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Abstract. Training deep neural networks with stochastic gradient descent (SGD) can often achieve zero training
loss on real-world tasks although the optimization landscape is known to be highly non-convex. To
understand the success of SGD for training deep neural networks, this work presents a mean-field
analysis of deep residual networks, based on a line of works that interpret the continuum limit of
the deep residual network as an ordinary differential equation when the network capacity tends to
infinity. Specifically, we propose a new continuum limit of deep residual networks, which enjoys a
good landscape in the sense that every local minimizer is global. This characterization enables
us to derive the first global convergence result for multilayer neural networks in the mean-field
regime. Furthermore, without assuming the convexity of the loss landscape, our proof relies on a
zero-loss assumption at the global minimizer that can be achieved when the model shares a universal
approximation property. Key to our result is the observation that a deep residual network resembles
a shallow network ensemble [59], i.e. a two-layer network. We bound the difference between the
shallow network and our ResNet model via the adjoint sensitivity method, which enables us to
apply existing mean-field analyses of two-layer networks to deep networks. Furthermore, we propose
several novel training schemes based on the new continuous model, including one training procedure
that switches the order of the residual blocks and results in strong empirical performance on the
benchmark datasets.
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1. Introduction. Neural networks have become state-of-the-art models in numerous ma-
chine learning tasks and strong empirical performance is often achieved by deeper networks.
One landmark example is the residual network (ResNet) [29,30], which can be efficiently opti-
mized even at extremely large depth such as 1000 layers. However, there exists a gap between
this empirical success and the theoretical understanding: ResNets can be trained to almost
zero loss with standard stochastic gradient descent, yet it is known that larger depth leads to
increasingly non-convex landscape even the the presence of residual connections [64]. While
global convergence can be obtained in the so-called “lazy” regime e.g. [20, 31], such kernel
models cannot capture fully-trained neural networks [18,25,57].

In this work, we aim to demonstrate the provable optimization of ResNet beyond the restrictive
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Figure 1: Illustration that ResNet behaves like shallow network ensemble, i.e. a two-layer overparameterized neural
network. The high-level intuition is to show that the gradient of the two models are at the same scale when the loss are
comparable.

“lazy” regime. To do so, we build upon recent works that connect ordinary differential equation
(ODE) models to infinite-depth neural networks [15,21,22,26,42,43,55,56,58,67]. Specifically,
each residual block of a ResNet can be written as xn+1 = xn + ∆tf(xn, θn), which can be
seen as the Euler discretization of the ODE ẋt = f(x, t). This turns training the neural
network into solving an optimal control problem [23,34,39], under which backpropagation can
be understood as simulating the adjoint equation [15, 34–36, 65]. However, this analogy does
not directly provide guarantees of global convergence even in the continuum limit.

To address the problem of global convergence, we propose a new limiting ODE model of
ResNets. Formally, we model deep ResNets via a mean-field ODE model

Ẋρ(x, t) =

∫
θ
f(Xρ(x, t), θ)ρ(θ, t)dθ

This model considers every residual block f(·, θi) as a particle and optimizes over the empirical
distribution of particles ρ(θ, t), where θ denotes the weight of the residual block and t denotes
the layer index of the residual block. We consider properties of the loss landscape with
respect to the distribution of weights, an approach similar to [9, 12]. Inspired by [59] that a
deep ResNet behaves like an ensemble of shallow models, we compare a deep ResNet with
its counterpart two-layer network and show that the gradients of the two models are close to
each other. This leads us to conclude that, although the loss landscape may not be convex,
every local minimizer is a global one.

1.1. Contribution. Our contributions can be summarized as follows:

• We derive a new continuous depth limit of deep ResNets. In this new model, each
residual block is regarded as a particle and the training dynamics is captured by the
gradient flow on the distribution of the particles ρ.

• We analyze the loss landscape with respect to ρ and show that all local minima have
zero loss, which indicates that every local optima is global. This property leads to the
conclusion that a full support stationary point of the Wasserstein gradient flow is a
global optimum. To the best of our knowledge, this is the first global convergence
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result for multi-layer neural networks in the mean-field regime without the
convexity assumption on the loss landscape.

• We propose novel numerical schemes to approximate the mean-field limit of the deep
ResNets and demonstrate that they achieves superior empirical results on real-world
datasets.

1.2. Related Work.

Mean-Field Limit and Global Convergence.. Recent works have explored the global con-
vergence of two-layer neural networks by studying suitable scaling limits of the stochastic
gradient descent of two-layer neural network when the width is sent to infinity and the second
layer scaled by one over the width of the neural network [17, 44, 47, 52, 54]. Though global
convergence can be obtained under certain conditions for two-layer networks, it is highly non-
trivial to extend this framework to multi-layer neural networks: recent attempts [4,24,46,54]
do not address realistic neural architectures directly or provide conditions for global conver-
gence. Parallel to the mean-field regime, [2, 20, 31, 50, 68] provided global convergence results
for multi-layer networks in the so-called ”lazy” or kernel regime. However, this description of
deep neural networks is rather limited: the scaling of initialization forces the distance trav-
eled by each parameter to vanish asymptotically [18], and thus training becomes equivalent
to kernel regression with respect to neural tangent kernel [5, 31]. On the other hand, it is
well-known that properly trained neural networks can outperform kernel models in learning
various target functions [1, 7, 25, 57, 60]. In contrast, the mean-field regime considered in this
work does not reduce training into kernel regression; in other words, the mean-field setting
allows neurons to travel further and learn adaptive features.

Landscape of ResNets.. [37,41] provided convergence results of gradient descent on two-layer
residual neural networks and showed that the global minimum is unique. In parallel, [33, 53]
showed that when the network consists of one residual block the gradient descent solution
is provably better than a linear classifier. However, recent work also pointed out that these
positive results may not hold true for deep ResNets composed of multiple residual blocks.
Regarding deeper models, [11,27,61] proved the global convergence of the gradient descent for
training deep linear ResNets. Yet it is known that even mild nonlinear activation functions
can destroy these good landscape properties [63]. In addition, [10] considered a ResNet model
with compositions of close-to-identity functions, and provided convergence result regarding
the Fréchet gradient. However, [10] also pointed out that such conclusion may no longer hold
for a realistic ResNet model. Our paper fills this gap by introducing a new continuous model
and providing conditions for the global convergence beyond the previously considered kernel
regime [2, 20,66,66].

1.3. Notations and Preliminaries.

Notations.. Let δ(·) denote the Dirac mass and 1Ω be the indicator function on Ω. We
denote by P2 the set of probability measures endowed with the Wasserstein-2 distance (see
below for definition). Let µ be the population distribution of the input data and the induced
norm by ‖f‖µ =

√
Ex∼µ[f(x)>f(x)].
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Fréchet Derivative.. We extend the notion of the gradient to infinite dimensional space.
For a functional f : X → R defined on a Banach space X, the Fréchet derivative is an element
in the dual space df ∈ X∗ that satisfies

lim
δ∈X,δ→0

f(x+ δ)− f(x)− df(δ)

‖δ‖
= 0, for all x ∈ X.

In this paper, δf
δX is used to denote the Fréchet derivative.

Wasserstein Space.. The Wasserstein-2 distance between two probability measures µ, ν ∈
P(Rd) is defined as

W2(µ, ν) :=

(
inf

γ∈T (µ,ν)

∫
|y − x|2dγ(x, y)

)1/2

.

Here T (µ, ν) denotes the set of all couplings between µ and ν, i.e., all probability measures
γ ∈ P(Rd × Rd) with marginals µ on the first factor and ν on the second.

Bounded Lipschitz norm.. We say that a sequence of measures µn ∈ M(Rd) weakly (or
narrowly) converges to µ if, for all continuous and bounded function ϕ : Rd → R it holds∫
ϕdµn →

∫
ϕdµ. For sequences which are bounded in total variation norm, this is equivalent

to the convergence in Bounded Lipschitz norm. The latter is defined, for µ ∈M(Rd), as

(1.1) ‖µ‖BL := sup

{∫
ϕdµ ; ϕ : Rd → R, Lip(ϕ) ≤ 1, ‖ϕ‖∞ ≤ 1

}
where Lip(ϕ) is the smallest Lipschitz constant of ϕ and ‖ · ‖∞ the supremum norm.

2. Limiting Model. Following the observation that each residual block of a ResNet un+1 =
un + ∆tf(un, θn) can be considered as one step of the forward Euler approximation of the
ODE ut = f(u, t) [22, 26, 43, 55], a series of recent papers [15, 34, 36, 36, 65, 67] analyzed the
deep neural networks in the continuous limit. [58] proved the Gamma-convergence of ResNets
in the asymptotic limit. However, there are two points of that approach that require further
investigation. First, [58] introduced a regularization term n

∑n
i=1 ‖θi − θi−1‖2, where n is the

depth of the network. This regularization becomes stronger as the network gets deeper, which
implies a more constrained space of functions that the network can represent.

Second, while the Gamma-convergence result is concerned with the convergence of the global
minima of a sequence of energy functionals, it gives rather little information about the land-
scape of the limiting functional, which can be quite complicated for non-convex objective func-
tions. Later work [6] proved that stochastic gradient descent of a deep ResNet with constant
weight across layers converges to the gradient flow of loss using the ODE model. However,
letting the weights of the ResNet be the same across all layers weakens the approximation
power and makes optimization landscape more complicated. To address the reason behind the
global convergence of the gradient flow, in this section, we propose a new continuous limiting
model of the deep residual network.
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2.1. A New Continuous Model. The goal is to minimize the l2 loss function

(2.1) E(ρ) = Ex∼µ
[1

2
(〈w1, Xρ(x, 1)〉 − y(x))2

]
.

over parameter distributions ρ(θ, t) for θ in a compact set Ω and t ∈ [0, 1]. Here Xρ(x, t) is
the solution of the ODE

(2.2) Ẋρ(x, t) =

∫
θ
f(Xρ(x, t), θ)ρ(θ, t)dθ,Xρ(x, 0) = 〈w2, x〉

The ODE (2.2) is understood in the integrated sense, i.e., for fixed distribution ρ(·, ·) and
input x ∈ Rd1 , the solution path Xρ(x, t), t ∈ [0, 1] satisfies

Xρ(x, t) = Xρ(x, 0) +

∫ t

0

∫
Ω
f(Xρ(x, s), θ)ρ(θ, s)dθds.

Here y(x) = E[y|x] ∈ R is the function to be estimated. The parameter w2 ∈ Rd1×d2 repre-
sents the first convolution layer in the ResNet [29, 30], which extracts feature before sending
them to the residual blocks. To simplify the analysis, we let w2 to a predefined linear trans-
formation (i.e. not training the first layer parameters w2) with the technical assumption that
min{σ(w2)} ≥ σ1 and max{σ(w2)} ≤ σ2, where σ(w2) denotes the set of singular values. We
remark that this assumption is not unrealistic, for example [49] let w2 be a predefined wavelet
transform and still achieved the state-of-the-art result on several benchmark datasets. Here
f(·, θ) is the residual block with parameter θ that aims to learn a feature transformation from
Rd2 to Rd2 . For simplicity, we assume that the residual block is a two layer neural network,
thus f(x, θ) = σ(θx), θ ∈ Ω ⊂ Rd2×d2 and σ : R→ R is an activation function, such as sigmoid
and relu. Note that in our notation σ(θx) the activation function σ is applied separately to
each component of the vector.

Finally, w1 ∈ Rd2×1 is a pooling operator that transfers the final feature Xρ(x, 1) to the
classification result and an l2 loss function is used for example. We also assume that w1 is
a predefined linear transform with satisfies ‖w1‖2 = 1, which can be easily achieved via an
operator used in realistic architecture such as the global average pooling [38]. Before starting
the analysis, we first list the necessary regularity assumptions.

Assumption 2.1. 1. (Boundedness of data and target distribution) The input data x lies
µ-almost surely in a compact ball, i.e. ‖x‖ ≤ R1 for some constant R1 > 0. At the
same time the target function is also bounded ‖y(·)‖∞ ≤ R2 for some constant R2 > 0.

2. (Lipschitz continuity of distribution with respect to depth) There exists a constant Cρ
such that

‖ρ(·, t1)− ρ(·, t2)‖BL ≤ Cρ|t1 − t2|

for all t1, t2 ∈ [0, 1].

3. The kernel k(x1, x2) := g(x1, x2) = σ(x>1 x2) is a universal kernel [45], i.e. the span of
{k(x, ·) : x ∈ Rd2} is dense in L2.
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4. (Locally Lipschitz derivative with sub-linear growth [17]) There exists a family {Qr}r>0

of nested nonempty closed convex subsets of Ω that satisfies:

• {u ∈ Ω | dist(u,Qr) ≤ r′} ⊂ Qr+r′ for all r, r′ > 0.

• There exist constants C1, C2 > 0 such that

sup
θ∈Qr,x

‖∇xf(x, θ)‖ ≤ C1 + C2r

holds for all r > 0. Also the gradient of f(x, θ) with respect to x is a Lipschitz
function with Lipschitz constant Lr > 0.

• For each r, the gradient respect to the parameter θ is also bounded

sup
‖x‖≤R1,θ∈Qr

‖∇θf(x, θ)‖ ≤ C3,r

for some constant C3,r.

Remark 2.2. Let us elaborate on these assumptions in the neural network setting. For As-
sumption 1.4, k(x1, x2) := g(x1, x2) = σ(x>1 x2) is a universal kernel holds for the sigmoid and
ReLU activation function. The local regularity Assumption 1.5 concerning function f(x, θ)
can easily be satisfied, for ∇θσ(θ>x) = σ′(θ>x)x and ∇xσ(θ>x) = σ′(θ>x)θ. Hence, in order
to satisfy the local regularity condition, one possible solution is that we utlize a Lipschitz
gradient activation function and set the local set Qr to be a ball with radius r centered at
origin.

Under these assumptions, we can establish the existence, uniqueness, stability, and well-
posedness of our forward model.

Theorem 2.3 (Well-posedness of the Forward Model). Under Assumption 1 and we further
assume that there exists a constant r > 0 such that µ is concentrated on one of the nested
sets Qr. Then, the ODE in (2.2) has a unique solution in t ∈ [0, 1] for any initial condition
x ∈ Rd1. Moreover, for any pair of distributions ρ1 and ρ2, there exists a constant C such
that

(2.3) ‖Xρ1(x, 1)−Xρ2(x, 1)‖ < CW2(ρ1, ρ2),

where W2(ρ1, ρ2) is the 2-Wasserstein distance between ρ1 and ρ2.

Proof. We first show the existence and uniqueness of Xρ(x, t). From now on, let

(2.4) Fρ(X, t) =

∫
θ
f(X, t)ρ(θ, t)dθ.

Then, the ODE (2.2) becomes

(2.5) Ẋρ(x, t) = Fρ(Xρ(x, t), t),
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and by the condition of the theorem and assumption 2.1 we have

(2.6) ‖Fρ(X, t)‖ ≤ Crf
∣∣∣∣∫
θ
ρ(θ, t)dθ

∣∣∣∣ < CrfCρ.

This is because, for the continuous function f(x, θ) is now defined on the domain for which
θ lies in a compact set Qr and ‖x‖ < R1, which leads to an upper bound Crf such that
sup‖x‖<R f(x, θ) < Crf holds for all θ ∈ Qr. The notation Crf will continuously used in the
following section.

Hence, Fρ(Xρ, t) is bounded. On the other hand, Fρ(X, t) is integrable with respect to t
and Lipschitz continuous with respect to X in any bounded region (by 2 of assumption 2.1).
Therefore, consider the region [X0 − CrfCρ, X0 + CrfCρ] × [0, 1], where X0 = Xρ(x, 0). By
the existence and uniqueness theorem of ODE (the Picard–Lindelöf theorem), the solution
of (2.5) initialized from X0 exists and is unique on [0, 1].

Next, we show the continuity of Xρ(x, t) with respect to ρ. Letting ∆(x, t) = ‖Xρ1(x, t) −
Xρ2(x, t)‖, we have

∆(x, t) =

∥∥∥∥∫ t

0
Ẋρ1(x, s)− Ẋρ2(x, s)ds

∥∥∥∥
=

∥∥∥∥∫ t

0
Fρ1(Xρ1 , s)− Fρ1(Xρ2 , s)ds+

∫ t

0
Fρ1(Xρ2 , s)− Fρ2(Xρ2 , s)ds

∥∥∥∥
≤
∫ t

0
‖Fρ1(Xρ1 , s)− Fρ1(Xρ2 , s)‖ds+

∥∥∥∥∫ t

0
Fρ1(Xρ2 , s)− Fρ2(Xρ2 , s)ds

∥∥∥∥ .(2.7)

Let Cm = max{Cρ1 , Cρ2}. For the first term in (2.7), since both Xρ1 and Xρ2 are controlled
by X0 + CrfCm, by 2 of Assumption 2.1 we have the following Lipschitz condition for

(2.8) ‖Fρ1(Xρ1 , s)− Fρ1(Xρ2 , s)‖ ≤ (C1 + C2X0 + C2C
r
fCm)Cm∆(x, s).

For the second term of (2.7), we have∥∥∥∥∫ t

0
Fρ1(Xρ2 , s)− Fρ2(Xρ2 , s)ds

∥∥∥∥ =

∥∥∥∥∫ t

0

∫
θ
f(Xρ2 , θ)(ρ1(θ, s)− ρ2(θ, s))dθds

∥∥∥∥ .(2.9)

Since Xρ2 is CrfCm-Lipschitz continuous with respect to t and also bounded by X0 +CrfCm, we
have f(Xρ2 , θ) is (C1+C2X0+C2C

r
fCm)CrfCm-Lipschitz continuous w.r.t t. On the other hand,

still by Assumption 2.1, f(X, θ) is C3,r-Lipschitz with respect to θ. As a result, the function
f(Xρ2 , θ) is C-Lipschitz continuous on (t, θ) with C = (C1 + C2X0 + C2C

r
fCm)CrfCm + C3,r,

which implies

(2.10)

∥∥∥∥∫ t

0

∫
θ
f(Xρ2 , θ)(ρ1(θ, s)− ρ2(θ, s))dθds

∥∥∥∥ ≤ CW2(ρ1, ρ2).



8 YIPING LU, CHAO MA, YULONG LU, JIANFENG LU, LEXING YING

Finally, by defining

(2.11) Ĉ = max{(C1 + C2X0 + C2C
r
fCm)Cm, C},

we have by (2.7)

(2.12) ∆(x, t) ≤
∫ t

0
Ĉ∆(x, t) + ĈW2(ρ1, ρ2).

Applying the Gronwall’s inequality gives

(2.13) ∆(x, t) ≤ ĈeĈtW2(ρ1, ρ2),

and specifically for t = 1 we have

(2.14) ‖Xρ1(x, 1)−Xρ2(x, 1)‖ ≤ ĈeĈW2(ρ1, ρ2).

2.2. Deep Residual Network Behaves Like an Ensemble Of Shallow Models. In this
section, we briefly explain the intuition behind our analysis, i.e. deep residual network can
be approximated by a two-layer neural network. [59] introduced an unraveled view of the
ResNets and showed that deep ResNets behave like ensembles of shallow models. First, we
offer a formal derivation to reveal how to make connection between a deep ResNet and a
two-layer neural network. The first residual block is formulated as

X1 = X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0.

By Taylor expansion, the second layer output is given by

X2 = X1 +
1

L

∫
θ1
σ(θ1X1)ρ1(θ1)dθ1

= X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0

+

∫
θ1
σ(θ1(X0 +

1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0))ρ1(θ1)dθ1

= X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0

+X0 +
1

L

∫
θ1
σ(θ1X0)ρ1(θ1)dθ1

+
1

L2

∫
θ1

∇σ(θ1X0)θ1(

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0)ρ1(θ1)dθ1

+ h.o.t.
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Iterating this expansion gives rise to

XL ≈ X0 +
1

L

L−1∑
a=0

∫
σ(θX0)ρa(θ)dθ

+
1

L2

∑
b>a

∫ ∫
∇σ(θbX0)θbσ(θaX0)ρb(θb)ρa(θa)dθbθa

+ h.o.t.

Here we only keep the terms that are at most quadratic in ρ. A similar derivation shows
that at order k in ρ there are

(
L
k

)
terms with coefficient 1

Lk
each. This implies that the k-th

order term in ρ decays as O( 1
k!), suggesting that one can approximate a deep network by the

keeping a few leading orders.

3. Landscape Analysis of the Mean-Field Model. In the following, we show that the
landscape of a deep residual network enjoys the extraordinary property that any local optima
is global, by comparing the gradient of deep residual network with the mean-field model of
two-layer neural network [18,44,47]. To estimate the accuracy of the first order approximation
(i.e. linearization), we apply the adjoint sensitivity analysis [13] and show that the difference
between the gradient of two models can be bounded via the stability constant of the backward
adjoint equation. More precisely, the goal is to show the backward adjoint equation will only
affect the gradient in a bounded constant.

3.1. Gradient via the Adjoint Sensitivity Method.

Adjoint Equation.. To optimize the objective (2.1), we calculate the gradient δE
δρ via the

adjoint sensitivity method [13]. To derive the adjoint equation, we first view our generative
models where ρ is treated as a parameter as

(3.1) Ẋ(x, t) = F (X(x, t); ρ),

with

(3.2) F (X(x, t); ρ) =

∫
f(X(x, t); θ)ρ(θ, t) dθ.

The loss function can be written as

(3.3) Ex∼µE(x; ρ) := Ex∼µ
1

2

∣∣〈w1, Xρ(x, 1)〉 − y(x)
∣∣2

Define

(3.4) pρ(x, 1) :=
∂E(x; ρ)

∂Xρ(x, 1)
=
(
〈w1, Xρ(x, 1)〉 − y(x)

)
w1

The derivative of X(x, 1) with respect to X(x, s), denoted by the Jacobian Jρ(x, s), satisfies
at any previous time s ≤ 1 the adjoint equation of the ODE

(3.5) J̇ρ(x, s) = −Jρ(x, s)∇XF (Xρ(x, s); ρ).
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Next, the perturbation of E by ρ is given by chain rule as

(3.6)

δE

δρ(s)
=

∂E

∂Xρ(X, 1)

δXρ(x, 1)

δρ(s)

=
∂E

∂Xρ(X, 1)
Jρ(x, s)

δF (Xρ(x, s); ρ)

δρ(s)

= pρ(x, s) f(Xρ(x, has), ·),

where pρ(x, s) (the derivative of E(x; ρ) with respect to Xρ(x, s)) satisfies the adjoint equation

ṗρ(x, t) = −δXHρ(pρ, x, t)

= −pρ(x, t)
∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ,

which represents the gradient as a second backwards-in-time augmented ODE. Here the Hamil-
tonian is defined as Hρ(p, x, t) = p(x, t) ·

∫
f(x, θ)ρ(θ, t)dθ.

Utilizing the adjoint equation, we can characterize the gradient of our model with respect to
the distribution ρ. More precisely, we may characterize the variation of the loss function with
respect to the distribution as the following theorem.

Theorem 3.1 (Gradient of the parameter). For ρ ∈ P2 let

δE

δρ
(θ, t) = Ex∼µf(Xρ(x, t), θ))pρ(x, t).

Then for every ν ∈ P2, we have

E(ρ+ λ(ν − ρ)) = E(ρ) + λ

〈
δE

δρ
, (ν − ρ)

〉
+ o(λ)

for the convex combination (1− λ)ρ+ λν ∈ P2 with λ ∈ [0, 1].

Proof. To simplify the notation, we use ρ̂λ = ρ+λ(ρ−ν), From Theorem 1 (the well-poseness
of the model), we know that the function f(λ) = E(ρ̂λ)−E(ρ) is a continuous function with
f(0) = 0 and thus

E(ρ̂λ)− E(ρ) = Ex∼µ| 〈w1, Xρ̂λ(x, 1)〉 − y(x)|2 − Ex∼µ| 〈w1, Xρ(x, 1)〉 − y(x)|2

= Ex∼µ(〈w1, Xρ〉 − y(x))(Xρ̂λ(x, 1)−Xρ(x, 1)) +O(Xρ̂λ(x, 1)−Xρ(x, 1))

Now we bound Xρ̂λ(x, 1)−Xρ(x, 1). First, notice that the adjoint equation is a linear equation:

ṗρ(x, t) = −δXHρ(pρ, x, t) = −pρ(x, t)
∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

with solution

p(x, t) = p(x, 1) exp(

∫ 1

t

∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθdt).
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Next, we bound ∆(x, t) = ‖Xρ̂λ(x, t) − Xρ(x, t) − λ
∫
t

∫
θ(ρ(x, θ) − ν(x, θ))pρ(x, t)‖ in order

to show that ∆(x, t) = o(λ). The way to estimate the difference is to utilize the Duhamel’s
principle.

d

dt

[
e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds(Xρ̂λ(x, s)−Xρ(x, s))

]
= e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds

[
Ẋρ̂λ(x, s)− Ẋρ(x, s)−

∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ(Xρ̂λ(x, s)−Xρ(x, s))

]
At the same time we have

Ẋρ̂λ(x, s)− Ẋρ(x, s) = Fρ(Xρ̂λ , s)− Fρ(Xρ, s) + Fρ̂λ(Xρ̂λ , s)− Fρ(Xρ̂λ , s)

=

(∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

)
(Xρ̂λ(x, s)−Xρ(x, s)) + o(λ)

+ λ

∫
θ
f(Xρ̂λ(x, s), θ)(ρ− ν)(θ, s)dθ

=

(∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

)
(Xρ̂λ(x, s)−Xρ(x, s)) + o(λ)

+ λ

(∫
θ
∇Xf(Xρ(x, s), θ)(ρ− ν)(θ, s)dθ

)
(Xρ̂λ(x, s)−Xρ(x, s)) + o(λ)

+ λ

∫
θ
f(Xρ(x, s), θ)(ρ− ν)(θ, s)dθ

=

(∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

)
(Xρ̂λ(x, s)−Xρ(x, s))

+ λ

∫
θ
f(Xρ(x, s), θ)(ρ− ν)(θ, s)dθ + o(λ).

Here Fρ(X, t) =
∫
θ f(X, t)ρ(θ, t)dθ, and the last equality holds because ‖Xρ̂λ(x, s)−Xρ(x, s)‖ ≤

ĈeĈd(ρ1, ρ2) = O(λ). This leads us to

d

dt

[
e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds(Xρ̂λ(x, s)−Xρ(x, s))

]
= e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds

[
Ẋρ̂λ(x, s)− Ẋρ(x, s)

−
∫
θ
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ(Xρ̂λ(x, s)−Xρ(x, s))

]
= e−

∫ t
0

∫
∇Xf(Xρ(x,t),θ)ρ(θ,s)dθds

[
λ

∫
θ
f(Xρ(x, s), θ) + o(λ)

]
.

Thus

Xρ̂λ(x, 1)−Xρ(x, 1) =

∫ 1

0

∫
θ
e
∫ 1
t

∫
∇Xf(Xρ(x,s),θ)ρ(θ,s)dθdsf(Xρ(x, s), θ)(ρ− ν)(θ, t)dθdt+ o(λ).
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Combining with the definition of the adjoint equation p(x, t) = p(x, 1)e
∫ 1
t

∫
∇Xf(Xρ(x,t),θ)ρ(θ,t)dθdt

and pρ(x, 1) := ∂E(x;ρ)
∂Xρ(x,1) =

(
〈w1, Xρ(x, 1)〉 − y(x)

)
w1, we have

E(ρ+ λ(ρ− ν)) = E(ρ) + λ

〈
δE

δρ
, (ρ− ν)

〉
+ o(λ).

3.2. Landscape Analysis. In this section we aim to show that the proposed model enjoys
a good landscape in the L2 geometry. Specifically, we can always find a descent direction
around a point whose loss is strictly larger than 0, which means that all local minimum is a
global one.

Theorem 3.2. If E(ρ) > 0 for some probability distribution ρ ∈ P2 which concentrates on one
of the nested sets Qr, then there exists a descend direction v ∈ P2 s.t.〈

δE

δρ
, (ρ− v)

〉
> 0

Proof. First we lower bound the gradient respect to the feature map Xρ(·, t) by the loss
function to show that changing feature map can always leads to a lower loss. This is observed
by [10,11] where they mean by

Lemma 3.3. The norm of the solution to the adjoint equation can be bounded by the loss

‖pρ(·, t)‖2µ ≥ e−(C1+C2r)E(ρ), ∀ t ∈ [0, 1].

Proof. By definition,

‖pρ(·, 1)‖ = ‖
(
〈w1, Xρ(·, 1)〉 − y(·)

)
w1‖ = |〈w1, Xρ(·, 1)〉 − y(·)|,

which implies that ‖pρ(·, 1)‖2µ = 2E(ρ).

By assumption there exist a constant Cρ > 0 such that∣∣∣ ∫ ρ(θ, t)dθ −
∫
ρ(θ, s)dθ

∣∣∣ ≤ ‖ρ(·, t− s)− ρ(·, s)‖BL ≤ Cρ|t− s|, ∀t, s ∈ [0, 1].

Integrating the inequality above with respect to s over [0, 1], and using the fact that
∫
θ

∫
t ρ(θ, t) =

1, one obtains that
∫
ρ(θ, t)dθ ≤ 1 + Cρ

∫ 1
0 |t− s|ds ≤ 1 +

Cρ
2 .

Recall that pρ solves the adjoint equation

(3.7) ṗρ(x, t) = −pρ(x, t)
∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ

where by the assumption on f and the above bound on
∫
ρ(θ, t)dθ, we have for any x

‖
∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ‖ ≤ sup

x,θ
|∇Xf(Xρ(x, t), θ)|

∫
θ
ρ(θ, t)dθ ≤ (C1 + C2r).
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It then follows from the Gronwall’s inequality that

‖pρ(·, t)‖µ ≥ e−
∫ 1
0 supx ‖

∫
∇Xf(Xρ(x,t),θ)ρ(θ,t)dθ‖dt‖pρ(·, 1)‖µ ≥ e−(C1+C2r)E(ρ)1/2.

The claim of the Lemma then follows by squaring the inequality (and redefining constants C1

and C2).

Thanks to the existence and uniqueness of the solution of the ODE model as stated in Theorem
2.3, the solution map of the ODE is invertible so that there exists an inverse map X−1

ρ,t

such that we can construct an inversion function X−1
ρ,t (Xρ(x, t)) = x. With X−1

ρ,t , we define

p̂ρ(x, t) = pρ(X
−1
ρ,t (x), t).

Since ρ(θ, t) is a probability density, i.e.,
∫ ∫

ρ(θ, t)dθdt = 1, there exists t∗ ∈ (0, 1) such
that

∫
θ ρ(θ, t∗)dθ >

1
2 . Since k(x1, x2) = f(x1, x2) is a universal kernel [45], for any g(x)

satisfying that ‖g‖µ̂ <∞ for some probability measure µ̂ and for any fixed ε > 0, there exists
a probability distribution δν̂ ∈ P2(Rd2) such that

(3.8) ‖g(x)−
∫
θ
f(x, θ)δν̂(θ)dθ‖µ̂ ≤ ε,

In particular, in what follows we consider the function g(x) and the measure µ̂ given by

g(x) := −p̂(x, t∗) +
1∫

θ ρ(θ, t∗)dθ

∫
θ
f(x, θ)ρ(θ, t∗)dθ and µ̂ = µ̂ρ,t∗ := Xρ(·, t∗)#µ.

The value of ε will be chosen later in the proof. Moreover, we also define the perturbed
measure

(3.9) δν =

(
δµ̂(θ)− ρ(θ, t∗)∫

θ ρ(θ, t∗)dθ

)
φ(t),

where φ(t) is a smooth non-negative function integrates to 1 and compactly supported in the
interval (0, 1), so that it is clear that δν satisfies the regularity assumptions. We will consider
the perturbed probability density ν defined as

ν = ρ+ δrδν for some δr > 0.

Lemma 3.4. The constructed ν with ε sufficiently small gives a descent direction of our model
with the estimate

(3.10)

〈
δE

δρ
, (ν − ρ)

〉
≤ −δr

2
e−2(C1+C2r)E(ρ) < 0.

Proof. An application of the Gronwall inequality to (3.7) implies that

(3.11) pρ(x, t1)pρ(x, t2) ≥ e−|t1−t2|(C1+C2r)
(
pρ(x, t1)2 ∨ pρ(x, t2)2

)
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for all x ∈ Rd, 1 ≥ t2 ≥ t1 ≥ 0.

As a result of (3.9),〈
δE

δρ
, (ν − ρ)

〉
= Ex∼µ 〈f(Xρ(x, t), ·))pρ(x, ·), δrδν〉

= δr

∫
Ex∼µ̂ρ,t p̂ρ(x, t)

∫
θ
f(x, θ)δν(θ, t)dθφ(t)dt

= δr

∫
Ex∼µ̂ρ,t

[
p̂ρ(x, t)

∫
θ
f(x, θ)δν̂(θ)dθ

]
φ(t)dt

− δr
∫

Ex∼µ̂ρ,t
[
p̂ρ(x, t)

∫
f(x, θ)ρ(θ, t∗)dθ∫
θ ρ(θ, t∗)dθ︸ ︷︷ ︸
=g+p̂(x,t∗)

]
dt

= δr

∫
Ex∼µ̂ρ,t

[
p̂ρ(x, t)

(∫
θ
f(x, θ)δν̂(θ)dθ − g(x)

)]
φ(t)dt

− δr
∫

Ex∼µ̂ρ,t
[
p̂ρ(x, t)p̂(x, t∗)

]
φ(t)dt

=: I1 + I2.

The last equation defines I1 and I2 which will be estimated separately below.

Thanks to (3.8), for I1, we have

I1 ≤ δr
∫
‖p̂ρ(·, t)‖µ̂ρ,t

∥∥∫
θ
f(x, θ)δν̂(θ)dθ − g(x)

∥∥
µ̂ρ,t

φ(t)dt

= δr

∫
‖pρ(·, t)‖µ

∥∥∫
θ
f(x, θ)δν̂(θ)dθ − g(x)

∥∥
µ̂ρ,t

φ(t)dt

≤ δr
∫
‖pρ(·, t)‖µ ε sup

x

∣∣∣ dµ̂ρ,t
dµ̂ρ,t∗

∣∣∣φ(t)dt

= δr

∫
‖pρ(·, t)‖µ ε sup

x

∣∣Jρ(x; t, t∗)
∣∣φ(t)dt,

where Jρ(x; t, s) is the Jacobian of the flow at time t with respect to time s assuming starting
at x at time 0; which is bounded by the Lipschitz assumption of the f . Thus, we have

(3.12) I1 ≤ Cεδr
∫
‖pρ(·, t)‖µφ(t)dt.

Thanks to (3.11), one has

(3.13)

I2 ≤ −δr
∫
e−|t−t∗|(C1+C2r)‖p̂ρ(·, t)‖2µ̂ρ,tφ(t)dt

= −δr
∫
e−|t−t∗|(C1+C2r)‖pρ(·, t)‖2µφ(t)dt

≤ −e−(C1+C2r)δr

∫
‖pρ(·, t)‖2µφ(t)dt.
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Combining the above together, and choosing ε sufficiently small that the right-hand-side of
(3.12) is bounded by a half of the right-hand-side of (3.13) (note that the constants and the
integral in the right-hand-side of (3.12) and (3.13) do not depend on ε), we arrive at

I1 + I2 ≤ −
1

2
e−(C1+C2r)δr

∫
‖pρ(·, t)‖2µφ(t)dt

≤ −1

2
e−(C1+C2r)δr

∫
e−(C1+C2r)E(ρ)φ(t)dt

= −δr1

2
e−2(C1+C2r)E(ρ),

where the last inequality follows from Lemma 3.3.

Now we go back to the proof of Theorem 3.2, as Lemma 3.4 illustrates, if the loss E(ρ) is
not equal to zero, then we can always find a direction to decrease the loss, this complete the
proof.

3.3. Discussion of the Wasserstein gradient flow. As described in the introduction, we
consider each residual block as a particle and trace the evolution of the empirical distribution
ρs of the particles during the training (here the variable s denotes the training time). While
using gradient descent or stochastic gradient descent with small time steps, we move each
particle through a velocity field {vs}s≥0 and the evolution can be expressed by a PDE ∂sρs =
div(ρsvs), where div is the divergence operator. Several recent papers [17, 44, 52] have shown
that when the gradient field is gained from a (stochastic) gradient descent algorithm for
training a particle realization of the mean-field model, the PDE is the Wasserstein gradient flow
of the objective function. Thus in this section, we consider the gradient flow of the the objective
function in the Wasserstein space, given by a McKean–Vlasov type equation [3, 14,32,47,48]

(3.14)
∂(θ,t)ρ

∂s
= div(θ,t)

(
ρ∇(θ,,t)

δE

δρ

)
.

We consider the stationary point of such flow, i.e., distribution ρ such that the right hand
side is 0. Our next result shows that such stationary points are global minimum of the loss
function under the homogeneous assumption of the residual block and a separation property
of the support of the stationary distribution.

Regularity in the Wasserstein Space. To address the regularity of the Wasserstein gra-
dient flow, following [17], we first analyze the regularity of E restricted to the set {ρ | ρ ∈
P2, ρ(Qr) = 1}, to make this explicit, we denote the functional Fr as

Fr(ρ) =

{
E(ρ), if ρ(Qr) = 1;

∞, otherwise.

Theorem 3.5 (Geodesically semiconvex property of Fr in Wasserstein geometry). Further assume
that f(x, θ) have second order smoothness, i.e. f(x, θ) has a smooth Hessian. Then for
all r > 0, Fr is proper and continuous in W2 space on its closed domain, Moreover, for
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∀ρ1, ρ2 ∈ P2 and an admissible transport plan γ, denote the interpolation plan in Wasserstein
space as µγt := ((1 − t)ρ1 + tρ2)#γ. There exists a λ > 0 such that the function on the
Wasserstein geodesic t → Fr(µ

γ
t ) is differentiable with a λC(γ)-Lipschitz derivative. Here

C(γ) is the transport cost C(γ) =
(∫
|y − x|2dγ(x, y)

)1/2
.

Proof. To prove the regularity of our objective in the Wasserstein space, we first provide some
analysis of the objective function.

Lemma 3.6. The gradient of the objective function has the following bound, i.e.

sup
θ∈Qr

∥∥∥∥δEδρ (θ, t)

∥∥∥∥ = sup
θ∈Qr

‖Ex∼µf(Xρ(x, t), θ))pρ(x, t)‖ ≤ e(C1+C2r)σ3(σ2R1 +R2 + Crf ).

Proof. First the output of the neural network satisfies

‖Xρ(x, 1)‖ ≤ ‖Xρ(x, 0)‖+ ‖
∫ 1

0

∫
θ
f(Xρ(x, t), θ)ρ(θ, t)dθdt‖ ≤ σ2R1 + Crf ,

thus ‖pρ(x, 1)‖ := ‖ ∂E(x;ρ)
∂Xρ(x,1)‖ = ‖

(
〈w1, Xρ(x, 1)〉 − y(x)

)
‖ ≤ σ3(σ2R1 +R2 + Crf ).

At the same time, for the adjoint process pρ(x, t) satisfying the adjoint equation, using Gron-
wall inequality we have, similarly to the proof of Lemma 3.3

(3.15) ‖pρ(·, t)‖ ≤ e
∫ 1
0 ‖

∫
θ∇Xf(Xρ(x,t),θ)ρ(θ,t)dθ‖dt‖pρ(·, 1)‖ ≤ e(C1+C2r)σ3(σ2R1 +R2 + Crf ).

The conclusion then follows as f is bounded on the compact space.

Lemma 3.7. The gradient of the objective function with respect to the feature Xρ(x, t) is Lip-
schitz in P2, i.e., there exists a constant Lg1 satisfies

sup
ρ1 6=ρ2

sup
s∈(0,1)

‖pρ1(x, s)− pρ2(x, s)‖
‖ρ1 − ρ2‖

≤ Lg1 .

Furthermore, the Frechet derivative
δpρ
δρ exists.

Proof. As proved in Theorem 1, ‖Xρ1(x, 1) − Xρ2(x, 1)‖ ≤ ĈeĈdW (ρ1, ρ2) ≤ ĈeĈ

R2
r
‖ρ1 − ρ2‖,

which leads to ‖pρ1(x, 1)−pρ2(x, 1)‖ = |(〈w1, Xρ1(x1, 1)〉−y(x))|−|(〈w1, Xρ2(x1, 1)〉−y(x))| ≤
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ĈeĈdW (ρ1, ρ2) ≤ ĈeĈ

R2
r
‖ρ1 − ρ2‖. To propagate the estimates to t ≤ 1, we control

‖ṗρ1(x, s)− ṗρ2(x, s)‖ =

∥∥∥∥∥
(∫

θ
∇Xf(Xρ1(x, s), θ)ρ1(θ, s)dθ

)
pρ1(x, s)

−
(∫

θ
∇Xf(Xρ2(x, s), θ)ρ2(θ, s)dθ

)
pρ2(x, s)

∥∥∥∥∥
≤
∥∥∥∥(∫

θ
∇Xf(Xρ1(x, s), θ)ρ1(x, s)dθ

)
(pρ1(x, s)− pρ2(x, s))

∥∥∥∥
+

∥∥∥∥(∫
θ
∇Xf(Xρ2(x, s), θ)(ρ2(x, s)− ρ1(x, s))dθ

)
pρ2(x, s)

∥∥∥∥
≤ (C1 + C2r)

(∫
ρ1(θ, s)dθ

)
‖pρ1(x, s)− pρ2(x, s)‖

+ (C1 + C2r)‖pρ2(x, s)‖

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

(3.15)

≤ (C1 + C2r)

(∫
ρ1(θ, s)dθ

)
‖pρ1(x, s)− pρ2(x, s)‖

+ (C1 + C2r)e
(C1+C2r)σ3(σ2R1 +R2 + Crf )

×

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

.

Introduce the short hand M := (C1 + C2r)e
(C1+C2r)σ3(σ2R1 + R2 + Crf ) and applying the

Gronwall inequality, we obtain

‖pρ1(x, s)− pρ2(x, s)‖ ≤ ĈeĈ+(C1+C2r)
∫ 1
0

∫
ρ1(θ,s)dθds

R2
r

‖ρ1 − ρ2‖

+

∫ 1

0
Me(C1+C2r)

∫ 1
t (

∫
ρ1(θ,s)dθ)ds

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

dt

≤ ĈeĈ+(C1+C2r)

R2
r

‖ρ1 − ρ2‖

+Me(C1+C2r)
∫ 1
0

∫
ρ1(θ,s)dθds

∫ 1

0

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

dt

≤
(
ĈeĈ+(C1+C2r)

R2
r

+Me(C1+C2r)

)
‖ρ1 − ρ2‖,

where last inequality follows from Jensen’s inequality

∫ 1

0

(∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθ

)1/2

dt ≤

(∫ 1

0

∫
θ

(ρ1(θ, s)− ρ2(θ, s))2 dθdt

)1/2

= ‖ρ1 − ρ2‖.
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The existence of the Frechet derivative follows from the smoothness of the activation function,
in particular the assumption that the Hessian is bounded.

Now we show the continuity of the objective function in the Wasserstein space. By denoting
h(τ) = Fr(µ

γ
τ )

h′(τ) =
d

dτ
Fr(µ

γ
τ )

=

〈
δE

δρ
[µγτ ],

d

dτ
µγτ

〉
=

∫
d
δE

δρ
[µγτ ]((1− τ)(θ1, t1) + τ(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2)).(3.16)

For any τ1, τ2 ∈ [0, 1], we have h′(τ1)− h′(τ2) = I + J with

I =

∫
d
δE

δρ
[µγτ1 ]((1− τ1)(θ1, t1) + τ1(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2))

−
∫
d
δE

δρ
[µγτ2 ]((1− τ1)(θ1, t1) + τ1(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2)),(3.17)

J =

∫
d
δE

δρ
[µγτ2 ]((1− τ1)(θ1, t1) + τ1(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2))

−
∫
d
δE

δρ
[µγτ2 ]((1− τ2)(θ1, t1) + τ2(θ2, t2))((θ1, t1)− (θ2, t2))dγ((θ1, t1), (θ2, t2)).(3.18)

For I, we have

|I| ≤ Lg1 · 2r‖µγτ1 − µ
γ
τ2‖

≤ 2rLg1C2(γ)|τ1 − τ2|.(3.19)

Similarly, for J we have

|J | ≤ Lg1 |τ1 − τ2|
∫

((θ1, t1)− (θ2, t2))2dγ

= Lg1C
2
2 (γ)|τ1 − τ2|.(3.20)

Finally, combining the estimates for I and J shows that h′(τ) is Lipschitz continuous.

With the proved regularity, the short time well-posedness of Wasserstein gradient flow is a
corollary of Theorem 11.2.1 of [3].

Corollary 3.8. There exists a Tmax such that there exists a unique solution {ρs}s∈[0,Tmax] to the

Wasserstein gradient flow
∂(θ,t)ρ

∂s = div(ρ,t)(ρ∇(ρ,t)
δE
δρ ) starting from any µ0 ∈ P2 concentrated

on Qr.

Convergence Results For The Wasserstein Gradient Flow. We move on to prove that
the stationary point of the Wasserstein gradient flow achieves the global optimum with a
support related assumption. Following [17], we introduce an assumption of the homogeneity
of the activation function which is a central requirement for our global convergence results.
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Homogeneity.. A function f between vector spaces is positively p-homogeneous when for
all λ > 0 and argument x, f(λx) = λpf(x). We assume that the functions f(X, θ) that
constitute the residual block obtained through the lifting share the property of being posi-
tively p-homogeneous (p > 0) in the variable θ. As [17] remarked the ReLU function is a
1-homogeneity function which leads to the 2-homogeneity respect to θ of f(X, θ) when the
residual block is implemented via a two-layer neural network.

Theorem 3.9. When the residual block f(X, θ) is positively p-homogeneous respective to θ. Let

(ρs)s≥0 be the solution of the the Wasserstein gradient
∂(θ,t)ρ

∂s = div(ρ,t)(ρ∇(ρ,t)
δE
δρ ) of our mean-

field model (2.2). Consider a stationary solution to the gradient flow ρ∞ which concentrates
in one of the nested sets Qr and separates the spheres raSd−1× [0, 1] and rbSd−1× [0, 1]. Then
ρ∞ is a global minimum satisfies E(ρ∞) = 0.

Proof. First we use the conclusion of [47] which characterize the condition of the stationary
points in the Wasserstein space, which concludes that the steady state ρ∞ of the Wasserstein
gradient flow

∂(θ,t)ρ

∂s
= div(ρ,t)(ρ∇(ρ,t)

δE

δρ
)

must satisfy ∇(θ,t)
δE
δρ |ρ∞ = 0, ρ∞-a.e.

We will use the homogeneity of the activation function and the separation property of the
support of ρ∞ to further prove that ∇(θ,t)

δE
δρ |ρ=ρ∞ = 0, a.e. (i.e., it also vanishes outside the

support of ρ∞, which might not be the full parameter space).

Due to the separation assumption of the support of the distribution, for any (θ, t) ∈ Rd1×d1 ×
[0, 1], there exists r > 0 such that (rθ, t) ∈ supp(ρ∞). Due to the homogeneity assumption,
we have

δE

δρ
(rθ, t) = Ex∼µf(Xρ(x, t), rθ))pρ(x, t) = rpEx∼µf(Xρ(x, t), θ))pρ(x, t) = rp

δE

δρ
(rθ, t),

which leads to ∇(θ,t)
δE
δρ (rθ, t) = rp∇(θ,t)

δE
δρ (θ, t). Thus, since ∇(θ,t)

δE
δρ |ρ=ρ∞ = 0, ρ∞-a.e., we

know that ∇(θ,t)
δE
δρ |ρ=ρ∞ = 0, a.e. This further implies that the differential is a constant

δE
δρ |ρ=ρ∞ ≡ c.

If E(ρ∞) 6= 0, according to Theorem 3, there exists another distribution ν ∈ P2 s.t.〈
δE

δρ
|ρ=ρ∞ , (ρ− ν)

〉
> 0.

However
〈
δE
δρ |ρ=ρ∞ , (ρ−ν)

〉
= c

(∫
ρ(θ, t)dθdt−

∫
ν(θ, t)dθdt

)
= 0 due to the normalization of

the probability measure. This leads to a contradiction. Thus the stationary solution measure
must satisfy E(ρ∞) = 0, which means that it is a global optimum.

4. Deep ResNet as Numerical Scheme. In this section, following [12, 43], we aim to
design scalable deep learning algorithms via the discretization of the continuous model. We
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use a set of particles to approximate the the distribution [8, 40, 47] and Euler scheme to
numerical solve the ODE model which leads to a simple Residual Network [43].

To simulate the Wasserstein gradient flow (3.14) via a stochastic gradient descent algorithm,
we use a particle representation of the distribution ρ(x, t), commonly used in the literature,
see e.g., [17, 40, 44, 47, 51]. In the two-layer neural network, the particle realization becomes
the standard training procedure of using (stochastic) gradient descent. Our aim is to extend
this approach to deep residual networks, starting from the continuum mean-field model pre-
sented above. Since ρ characterizes the distribution of the pairs (θ, t), each particle in our
representation would carry the parameter θ, together with information on the activation time
period of the particle. Therefore, also different from the usual standard ResNet, we also need
to allow the particle to move in the gradient direction corresponding to t. We may consider
using a parametrization of ρ with n particles as

ρn(θ, t) =
n∑
i=1

δθi(θ)1[τi,τ ′i ]
(t).

The characteristic function 1[τi,τ ′i ]
can be viewed as a relaxation of the Dirac delta mass δτi(t).

However, this parametrization comes with a difficulty in practice, namely, the intervals [ti, t
′
i]

may overlap significantly with each other, and in the worst case, though unlikely, all the time
intervals of the n particles coincide, which leads to heavy computational cost in the training
process.

Therefore, for practical implementation, we constrain that every time instance t is just con-
tained in the time interval of a single particle. We realize this by adding a constraint τ ′i = τi+1

between consecutive intervals. More precisely, given a set of parameters (θi, τ i), we first sort
them according to τ i values. Assuming τ i are ordered, we define the architecture as

X`+1 = X` + (τ ` − τ `−1)σ(θ`X`), 0 ≤ ` < n;(4.1)

X0 = x.(4.2)

Both θ and τ parameters can be trained with SGD and n is the depth of the network. The
order of τ may change during the training (thus to make each particle indistinguishable to
guarantee the mean-field behavior), thus after every update, we sort the τi to get the new
order of the residual blocks. The algorithm is listed in Algorithm 4.1. The new algorithm only
introduces n parameters, as n is the depth which is around 100 in practice, thus the number
of extra parameters is negligible comparing to the 1M+ parameter number typically used in
usual ResNet architectures. The sorting of {τi}ni=1 also induces negligible cost per step.

We also remark that the flexibility of τ ` can be also viewed as an adaptive time marching
scheme of the ODE model for x, as τ `− τ `−1 can be understood as the time step in the Euler
discretization. Since the parameters {τ `} are learned from data, as a by-product, our scheme
also naturally yields a data-adaptive discretization scheme.
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Algorithm 4.1 Training Of Mean-Field Deep Residual Network

Given: A collection of residual blocks (θi, τi)
n
i=1

While training do
Sort (θi, τi) based on τi to be (θi, τ i) where τ0 ≤ · · · ≤ τn.
Define the ResNet as X`+1 = X` + (τ ` − τ `−1)σ(θ`X`) for 0 ≤ ` < n.
Use gradient descent to update both θi and τ i.

End while

As the number of particles n becomes large, the expected time evolution of ρn should be close
to the gradient flow (3.14). The rigorous proof of this is however non-trivial, which will be
left for future works.

5. Experiment. In this section, we aim to show that our algorithm is not only designed
from theoretical consideration but also realizable on practical datasets and network structures.
We implement our algorithm for ResNet/ResNeXt on CIFAR 10/100 datasets and demonstrate
that our “mean-field training” method consistently outperforms the vanilla stochastic gradient
descent.

Implementation Details.

On CIFAR, we follow the simple data augmentation method in [29, 30] for training: 4 pixels
are padded on each side, and a 32×32 crop is randomly sampled from the padded image or
its horizontal flip. For testing, we only evaluate the single view of the original 32×32 image.

Vanilla mean-field Dataset

ResNet20 8.75 8.19 CIFAR10

ResNet32 7.51 7.15 CIFAR10

ResNet44 7.17 6.91 CIFAR10

ResNet56 6.97 6.72 CIFAR10

ResNet110 6.37 6.10 CIFAR10

ResNet164 5.46 5.19 CIFAR10

ResNeXt29(8×64d) 17.92 17.53 CIFAR100

ResNeXt29(16×64d) 17.65 16.81 CIFAR100

Table 1: Comparison of the stochastic gradient descent and mean-field training (Algorithm 1.) of ResNet On CIFAR
Dataset. Results indicate that our method our performs the Vanilla SGD consistently.

For the experiments of ResNet on CIFAR, we adopt the original design of the residual block in
[29], i.e. using a small two-layer neural network as the residual block, whose layered structure
is bn-relu-conv-bn-relu-conv. We start our networks with a single 3 × 3 conv layer, followed
by 3 residual blocks, a global average pooling, and a fully-connected classifier. Parameters are
initialized following the method introduced by [28]. Mini-batch SGD is used to optimize the
parameters with a batch size of 128. During training, we apply a weight decay of 0.0001 for
ResNet and 0.0005 for ResNeXt, and a momentum of 0.9.
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For ResNet on CIFAR10 (CIFAR100), we start with the learning rate of 0.1, divide it by 10 at
80 (150) and 120 (225) epochs and terminate the training at 160 (300) epochs. For ResNeXt
on CIFAR100, we start with the learning rate of 0.1 and divide it by 10 at 150 and 225 epochs,
and terminate the training at 300 epochs. We would like to mention that here the ResNeXt
is a preact version which is different from the original [62]. This difference leads to a small
performance drop on the final result. For each model and dataset, we report the average test
accuracy over 3 runs in Table ??.

6. Discussion and Conclusion.

6.1. Conclusion. To better understand the reason that stochastic gradient descent can
optimize the complicated landscape. Our work directly consider an infinitely deep residual
network. We proposed a new continuous model of deep ResNets and established an asymptotic
global optimality property by bounding the difference between the gradient of the deep residual
network and an associated two-layer network. Our analysis can be considered as a theoretical
characterization of the observation that a deep residual network looks like a shallow model
ensemble [59] by utilizing ODE and control theory. Based on the new continuous model,
we consider the original residual network as an approximation of the continuous model and
proposed a new training method. The new method involves a step of sorting residual blocks,
which introduces essentially no extra computational effort but results in better empirical
results.

6.2. Discussion and Future Work. Our work gives qualitative analysis of the loss land-
scape of a deep residual network and shows that its gradient differs from the gradient of a
two-layer neural network by at most a bounded factor when the loss is at the same level. This
indicates that the deep residual network’s landscape may not be much more complicate than
a two-layer network, which inspires us to formulate a mean-field analysis framework for deep
residual network and suggests a possible framework for the optimization of the deep networks
beyond the kernel regime. [64] has shown that deep residual network may not be better than
a linear model in terms of optimization, but our work suggests that this is caused by the
lack of overparameterization. In the highly overparameterization regime, the landscape of
deep ResNet can still be nice. Based on the initiation and framework proposed in our paper,
there are several interesting directions related to understanding and improving the residual
networks.

Firstly, to ensure the full support assumption, we can consider extending the neural birth-
death [16,51] to deep ResNets. Neural birth-death dynamics considers the gradient flow in the
Wasserstein-Fisher-Rao space [19] rather than the Wasserstein space and ensures convergence.

Secondly, as shown in the derivation in Section 2.2, the two-layer network approximation
is just the lowest order approximation to the deep residual network and it is interesting to
explore the higher order terms.
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