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Today’s Talk

1. Online Linear Programming Algorithms and
Applications

2. Accelerated Second-Order Methods and
Applications

3. Equitable Covering & Partition — Divide and
Conquer



Topic 1. Online Linear Programming
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Linear Programming and LP Giants won Nobel Prize...
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Online Auction Example

There Is a fixed selling period or number of buyers; and there is a fixed
Inventory of goods

Customers come and require a bundle of goods and make a bid

Decision: To sell or not to sell to each individual customer on the fly?
Objective: Maximize the revenue.

Bid # $100 $30 Inventory
Decision x1 X2
Pants 1 0 100
Shoes 1 0 50
T-Shirts 0 1 500
Jackets 0 0 200
Hats 1 1 1000




Price Mechanism for Online Auction

 Learn and compute itemized optimal prices
 Use the prices to price each bid
 Acceptifitis aover bid, and reject otherwise

Bid # $100 $30 Inventory Price?
Decision X1 X2
Pants 1 0 100 45
Shoes 1 0 50 45
T-Shirts 0 1 500 10
Jackets 0 0 200 55
Hats 1 1 1000 15




Application |: Online Matching for Display Advertising

[H]Jon Stewart Is Retiring, an- x §

C www. huffingtonpost.com/mark-lashley/jon-stewarts-retiring-and_b_6670338.html?utm_hp_ref=celebrity&ir=Celebrity & o =
Mark Lashley Become a fan W &
Assistant Professor, La Salle University

Jon Stewart Is Retiring, and it's Going to Be (Kind of)
Okay

Posted: 02/13/2015 3:21 pm EST | Updated: 02/13/2015 3:59 pm EST
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When the news broke Tuesday night that longtime Daily Show host Jon Stewart SU GGEST ED FOR YOU

would be leaving his post in the coming months, the level of trauma on the internet
was palpable. Some expected topics arose, within hours -- minutes, even -- of the
announcement trickling out. Why would Stewart leave now? What's his plan? Who
should replace him? Could the next Daily Show host be a woman? (Of course). Is this
an elaborate ruse for Stewart to take over the NBC Nightly News? (Of course not).

The public conversation over the past two days has been so Stewart-centric that the
retirement news effectively pushed NBC anchor Brian Williams's suspension off of
social media's front pages. Part of that is the shock; we knew the other shoe was about
to drop with (on?) Williams, but Stewart's departure was known only to Comedy
Central brass before it was revealed to his studio audience. Part of it is how meme-

worthy the parallels between the two hosts truly are ("fake newsman speaks truth, real
newsman spins lies," some post on your Twitter timeline probably read). Breaking at

Caught On Camera



Revenues generated by different methods
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# of Out-of-Budget Advertisers

* Greedy exhausts

budget of many — Greedy
advertisers early. R T
» Log penalty keeps g ¥ Pt .
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timeframe. Served impressions



Detailed Performances

Allocation Total Revenue Improvement Mid flight oob Final oob

algorithm over greedy

Greedy $1829.94 - 366 467
Fixed dual $1986.67 8.5% 192 452
Log $1915.72 4.6% 5 71
Exponential $2043.21 11.6% 7 476

oob: out of budget

https://arxiv.org/abs/1407.5710
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Ref: Agrawal, Shipra, Zizhuo Wang, and Yinyu Ye.

"A dynamic near-optimal algorithm for online
linear programming.” Operations Research 62 4
(2014): 876-890.
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M N
max E E U jXij 3.3 MCKP-Allocation

We adopt the primal-dual framework proposed by [2] to solve the
M N problem defined in Equation 5. Let @ and f§; be the associated dual

s.t. cixij = B - ~ - -
Z Z JXij , (5) variables respectively. After obtaining the dual variables, we can
solve the problem in an online fashion. Precisely, according to the

N | principle of the primal-dual framework, we have the following
Zl‘r j= 1 Vi allocation rule:
J

xij 20, Vi j N 1, where j = arg max;(v;; — ac;)
/ 0, otherwise

(9)




ApPpP. ll: The Online Algorithm w—=
can be Extended to Bandits —
with Knapsack (BwkK)
Applications

* For the previous problem, the decision
maker first wait and observe the
customer order/arm and then decide
whether to accept/play it or not.

* An alternative setting is that the
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decision maker first decides which AFFILIATE
order/arm (s)he may accept/play, and .y e N o
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random reward 1; of the pulled arm.
 Known as the Bandits with Knapsacks, A DV E RTl S I N G
and it is a tradeoff exploration v.s.
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* The decision variable x; represents the total-times of pulling the j-th arm.

* We have developed a two-phase algorithm

* Phase |: Distinguish the optimal super-basic variables/arms from the optimal non-basic
variables/arms with as fewer number of plays as possible

* Phase Il: Use the arms in the optimal face to exhaust the resource through an adaptive
procedure and achieve fairness

* The algorithm achieves a problem dependent regret that bears a logarithmic
dependence on the horizon T. Also, it identifies a number of LP-related
parameters as the bottleneck or condition-numbers for the problem

e Minimum non-zero reduced cost
* Minimum singular-values of the optimal
basis matrix.

* First algorithm to achieve the O(log T) regret bound [Li, Sun & Y 2021 ICML]
(https://proceedings.mlir.press/v139/li21s.html)



Topic 2. Accelerated Second-Order Methods and

Applications
min f(x),x € X in R",

* where f Is nonconvex and twice-differentiable,
g = Vf(xe), He = V2 f (i)
* Goal: find x; such that:
| gk Il < € (primary, first-order condition)
Anin(Hy) = —/e  (secondary, second-order condition)
 First-order methods typically need O(n%e%) operations
« Second-order methods typically need O(n3e1-°) operations

* New? Yes, HSODM: a single-loop method with O(n?e1-"°) operations
(https://arxiv.org/abs/2211.08212)



ApPpP. lll: HSODM for Policy Optimization in Reinforcement

Le@BFH&Lonncy optimization of linearized objective In reinforcement learning

max L(0) := L(my),
OcR?

Or+1 = O + o - MpVn(6r),
* M, Is usually a preconditioning matrix.

* The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information
matrix where M, Is the inverse of

Fr(0) = Ep, m 'V log 7y, (s,a)V logmy, (s,a)" |

* Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence In the constraint:

maxV La (0010 — A, Homogeneous NPG:

—

Apply HSODM!






Dimension Reduced Second-Order Method (DRSOM)

* Motivation from Multi-Directional FOM and Subspace Method, such as CG and
ADAM, DRSOM applies the trust-region method Iin low dimensional subspace.
* This results in a low-dimensional quadratic sub-minimization problem:

* Typically, DRSOM adopts two directions d = —aVf(x;) + a*d,
where g, = Vf(xy), Hy = sz(xk); die = X — Xg-1
* Then we solve a 2-d quadratic minimization problem:

min mf (o) = f(xi) + () o+ ;o Qe

o] |G, < Ag
| 9k9x 94k | 9kcHr9r  —9iHidi REIrAE
Gk — T T )Qk — T T ) O = Td
—grdy  dpdg —9grHedy  dpHypdyg i Ak



ApPP. IV: Neural Networks and Deep Learning

To use DRSOM In machine learning problems

We apply the mini-batch strategy to a vanilla DRSOM
Use Automatic Differentiation to compute gradients
Train ResNetl8/Resnet34 Model with CIFAR 10

Set Adam with initial learning rate 1e-3
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Preliminary Results: Neural Networks and Deep Learning
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Training and test results for ResNet34 with DRSOM and Adam (https://arxiv.org/abs/2208.00208)



ApPpP. V: Sensor Network Location (SNL)

e | ocalization

—Glven partial pair-
wise measured
distance values

—Glven some
anchors’ positions

—Find locations of all
other sensors that
fit the measured
distance values

This Is also called
graph realization on
a fixed dimension
Euclidean space




Mathematical Formulation of Sensor Network Location (SNL)

* Consider Sensor Network Location (SNL)
No = {(i,5) : |z — 2l = dij < ra}, Na = {(i, k) : [|zi — ax]| = dix < ra}

where 74 Is a fixed parameter known as the radio range. The SNL problem considers the
following QCQP feasibility problem,

2
|zi — 2 = di;,V(i,§) € No

|lzi — ax||* = d2,,¥(i, k) € N,

* Alternatively, one can solve SNL by the nonconvex nonlinear least square (NLS) problem

. 2 2 \2 2 72 \2
min (o —zl* = di)*+ Y (lan — 5l - diy)*.
(’l(j,j)eN:I: (k:j)ENa



Semidefinite Programming Relaxation

7
T T T
Step 1: Linearization Xi — X; — X/Xi _ ZX/Xj + X/f/§<j
Yi Yi Yj

2
o — ;|| =a

~

a, —2a, X, +>%xj

Yj
Tighten: Y = X'X, X=[X4,...,X]
Step 2: Relax Y>X'X < Z= xIT i: > PSD

This is a conic linear program which is a convex optimization problem, but O(n3> log(e1))

Biswas and Y 2004, So and Y 2005



Sensor Network Location (SNL) |

* Graphical results using SDP relaxation (Biswas&Y 2004, SO&Y 2007) to initialize the NLS

n =80, m =5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05
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Sensor Network Location (SNL) Il

* Graphical results without SDP relaxation

* DRSOM can still converge to optimal solutions
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Sensor Network Location, Large-Scale Instances |

* Test large SNL instances (terminate at 3,000s and | g, | < 1e™>)

* Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch)

t
CG DRSOM GD

500 50  2.2e+04 | 1.7e+01 1.1e4+01 2.3e+01
1000 80 4.6e+04 | 7.3e+01 3.9e+01 1.8e+02
2000 120 9.4e+04 | 2.5e+02 1.4e+02 1.1e+03
3000 150 1.4e+05 | 6.5e+02 1.4e+02 -
4000 400 1.8e+05 | 1.3e4+03 5.0e+02 -
6000 600 2.7e+05 | 2.0e+03 1.1e+03 -

10000 1000 4.5e+05 - 2.2e+03 -

n m | E|

Table 2: Running time of CG, DRSOM, and GD on SNL instances of different problem size, |E|

W

denotes the number of QCQP constraints. means the algorithm exceeds 3,000s.

* DRSOM has the best running time (benefits of 2" order info and interpolation!)



Sensor Network Location, Large-Scale Instances Il

* Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

* GD with Line-search
and Hager-Zhang CG
both timeout

®  Truth

4  Anchors
O DRSOM
O GD

O CG

« DRSOM can converge to
| 9| < 1e™ in 2,200s

® Truth

A Anchors

O DRSOM




Sensor Network Online Tracking, 2D and 3D
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Problem Statement: Divide-Conguer

N points are scattered inside a convex polygon P (in 2D) with m vertices.
Does there exist a partition of P into n sub-regions satisfying the following:

* Each sub-region is a convex polygon
» Each sub-region contains one point

» All sub-regions have equal area



Related ML Problem: Voronoi Diagram

In the Voronol Diagram, we satisfy the first two
properties (each sub-region Is convex and
contains one point), but the sub-regions have
different areas.




Our Result

Not only such an equitable partition always exists,
but also we can find it exactly in running time O(Nn
log N), where N =m + n.




App. VI: Wireless Tower - Resource Allocation
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Preliminary Test Result—Effectiveness
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App. VII: Street View Application
Map-Making
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Overall Takeaways

It Is possible to maker online decisions for quantitative
decision models with performance guarantees close to that of
the offline decision-making with complete information

Second-Order Derivative information matters and better to
Integrate FOM and SOM on nonlinear optimization!

Decomposition (Divide and Conquer) helps solving large-scale
optimization problems

* THANK YOU



