt a policy network to
adaptively determine an optimal stopping time. Our learning framework is demonstrated in Fig. 3.
We note that the above moving endpoint control problem can be regarded as the penalized version of
the well-known fixed endpoint control problem in optimal control (Evans, 2005), where instead of
penalizing the difference between X(τ) and y, the constraint X(τ) = y is strictly enforced.

In short, we summarize our contribution as following:

• We are the first to use convolutional RNN for image restoration with unknown degradation
levels, where the unfolding time of the RNN is determined dynamically at run-time by a
policy unit (could be either handcrafted or RL-based).
• The proposed model achieves state-of-the-art performances with significantly less parameters

and better running efficiencies than some of the state-of-the-art models.
• We reveal the relationship between the generalization power and unfolding time of the RNN

by extensive experiments. The proposed model, DURR, has strong generalization to images
with varied degradation levels and even to the degradation level that is unseen by the model
during training (Fig. 1).
• The DURR is able to well handle real image denoising without further modification. Quali-

tative results have shown that our processed images have better visual quality, especially
sharper details compared to others.

2 METHOD

The proposed architecture, i.e. DURR, contains an RNN (called the restoration unit) imitating a
nonlinear diffusion for image restoration, and a deep policy network (policy unit) to determine the
terminal time of the RNN. In this section, we discuss the training of the two components based on
our moving endpoint control formulation. As will be elaborated, we first train the restoration unit to
determine ω, and then train the policy unit to estimate τ(x).
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Ground Truth Noisy Input, 10.72dB DnCNN, 14.72dB DURR, 21.00dB

Ground Truth Noisy Input, 10.48dB DnCNN, 14.46dB DURR, 24.94dB

Figure 1: Denoising results of images from BSD68 under extreme noise conditions not seen in
training data (σ = 95).
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Figure 2: The proposed moving endpoint control model: evolving a learned reconstruction dynamics
and ending at high-quality images.

2.1 TRAINING THE RESTORATION UNIT

If the terminal time τ for every input xi is given (i.e. given a certain policy), the restoration unit
can be optimized accordingly. We would like to show in this section that the policy used during
training greatly influences the performance and the generalization ability of the restoration unit. More
specifically, a restoration unit can be better trained by a good policy.

The simplest policy is to fix the loop time τ as a constant for every input. We name such policy as
“naive policy”. A more reasonable policy is to manually assign an unfolding time for each degradation
level during training. We shall call this policy the “refined policy”. Since we have not trained the
policy unit yet, to evaluate the performance of the trained restoration units, we manually pick the
output image with the highest PSNR (i.e. the peak PSNR).

We take denoising as an example here. The peak PSNRs of the restoration unit trained with different
policies are listed in Table. 1. Fig. 4 illustrates the average loop times when the peak PSNRs appear.
The training is done on both single noise level (σ = 40) and multiple noise levels (σ = 35, 45). For
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Figure 3: Pipeline of the dynamically unfolding recurrent restorer (DURR).

the refined policy, the noise levels and the associated loop times are (35, 6), (45, 9). For the naive
policy, we always fix the loop times to 8.

Table 1: Average peak PSNR on BSD68 with different training strategies.

Strategy Noise Level

Training Noise Policy 25 30 35 40 45 50 55

40 Naive 28.61 28.13 27.62 27.19 26.57 26.17 24.00
35, 45 Naive 27.74 27.17 26.66 26.24 26.75 25.61 24.75
35, 45 Refined 29.14 28.33 27.67 27.19 27.69 26.61 25.88

As we can see, the refined policy brings the best performance on all the noise levels including 40.
The restoration unit trained for specific noise level (i.e. σ = 40) is only comparable to the one with
refined policy on noise level 40. The restoration unit trained on multiple noise levels with naive
policy has the worst performance.

Figure 4: Average peak time on BSD68 with different
training strategies.

These results indicate that the restora-
tion unit has the potential to general-
ize on unseen degradation levels when
trained with good policies. According
to Fig. 4, the generalization reflects
on the loop times of the restoration
unit. It can be observed that the model
with steeper slopes have stronger ability
to generalize as well as better perfor-
mances.

According to these results, the restora-
tion unit we used in DURR is trained
using the refined policy. More specif-
ically, for image denoising, the noise
level and the associated loop times are
set to (25, 4), (35, 6), (45, 9), and (55,
12). For JPEG image deblocking, the
quality factor (QF) and the associated
loop times are set to (20, 6) and (30, 4).

2.2 TRAINING THE POLICY UNIT

We discuss two approaches that can be used as policy unit:

Handcraft policy: Previous work (Mrázek & Navara, 2003) has proposed a handcraft policy that
selects a terminal time which optimizes the correlation of the signal and noise in the filtered image.
This criterion can be used directly as our policy unit, but the independency of signal and noise may
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not hold for some restoration tasks such as real image denoising, which has higher noise level in the
low-light regions, and JPEG image deblocking, in which artifacts are highly related to the original
image. Another potential stopping criterion of the diffusion is no-reference image quality assessment
(Mittal et al., 2012), which can provide quality assessment to a processed image without the ground
truth image. However, to the best of our knowledge, the performances of these assessments are still
far from satisfactory. Because of the limitations of the handcraft policies, we will not include them in
our experiments.

Reinforcement learning based policy: We start with a discretization of the moving endpoint
problem (1) on the dataset {(xi, yi)|i = 1, 2, · · · , d}, where {xi} are degraded observations of the
damage-free images {yi}. The discrete moving endpoint control problem is given as follows:

min
w,{Ni}di=1

r(w) +

d∑
i=1

L(Xi
Ni , yi)

s.t. Xi
n = Xi

n−1 + ∆tf(Xi
n−1, w), n = 1, 2, · · · , Ni, (i = 1, 2, · · · , d) (3)

Xi
0 = xi, i = 1, 2, · · · , d.

Here, Xi
n = Xi

n−1 + ∆tf(Xi
n−1, w) is the forward Euler approximation of the dynamics Ẋ =

f(X(t), w). The terminal time {Ni} is determined by a policy network P (x, θ), where x is the
output of the restoration unit at each iteration and θ the set of weights. In our experiment, we simply
set r = 0, i.e. doesn’t introduce any regularization which might bring further benefit but is beyond
this paper’s scope of discussion. In other words, the role of the policy network is to stop the iteration
of the restoration unit when an ideal image restoration result is achieved. The reward function of the
policy unit can be naturally defined by

r({Xi
n}) =

{
λ (L(xn−1, yi)− L(xn, yi)) If choose to continue
0 Otherwise (4)

In order to solve the problem (2.2), we need to optimize two networks simultaneously, i.e. the
restoration unit and the policy unit. The first is an restoration unit which approximates the controlled
dynamics and the other is the policy unit to give the optimized terminating conditions. The objective
function we use to optimize the policy network can be written as

J = EX∼πθ
Ni∑
n

[r({Xi
n, w})], (5)

where πθ denotes the distribution of the trajectories X = {Xi
n, n = 1, . . . , Ni, i = 1, . . . , d} under

the policy network P (·, θ). Thus, reinforcement learning techniques can be used here to learn a neural
network to work as a policy unit. We utilize Deep Q-learning (Mnih et al., 2015) as our learning
strategy and denote this approach simply as DURR. However, different learning strategies can be
used (e.g. the Policy Gradient).

3 EXPERIMENTS

3.1 EXPERIMENT SETTINGS

In all denoising experiments, we follow the same settings as in Chen & Pock (2017); Zhang et al.
(2017a); Lefkimmiatis (2017). All models are evaluated using the mean PSNR as the quantitative
metric on the BSD68 (Martin et al., 2001). The training set and test set of BSD500 (400 images)
are used for training. Six gaussian noise levels are evaluated, namely σ = 25, 35, 45, 55, 65 and 75.
Additive noise are applied to the image on the fly during training and testing. Both the training and
evaluation process are done on gray-scale images.

The restoration unit is a simple U-Net (Ronneberger et al., 2015) style fully convolutional neural
network. For the training process of the restoration unit, the noise levels of 25, 35, 45 and 55 are
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used. Images are cut into 64× 64 patches, and the batch-size is set to 24. The Adam optimizer with
the learning rate 1e-3 is adopted and the learning rate is scaled down by a factor of 10 on training
plateaux.

The policy unit is composed of two ResUnit and an LSTM cell. For the policy unit training, we
utilize the reward function in Eq.4. For training the policy unit, an RMSprop optimizer with learning
rate 1e-4 is adopted. We’ve also tested other network structures, these tests and the detailed network
structures of our model are demonstrated in the supplementary materials.

In all JPEG deblocking experiments, we follow the settings as in Zhang et al. (2017a; 2018). All
models are evaluated using the mean PSNR as the quantitative metric on the LIVE1 dataset (Sheikh,
2005). Both the training and evaluation processes are done on the Y channel (the luminance channel)
of the YCbCr color space. The PIL module of python is applied to generate JPEG-compressed images.
The module produces numerically identical images as the commonly used MATLAB JPEG encoder
after setting the quantization tables manually. The images with quality factors 20 and 30 are used
during training. De-blocking performances are evaluated on four quality factors, namely QF = 10, 20,
30, and 40. All other parameter settings are the same as in the denoising experiments.

3.2 IMAGE DENOISING

We select DnCNN-B(Zhang et al., 2017a) and UNLNet5 (Lefkimmiatis, 2017) for comparisons since
these models are designed for blind image denoising. Moreover, we also compare our model with
non-learning-based algorithms BM3D (Dabov et al., 2007) and WNNM (Gu et al., 2014). The noise
levels are assumed known for BM3D and WNNM due to their requirements. Comparison results are
shown in Table 2.

Despite the fact that the parameters of our model (1.8× 105 for the restoration unit and 1.0× 105

for the policy unit) is less than the DnCNN (approximately 7.0 × 105), one can see that DURR
outperforms DnCNN on most of the noise-levels. More interestingly, DURR does not degrade too
much when the the noise level goes beyond the level we used during training. The noise level
σ = 65, 75 is not included in the training set of both DnCNN and DURR. DnCNN reports notable
drops of PSNR when evaluated on the images with such noise levels, while DURR only reports small
drops of PSNR (see the last row of Table 2 and Fig. 6). Note that the reason we do not provide
the results of UNLNet5 in Table 2 is because the authors of Lefkimmiatis (2017) has not released
their codes yet, and they only reported the noise levels from 15 to 55 in their paper. We also want
to emphasize that they trained two networks, one for the low noise level (5 ≤ σ ≤ 29) and one for
higher noise level (30 ≤ σ ≤ 55). The reason is that due to the use of the constraint ||y− x||2 ≤ ε by
Lefkimmiatis (2017), we should not expect the model generalizes well to the noise levels surpasses
the noise level of the training set.

For qualitative comparisons, some restored images of different models on the BSD68 dataset are
presented in Fig. 5 and Fig. 6. As can be seen, more details are preserved in DURR than other
models. It is worth noting that the noise level of the input image in Fig. 6 is 65, which is unseen by
both DnCNN and DURR during training. Nonetheless, DURR achieves a significant gain of nearly 1
dB than DnCNN. Moreover, the texture on the cameo is very well restored by DURR. These results
clearly indicate the strong generalization ability of our model.

More interestingly, due to the generalization ability in denoising, DURR is able to handle the problem
of real image denoising without additional training. For testing, we test the images obtained from
Lebrun et al. (2015). We present the representative results in Fig. 7 and more results are listed in the
supplementary materials.

We also train our model for blind color image denoising, please refer to the supplementary materials
for more details.

3.3 JPEG IMAGE DEBLOCKING

For deep learning based models, we select DnCNN-3 (Zhang et al., 2017a) for comparisons since it
is the only known deep model for multiple QFs deblocking. As the AR-CNN (Dong et al., 2015) is
a commonly used baseline, we re-train the AR-CNN on a training set with mixed QFs and denote
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Table 2: Average PSNR (dB) results for gray image denoising on the BSD68 dataset. Values with ∗
means the corresponding noise level is not present in the training data of the model. The best results
are indicated in red.

BM3D WNNM DnCNN-B UNLNet5 DURR

σ = 25 28.55 28.73 29.16 28.96 29.16
σ = 35 27.07 27.28 27.66 27.50 27.72
σ = 45 25.99 26.26 26.62 26.48 26.71
σ = 55 25.26 25.49 25.80 25.64 25.91
σ = 65 24.69 24.51 23.40∗ - 25.26∗
σ = 75 22.63 22.71 18.73∗ - 24.71∗

Ground Truth Noisy Input, 17.84dB (a) BM3D, 26.23dB

(b) WNNM, 26.35dB (c) DnCNN, 27.31dB (d) DURR, 27.42dB

Figure 5: Denoising results of an image from BSD68 with noise level 35.

Ground Truth Noisy Input, 13.22dB (a) BM3D, 21.35dB

(b) WNNM, 21.02dB (c) DnCNN, 21.86dB (d) DURR, 22.84dB

Figure 6: Denoising results of an image from BSD68 with noise level 65 (unseen by both DnCNN
and DURR in their training sets).

this model as AR-CNN-B. Original AR-CNN as well as a non-learning-based method SA-DCT (Foi
et al., 2007) are also tested. The quality factors are assumed known for these models.
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Quantitative results are shown in Table 3. Though the number of parameters of DURR is significantly
less than the DnCNN-3, the proposed DURR outperforms DnCNN-3 in most cases. Specifically,
considerable gains can be observed for our model on seen QFs, and the performances are comparable
on unseen QFs. A representative result on the LIVE1 dataset is presented in Fig. 8. Our model
generates the most clean and accurate details. More experiment details are given in the supplementary
materials.

Table 3: The average PSNR(dB) on the LIVE1 dataset. Values with ∗ means the corresponding QF is
not present in the training data of the model. The best results are indicated in red and the second best
results are indicated in blue.

QF JPEG SA-DCT AR-CNN AR-CNN-B DnCNN-3 DURR

10 27.77 28.65 28.98 28.53 29.40 29.23∗
20 30.07 30.81 31.29 30.88 31.59 31.68
30 31.41 32.08 32.69 32.31 32.98 33.05
40 32.45 32.99 33.63 33.39 33.96 34.01∗

Noisy Image BM3D DnCNN UNet5 DURR

Figure 7: Denoising results on a real image from Lebrun et al. (2015).

3.4 OTHER APPLICATIONS

Our model can be easily extended to other applications such as deraining, dehazing and deblurring.
In all these applications, there are images corrupted at different levels. Rainfall intensity, haze density
and different blur kernels will all effect the image quality.

4 CONCLUSIONS

In this paper, we proposed a novel image restoration model based on the moving endpoint control
in order to handle varied noise levels using a single model. The problem was solved by jointly
optimizing two units: restoration unit and policy unit. The restoration unit used an RNN to realize the
dynamics in the control problem. A policy unit was proposed for the policy unit to determine the loop
times of the restoration unit for optimal results. Our model achieved the state-of-the-art results in
blind image denoising and JPEG deblocking. Moreover, thanks to the flexibility of the given policy,
DURR has shown strong abilities of generalization in our experiments.

Ground Truth JPEG (a) AR-CNN (b) DnCNN (c) DURR

Figure 8: JPEG deblocking results of an image from the LIVE1 dataset, compressed using QF 10.
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