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LP Algorithms at a Glance

Figure 1: Slide from Daniel Dadush and Bento Natura 2023
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Interior-Point Algorithms for LP

Consider linear program:

min cTx s.t. Ax = b, x ≥ 0.

intFp = {x : Ax = b, x > 0} ̸= ∅

intFd = {(y, s) : s = c−ATy > 0} ̸= ∅.

Let z∗ denote the optimal value and

F = Fp ×Fd.

We are interested in finding an ϵ-approximate solution for the LP problem:

cTx− bTy ≤ ϵ.

For simplicity, we assume that an interior-point pair (x0,y0, s0) is known, and we will use it as our initial

point pair.

Karmarkar 1984, Renegar 1986...
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Logarithmic Barrier Functions for LP

Consider the logarithmic barrier function optimization

(PB) minimize −
∑n

j=1 log xj

s.t. x ∈ intFp

and

(DB) maximize
∑n

j=1 log sj

s.t. (y, s) ∈ intFd

They are linearly constrained convex programs (LCCP).

Much much earlier...
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Analytic Center for the Primal Polytope

The maximizer x̄ of (PB) is called the analytic center of polytope Fp. From the optimality condition

theorem, we have

−(X̄)−1e−ATy = 0, Ax̄ = b, x̄ > 0,

where e is the vector of all ones; or

X̄s = e

Ax̄ = b

−ATy − s = 0

x̄ > 0

(1)

where X is the diagonal matrix generated from vector x.

Sonnevend 1988, Bayer and Lagarias 1989, Megiddo 1989...
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Analytic Center for the Dual Polytope

The maximizer (ȳ, s̄) of (DB) is called the analytic center of polytope Fd, and we have

S̄x = e

Ax = 0

−AT ȳ − s̄ = −c

s̄ > 0.

(2)

S1

S2

S3

S4

S5

Figure 2: Analytic center maximizes the product of slacks.
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Volumetric Center for the Dual Polytope

The maximizer (ȳ, s̄) of the following problem is called the volumetric center of polytope Fd, and we have

(DB) maximize − log det(AS−2AT )

s.t. (y, s) ∈ intFd

More details see Vaidya 1996, Lee-Sidford 13-’19, van den Brand, Lee, Liu, Saranurak, Sidford, Song,

Wang 21, etc.
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Why Analytic

The analytic center of polytope Fd is an analytic function of input data A, c.

Consider Ω = {y ∈ R : −y ≤ 0, y ≤ 1}, which is interval [0, 1]. The analytic center is ȳ = 1/2 with

x = (2, 2)T .

Consider

Ω′ = {y ∈ R :

n times︷ ︸︸ ︷
−y ≤ 0, · · · ,−y ≤ 0, y ≤ 1},

which is, again, interval [0, 1] but “−y ≤ 0” is copied n times. The analytic center for this system is

ȳ = n/(n+ 1) with x = ((n+ 1)/n, · · · , (n+ 1)/n, (n+ 1))T .
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Analytic Volume of Polytope and Cutting Plane

AV (Fd) :=
n∏

j=1

s̄j =
n∏

j=1

(cj − aTj ȳ)

can be viewed as the analytic volume of polytope Fd or simply F in the rest of discussions.

If one inequality in F , say the first one, needs to be translated, change aT1 y ≤ c1 to aT1 y ≤ aT1 ȳ; i.e.,

the first inequality is parallelly moved and it now cuts through ȳ and divides F into two bodies.

Analytically, c1 is replaced by aT1 ȳ and the rest of data are unchanged. Let

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = 2, ..., n and c+1 = aT1 ȳ.
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Figure 3: Translation of a hyperplane through the AC.
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Analytic Volume Reduction of the New Polytope

Let ȳ+ be the analytic center of F+. Then, the analytic volume of F+

AV (F+) =
n∏

j=1

(c+j − aTj ȳ
+) = (aT1 ȳ − aT1 ȳ

+)
n∏

j=2

(cj − aTj ȳ
+).

We have the following volume reduction theorem:

Theorem 1
AV (F+)

AV (F)
≤ exp(−1).
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Proof

Since ȳ is the analytic center of F , there exists x̄ > 0 such that

X̄ s̄ = X̄(c−AT ȳ) = e and Ax̄ = 0.

Thus,

s̄ = (c−AT ȳ) = X̄−1e and cT x̄ = (c−AT ȳ)T x̄ = eTe = n.

We have

eT X̄ s̄+ = eT X̄(c+ −AT ȳ+) = eT X̄c+

= cT x̄− x̄1(c1 − aT1 ȳ) = n− 1.
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AV (F+)

AV (F)
=

n∏
j=1

s̄+j
s̄j

=
n∏

j=1

x̄j s̄
+
j

≤

 1

n

n∑
j=1

x̄j s̄
+
j

n

=

(
1

n
eT X̄ s̄+

)n

=

(
n− 1

n

)n

≤ exp(−1).
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Analytic Volume of Polytope and Multiple Cutting Planes

Now suppose we translate k(< n) hyperplanes, say 1, 2, ..., k, moved to cut the analytic center ȳ of F ,

that is,

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = k + 1, ..., n and c+j = aTj ȳ for j = 1, ..., k.

Corollary 1
AV (F+)

AV (F)
≤ exp(−k).
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The Analytic Center Cutting-Plane Method

Problem: Find a solution in the feasible set F := {y : aTj y ≤ cj , j = 1, ..., n}.

Start with the initial polytope

F0 := {y : aTj y ≤ c0j := cj +R, j = 1, ..., n}

where R is sufficiently large such that ȳ0 = 0 is an (approximate) analytic center of F0.

Check if the (approximate) analytic center ȳk of Fk is in F or not. If not, define a new polytope Fk+1 by

translating one or multiple violated constraint hyperplanes through ȳk as defined earlier, and compute an

approximate analytic centerȳk+1 of Fk+1.

Continue this step till ȳk ∈ F .
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Fair Pareto Optimal Solutions of Multiple Objectives

Problem: Find a solution in the feasible set F := {y : aTj y ≤ cj , j = 1, ..., n} such that it is

Pareto-Maximal for k objective function bT
i y, i = 1, ..., k

• Weighted-Sum Objective Maximization:
∑

i wib
T
i y

• Alternating Cuting-Plane: Cuting the AC alternatively, or simultaneously with fixed proportions?
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Trajectory of Analytic Centers: Central Path for LP

Now consider the problem

maximize bTy

s.t. ATy ≤ c.

Assume that the feasible region is bounded, and the analytic center of the region is y0.

Start with a polytope

F(R) := {y : ATy ≤ c,

k times︷ ︸︸ ︷
bTy ≥ R, · · · ,bTy ≥ R}

where R is so low such that y0 is also an (approximate) analytic center of F(R).

Define a family of polytopes F(R) by continuously increasing R toward the maximal value and consider

its analytic center y(R): it forms a path of analytic centers from y0 toward the optimal solution set.
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Better Parameterization: LP Regularized by the Barrier Function

An equivalent algebraic representation of the path is to consider the LP problem with the weighted barrier

function

(LDB) maximize bTy + µ
∑n

j=1 log sj

s.t. (y, s) ∈ intFd,

and also

(LPB) minimize cTx− µ
∑n

j=1 log xj

s.t. x ∈ intFp

where µ is called the barrier (weight) parameter.

They are again linearly constrained convex programs (LCCP).
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Self-Duality of LPB and LDB

They share the same first-order KKT conditions:

Xs = µe

Ax = b

−ATy − s = −c;

where we have

µ =
xT s

n
=

cTx− bTy

n
,

so that it’s the average of complementarity or duality gap.

Denote by (x(µ),y(µ), s(µ)) the (unique) solution satisfying the conditions. As µ decreases to zero,

x(µ) form a path in the primal feasible region and y(µ) form a path in the dual feasible region to-warding

optimality respectively.
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Figure 4: The central path of y(µ) in a dual feasible region.
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Central Path for Linear Programming Parametrized by µ

Theorem 2 Let (x(µ),y(µ), s(µ)) be on the central path of an linear program in standard form.

i) The central path point (x(µ), s(µ)) is bounded for 0 < µ ≤ µ0 and any given 0 < µ0 <∞.

ii) For 0 < µ′ < µ,

cTx(µ′) < cTx(µ) and bTy(µ′) > bTy(µ)

if both primal and dual have nontrivial optimal solutions.

iii) (x(µ), s(µ)) converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point

x(0)P∗ > 0 and the limit point s(0)Z∗ > 0, where (P ∗, Z∗) are the analytic centers on the primal

and dual optimal faces, respectively (G’́uler and Y 1993).
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Proof of (i)

(x(µ0)− x(µ))T (s(µ0)− s(µ)) = 0,

since (x(µ0)− x(µ)) ∈ N (A) and (s(µ0)− s(µ)) ∈ R(AT ). This can be rewritten as

n∑
j

(
s(µ0)jx(µ)j + x(µ0)js(µ)j

)
= n(µ0 + µ) ≤ 2nµ0,

or
n∑
j

(
x(µ)j
x(µ0)j

+
s(µ)j
s(µ0)j

)
≤ 2n.

Thus, x(µ) and s(µ) are bounded, which proves (i).
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The Path-Following Algorithms

In general, one can start from an (approximate) central path point x(µ0), (y(µ0), s(µ0)), or

(x(µ0),y(µ0), s(µ0)) where µ0 is sufficiently large.

Then, let µ1 be a slightly smaller parameter than µ0. Then, we compute an (approximate) central path

point x(µ1), (y(µ1), s(µ1)), or (x(µ1),y(µ1), s(µ1)). They can be updated from the previous point

at µ0 using the Newton method.

µ might be reduced at each stage by a specific factor, giving µk+1 = γµk where γ is at most 1− 1
3
√
n

,

wheere k is the iteration count.

This is called the primal, dual, or primal-dual path-following method; see Renegar 1988, Gonzagar 1989,

Kojima et al. 1989, Monteiro and Adler 1989,...
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The Newton Method of Primal-Dual Path-Following

Given a pair (xk,yk, sk) ∈ intF closely to the central path, that is,

∥XkSke− µke∥ ≤ ηµk

for a small positive constant η, we compute direction vectors dx, dy and ds from the system equations:

Skdx +Xkds = γµke−XkSke,

Adx = 0,

−ATdy − ds = 0.

(3)

where γ = (1− 1
3
√
n
). Then we update

xk+1 = xk + dx > 0, yk+1 = yk + dy, s
k+1 = sk + ds > 0.

Then one can prove

∥Xk+1Sk+1e− µk+1e∥ ≤ η(1− 1

3
√
n
)µk = ηµk+1.

This leads to
√
n iteration complexity.
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Adaptive Path-Following Algorithms

Here we describe and analyze the Predictor-Corrector interior-point algorithm (Mizuno-Todd-Y 1993,

Mehrotra 1993). Consider the neighborhood

N2(η) =

{
(x, s) ∈ intF : ∥Xs− µe∥ ≤ ηµ where µ =

xT s

n

}
for some η ∈ (0, 1).

Given (x0, s0) ∈ N2(η) with η = 1/4. Set k := 0.

While (xk)T sk > ϵ do:

1. Predictor step: set (x, s) = (xk, sk) and compute d = d(x, s, 0) from (3); compute the largest θ̄

so that

(x(θ), s(θ)) ∈ N2(2η) for θ ∈ [0, θ̄].

2. Corrector step: set (x′, s′) = (x(θ̄), s(θ̄)) and compute d′ = d(x′, s′, 1) from (3); set

(xk+1, sk+1) = (x′ + d′
x, s

′ + d′
s).

3. Let k := k + 1 and return to Step 1.
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Figure 5: Illustration of the predictor-corrector algorithm.
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Reduce the Analytical Volume Directly: Potential Reduction

Problem: Find a solution in the feasible set F := {y : aTj y ≤ cj , j = 1, ..., n}.

For x ∈ intFp, Karmarkar’s primal potential function is defined by

ψn(x) := n log(cTx− z∗)−
n∑

j=1

log(xj),

where z∗ is the optimal objective value of the LP problem.

This leads to n iteration complexity.
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Primal-Dual Potential Function for LP

Typically, a single merit-function driven algorithm is preferred since it can adaptively take large step sizes

as long as the merit value is sufficiently reduced, comparing to check and balance of

hyper-parameters/measures of the path-following type of algorithms.

For x ∈ intFp and (y, s) ∈ intFd, the joint Tanabe-Todd-Ye primal-dual potential function is defined

by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑

j=1

log(xjsj),

where ρ ≥ 0 and it is fixed.

ψn+ρ(x, s) = ρ log(xT s) + ψn(x, s) ≥ ρ log(xT s) + n log n,

then, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we have

xT s ≤ exp(
ψn+ρ(x, s)− n log n

ρ
).

Choosing ρ =
√
n leads to

√
n iteration complexity.
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Description of Algorithm

Given (x0,y0, s0) ∈ intF . Set ρ ≥
√
n and k := 0.

While (xk)T sk ≥ ϵ do

1. Set (x, s) = (xk, sk) and γ = n/(n+ ρ) and compute (dx,dy,ds) from (3).

2. Let xk+1 = xk + ᾱdx, yk+1 = yk + ᾱdy , and sk+1 = sk + ᾱds where

ᾱ = argmin
α≥0

ψn+ρ(x
k + αdx, s

k + αds).

3. Let k := k + 1 and return to Step 1.

Allow to take longer step-size α!
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Alternating Direction Method

Recall that for x ∈ intFp and (y, s) ∈ intFd, the joint primal-dual potential function is defined as

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
∑n

j=1 log(xjsj)

= (n+ ρ) log(cTx− bTy)−
∑n

j=1 log(xj)−
∑n

j=1 log(sj).

Alternate Updating of primal x and (y, s): at the kth step, fix (yk, sk) and reduce the potential function

by a constant via updating from xk to xk+1 while keep (yk+1, sk+1) = (yk, sk):

ψn+ρ(x
k+1, sk+1)− ψn+ρ(x

k, sk) ≤ −δ.

Once can prove that, if by updating primal only one cannot reduce the potential function by a constant

anymore, then one must be able to update the dual from (yk, sk) to (yk+1, sk+1) (while keep

xk+1 = xk) and reduce the potential function by a constant; see Y 1989. The sample complexity result

holds and it was the first one extended to solving SDP by Alizadeh 1992.
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First-Order Potential Reduction

At the kth iteration, we compute the direction vectors (dx,dy,ds) using the steepest descent direction:

min ∇xϕ(x
k, sk)Tdx +∇sϕ(x

k, sk)Tds

s.t. Adx = 0

ATdy + ds = 0.

Thus,

dx = −(I −AT (AAT )−1A)∇xϕ(x
k, sk),

dy = A∇sϕ(x
k, sk),

ds = −ATA∇sϕ(x
k, sk).
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First-Order Potential Reduction as a Presolver

• First-order method solves to 1e-02 accuracy and then switch to second-order

• An average solution reduction of 30%

Figure 6: Speed-Up on QAP-LP
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Potential Reduction for General Linear Complementarity

Given M ∈ Rn×n and q ∈ Rn, find (x, s)

s =Mx+ q, x ≥ 0, s ≥ 0, and xT s = 0

• LP: M skew symmetric

• Convex QP: M symmetric and monotone: (x− y)TM(x− y) ≥ 0

• Monotone LCP: M +MT is Positive Semidefinite. The PRA terminates in O(
√
n log(ϵ−1))

iterations for above three problems.

• P -matrix: 0 < γ = maxj min xTMTx
∥x∥2 . The PRA terminates in

O(n2 max(|λ|/(γn), 1) log(ϵ−1)) iterations, where λ( is the least eigenvalue of (M +MT )/2;

see Kojima et al. 1992

• General QP: M symmetric but non-convex: The PRA terminates in O(n2ϵ−1 log(ϵ−1) + n log(n))

iterations (no condition-numbers!) with a solution that is ϵ accurate on both the first and second order
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optimality conditions; see Y 1998.
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Initialization

• Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms to

find a feasible point of the problem. Theoretically, this approach can retain the currently best

complexity result.

• The big M method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty

parameter M to force solutions to become feasible during the algorithm.

• Phase I-then-Phase II method, i.e., first try to find a feasible point (and possibly one for the dual

problem), and then start to look for an optimal solution if the problem is feasible and bounded.

• Combined Phase I-Phase II method, i.e., approach feasibility and optimality simultaneously. To our

knowledge, the “best” complexity of this approach is O(n log(R/ϵ)).
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Homogeneous and Self-Dual Algorithm

• It solves the linear programming problem without any regularity assumption concerning the existence

of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result

• It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive

orthant (cone), and it does not use any big M penalty parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the same as that solved

in the standard (primal-dual) interior-point algorithms.

• If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and

optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an

infeasibility certificate for at least one of the primal and dual problems.
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Primal-Dual Alternative Systems

A pair of LP has two alternatives

(Solvable) Ax− b = 0

−ATy + c ≥ 0,

bTy − cTx = 0,

y free, x ≥ 0

or

(Infeasible) Ax = 0

−ATy ≥ 0,

bTy − cTx > 0,

y free, x ≥ 0
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An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

(HP ) Ax− bτ = 0

−ATy + cτ = s ≥ 0,

bTy − cTx = κ ≥ 0,

y free, (x; τ) ≥ 0

where the two alternatives are

(Solvable) : (τ > 0, κ = 0) or (Infeasible) : (τ = 0, κ > 0)
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The Homogeneous System is Self-Dual

(HP ) Ax− bτ = 0, (y′)

−ATy + cτ = s ≥ 0, (x′)

bTy − cTx = κ ≥ 0, (τ ′)

y free, (x; τ) ≥ 0

(HD) Ax′ − bτ ′ = 0,

ATy′ − cτ ′ ≤ 0,

−bTy′ + cTx′ ≤ 0,

y′ free, (x′; τ ′) ≥ 0

Theorem 3 System (HP) is feasible (e.g. all zeros) and any feasible solution (y,x, τ, s, κ) is

self-complementary:

xT s+ τκ = 0.

Furthermore, it has a strictly self-complementary feasible solution x+ s

τ + κ

 > 0,

Start from any infeasible but interior-solution pair in the primal and dual cones, and apply IPM to solve the

Phase I problem; see Y-Todd-Mizuno 1994.
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