
Multi-Block ADMM and its Applications

W O R K S H O P O F M O D E R N T E C H N I Q U E S O F V E R Y L A R G E S C A L E

O P T I M I Z AT I O N

M AY 1 9 , 2 0 2 2

Yinyu Ye

Stanford University

Today’s talk

• Introduction to Multi-Block ADMM and ABIP

• RAC-ADMM implementation for Mixed-Integer Quadratic
Programming

• Benefit of Data Exchange in Multi-Block ADMM Algorithm for
Regression Estimation

Introduction to ADMM

● Consider the following convex optimization problem

min 𝑓 𝒙

s.t. 𝑨 𝒙 = 𝒃

𝒙 ∈ 𝜲

● Where 𝑓 is a convex function, and 𝜲 the Cartesian product of possibly non-

convex, real, closed, nonempty sets.

● The corresponding augmented Lagrangian function is

𝐿(𝒙, 𝝀)𝒙 ∈ 𝜲 = 𝑓 𝒙 − 𝝀𝑇 𝑨𝒙 − 𝒃 +
𝜌

2
||𝑨𝒙 − 𝒃||2

2

where 𝝀 is the Lagrangian multipliers or dual variables, and 𝜌 > 0 is the

step size.

Multi-Block Cyclic ADMM (MB-ADMM)

● We could also partition the variables into multiple blocks. Let 𝒙 =

[𝒙1, 𝒙2, … , 𝒙𝑏]

● Direct extension of multi-block (cyclic) ADMM updates as follows

The two-block (Glowinski & Marrocco 1975, Gabay & Mercier 1976,…);

but the three-block ADMM may not converge (Chen et al. 2016)

Variable-Splitting (or Distributed) ADMM

● Variable-Splitting ADMM introduces auxiliaries to each block of variables.

● Consider the following optimization problem with separable objective

min Σ𝑖=1
𝑏 𝑓𝑖(𝒙𝑖)

s.t. Σ𝑖=1
𝑏 𝑨𝑖𝒙𝑖 = 𝒃

𝒙 ∈ 𝜲

● Primal Variable-Splitting ADMM reformulates the problem as

min Σ𝑖=1
𝑏 𝑓𝑖 𝒙

s.t. Σ𝑖=1
𝑏 𝒚𝑖 = 𝒃

𝑨𝑖𝒙𝑖 − 𝒚𝑖 = 0 ∀𝑖

𝒙 ∈ 𝜲

Essentially a two-block problem since each block of xi can be updated

independently and all yi’s can be updated in a closed form (Eckstein&Bertsekas

1992)

Randomly Assembled Cyclic - ADMM (RAC-ADMM)

● In each cycle, RAC-ADMM first randomly assembles

variables into blocks, then sequentially updates each of the

blocks.

● Then update the multipliers the same way.

● RAC - ADMM is guaranteed to converge in expectation.

Sun et al. 2015, Mihic et al. 2020…

ADMM-BASED-INTERIOR-POINT

Solve the following LP:

• ABIP: solves the homogeneous and self-dual embedding with barrier
parameter µ decreasing in each major iteration and applies a customized
ADMM for solving each µ-fixed convex inner-problem due to self-dual
property (Lin et al. 2021)

• Rescale the constraint matrix 𝐴 to 𝐴 = 𝐷1
−1𝐴𝐷2

−1 with positive diagonal
matrices 𝐷1 and 𝐷2 to decrease the condition number of 𝐴

• Apply the fixed frequency to Restart in solving the inner-problem

• Hybrid adaptive reduction of µ to balance the progresses of outer and
inner iterations

Jiang et al. in progress, 2022

ABIP - NETLIB

Hybrid 𝜇 : If 𝜇 > 𝜖 use the aggressive strategy, otherwise use the LOQO

strategy; coded in C with Matlab interface

ABIP3+ decreases both # IPM iterations and # ADMM iterations remarkably

(but the second-order IPMs solve them in a half second average time).

• Selected 105 Netlib instances

• ϵ = 10−6, use the direct method, 106 max ADMM iterations

ABIP – PageRank I
• 84 instances, generated from sparse matrix datasets: DIMACS10,

Gleich, Newman and SNAP

• ϵ = 10−6, use the indirect method, 3000 max ADMM iterations

PDLP: Applegate et al, Google, 2022

The one generated by Google code possesses a staircase incident-

matrix, in which cases ABIP3+ is significantly faster than PDLP!

ABIP – PageRank II

The second-order IPM and Simplex method typically fail in solving these

large-scale LP problems

Today’s talk

• Introduction to Multi-Block ADMM and ABIP

• RAC-ADMM implementation for Mixed Integer Quadratic
Programming

• Benefit of Data Exchange in Multi-Block ADMM Algorithm for
Regression Estimation

RAC-ADMM Implementation for Mixed-Integer LCQP

Solving:

(1) Approximate solution (RACQP-M)
• Good solutions for large mix-integer quadratic problems (MIQP) found fast
• Can not guarantee provable optimal solution; feasibility often met, but can not be

guaranteed
(2) Exact solution (RACQP-B)

• Branch-and-bound(cut) based solver
• Either produce an optimal solution (within mipGap) or certificate of infeasibility
• Motivation is to generate the best-possible feasible solution in a limited time

This presentation focuses on (2)

RACQP-M
Extends RAC-ADMM based continuous QP solver (RACQP) to mixed-integer
problems:

• Consists of a sequence of steps that work on improving the current (or initial) solution,
which is then “destroyed“ so as to be possibly improved again. This solve-perturb-
solve sequence is repeated until termination criteria are met

• Direct method variant:
• Applying partial Lagrangian methodology

where for integer and continuous variables respectively
• Found to produce high quality results in a very short time

• Projection method variant:
• Employs convex relaxation and projections onto non-convex sets (integrality

constraints)
• Designed for very hard discrete problems (e.g. cardinality constrained and

satisfiability problems, Hamiltonian cycle problems etc.)
• When applied to solving same problems it returns inferior results in terms of the

objective value and feasibility, but is orders of magnitude faster

RACQP-B
• RACQP-B is a QP-based branch-and-bound solver, in which QP relaxations of the

original mixed QP are solved using RACQP to produce bounds on the value of the
objective function of an optimal solution.

• The aim of the solver is to demonstrate that when solving a large QP, RACQP can
be a valid alternative to the simplex-based algorithm (which is the basis for
almost all modern software for MIQP). Current implementation is a proof a
concept:

• Implementation done for mixed binary problems only

• Basic branching algorithm used:

• Current efforts in progress:

• Branch-and-cut algorithm development

• Advanced search strategies

Branch-and-Bound Method

• Let a polyhedron

where 𝑨 ∈ 𝑅𝑚×𝑛 and 𝒃 ∈ 𝑅𝑚. Without loss of generality, assume that
binary variables, 𝑥𝑖 ∈ {0, 1}, are indexed 1, . . . 𝑠, 𝑠 ≤ 𝑛 and describe a feasible
region of a MBQP with

• The mixed-binary QP is then

with a symmetric positive semidefinite matrix 𝑯 ∈ 𝑅𝑛×𝑛 and vector 𝒄 ∈ 𝑅𝑛 .
The branch-and-bound algorithm finds 𝒙∗ ∈ 𝒫𝑏, which minimizes or proves
that no such solution exists, i.e. 𝒫𝑏 ≠ ∅. The algorithm assumes that the primal
problem is bounded

(2)

(3)

(4)

Branch-and-Bound Method : Solving the Root Node
• The algorithm starts by solving the continuous relaxation of (4), i.e. 𝒙 ∈

𝒫, in order to find a fractional solution, 𝑥 ∈ 𝑅𝑛 and a lower bound
𝑓0(𝒙). (referred to as solving the root node):
• If 𝒙 ∈ 𝒫𝑏 then the solution is said to be integer feasible and 𝒙 is the

optimal solution of (4).
• Otherwise, we seek, via rounding, for an upper bound, UB, which is

the objective value of the best possible feasible solution that we can
find, 𝒙∗ (referred to as the incumbent)

Next 𝒫𝑏 is split into two disjoint sets, 𝒫1
𝑏, 𝒫2

𝑏 , such that 𝒫1
𝑏 ∪ 𝒫1

𝑏 ∩
𝑍𝑠 × 𝑅𝑛−𝑝 = 𝒫𝑏. Each of the sets defines a sub-problem, replacing the
parent problem with its children,

A sub-problem is usually referred to as a node of a search tree connected
to its parent with an edge

(5)

B-and-B Method : Solving the Children Node

• Children nodes are added to the candidate list to be processed later. Every
child node on the list is solved for a fractional solution 𝒙, with one of the
following outcomes:
• The sub-problem does not have a feasible solution 𝒙 ∈ 𝑅𝑛 (infeasibility of problem

can be certified, see e.g., Banjac et al. 2019): discard the result
• The sub-problem has a solution , 𝒙 ∈ 𝑅𝑛 and 𝑓0(𝒙)≥ UB, then the feasible region of

the sub-problem I, ℱ ⊆ 𝒫𝑖
𝑏 × 𝑍𝑠 × 𝑅𝑛−𝑝, does not contain a solution better than 𝒙∗ :

discard the result
• The sub-problem has a solution 𝒙 ∈ 𝑅𝑛 and 𝑓0 𝒙 < UB: add the children of this node

to the candidate list.
• The sub-problem has a feasible solution 𝒙𝑖 ∈ ℱ: if 𝑓0(𝒙)< UB set 𝒙∗= 𝒙 and

𝑈𝐵 = 𝑓0 (𝒙), otherwise proceed to search next node.

• The process is repeated until there are no more unprocessed nodes listed in
the candidate list, in which case either the last incumbent is the optimal
solution, or a feasible solution to (5) does not exist

Branch-and-Bound Method : Core Elements
• Branching methods:

• Choose the variable closest to an integer

• Search strategy
• Depth first until first incumbent, then focus on best bound (focus on proving optimality) or on

finding better feasible solutions

• Upper bounding methodology
• The performance of the solver depends on speed at which an upper bound is recovered

(recall that if 𝑓0(𝒙)< UB we can discard nodes and branches). Leaving the algorithm to freely
run until an UB is recovered may last a long time (many nodes may need to be processed).

• Speeding-up the algorithm by employing a primal heuristic to construct a feasible solution.

• Lower bounding methodology
• The performance of the solver depends on the quality of lower bounds – tighter the bound,

the more nodes and branches can be discarded, reducing the number of nodes that need to
be processed.

• Currently in the process of developing/implementing the concept of valid inequalities of
RACQP-B

Upper Bounding Methodology: Primal Heuristics
• Applying rounding heuristics to find a feasible solution after solving the

relaxation at a node:
• Nearest-neighbor rounding

• Randomized rounding,

• Dependent randomized rounding:
• Geometric rounding (Ge et al. 2007):

• Pipage random rounding (Gandhi et al. 2006):

• Additional implementations that utilize constraint structure (see e.g. Bertsimas et al. 1999)

• Followed by the optimization of the remaining continuous variables by running
RACQP for a couple of iterations (root relaxation usually ran with more iterations
that the rest)

Experiments : Solving Randomly Generated LCQP I
• Created random MBQP with varying dimensions 𝑛, 𝑚 and number of binary

variables 𝑟: Density of 𝐻 is 0.1, with entries generated from the uniform
distribution 𝑈(0, 1) , the linear cost c from the normal distribution 𝑁(0, 1) ,
and the constraints 𝐴 ∼ 𝑁(0, 1) .

• For each set of parameters 5 random problems were constructed

• Presolve option was turned off for Gurobi. Runs limited to one thread

Experiments : Solving Randomly Generated LCQP II

• Rounding scheme used by RACQP finds good incumbents very fast.

• No feasible solution found by Gurobi at root node.

• In general, RACQP-B finds solutions very fast, but for some instances
Gurobi was much faster due to good cuts (valid inequalities)

Search Strategy : Finding Better Feasible Solutions

• Adapting a simple perturbation scheme from RACQP-M (“escape” from a
local minima) to leave the the current branch and start looking for a better
feasible solution elsewhere in the search tree.

• The scheme explores the search space with some degree of bias towards
the current best solution:
• Decide on the next neighborhood to explore

• Choose a random number of integer variables from the current best solution and fix them to
their current values, making them to appear as constants

• Find the new initial point within the neighborhood
• 𝒙𝑛𝑒𝑤

0 found by perturbing values of randomly chosen components of 𝒙𝑏𝑒𝑠𝑡

• Number of variables to change : chosen from a truncated exponential distribution
(experimentally found to produce good results)

• What variables to modify : at random, or guided by a problem structure, if known.
• How to modify : swap, exchange, permute,...

• The implementation not fully integrated with RACQP-B; work in progress

Search Strategy : Experimental Results I
• Solving the maximum bisection problem. Perturbation mechanism: swapping

Search Strategy : Experimental Results II
• Solving the quadratic assignment problem (QAP). Perturbation mechanism: swapping

RACQP-B : Summary and Ongoing Work
• Experiments show that:

• Our perturbation scheme of search strategy is effective in finding new starting points,
which can enable RACQP-B to leave a non-promising branch and move to another
section of the search tree. We are in the process of fully integrating the scheme into
the solver

• Rounding schemes we used to generate feasible solution for UB are effective and
better than of those used by Gurobi for the class of problems we addressed. We plan
on adding more schemes as the use-case expands

• RACQP-B is efficient and the cost of solving a node (relaxation + rounding) is much
lower than of Gurobi, which uses dual simplex to solve the linearized QP. This can
potentially offset the cost of generating valid inequalities we plan on adding to the
solver (problem domain specific at first)

• Note that the current implementation is in Matlab, and planned migration to
C/C++ will further improve the performance

Today’s talk

• Introduction to Multi-Block ADMM and ABIP

• RAC-ADMM implementation for Mixed Integer Quadratic
Programming

• Benefit of Data Exchange in Multi-Block ADMM Algorithm for
Regression Estimation

27

Statistical Learning Across Distributed Data Centers
• Centralized Learning

• All local data are uploaded to one server

• Decentralized Learning

• Local data cannot be exchanged

Statistical Learning Across Decentralized Centers

• Decentralized Learning : Methods that learn or train an
algorithm across multiple decentralized centers/blocks holding
local data.

• Pros: This protects data privacy and data security

• Cons: Many decentralized learning algorithms suffers from slow
convergence.

Statistical Learning Model

• Each center 𝑖 possess model data matrix 𝑿𝑖 ∈ 𝑅𝑠×𝑝 and dependent variable
vector 𝒚𝑖 ∈ 𝑅𝑠×1.

• Let 𝒙𝑖,𝑗 , 𝑦𝑖,𝑗 be the 𝑗𝑡ℎ data pair of the 𝑖𝑡ℎ data center.

• The decision maker tries to find the global estimator 𝜷 ∈ 𝑅𝑝×1 that
minimizes the following loss function

•Σ𝑖=1
𝑏 Σ𝑗=1

𝑠 𝑓 (𝒙𝑖,𝑗 , 𝑦𝑖,𝑗); 𝜷

where 𝑓 (𝒙𝑖,𝑗 , 𝑦𝑖,𝑗); 𝜷 is the loss function.

Commonly Used Loss-Functions
• Commonly used loss function are convex in 𝜷, including

• Least Square

𝑓 (𝒙, 𝒚); 𝜷 = ||𝒙𝜷- 𝒚||2
2

• Ridge

𝑓 (𝒙, 𝒚); 𝜷 = ||𝒙𝜷- 𝒚||2
2 + 𝛼||𝜷||2

2

• Lasso

𝑓 (𝒙, 𝒚); 𝜷 = ||𝒙𝜷- 𝒚||2
2 + 𝛼||𝜷||1

• Elastic Net

𝑓 (𝒙, 𝒚); 𝜷 = ||𝒙𝜷- 𝒚||2
2 + 𝛼||𝜷||1 + (1 − 𝛼) ||𝜷||2

2

• Logistic
𝑓 (𝒙, 𝒚); 𝜷 = 𝑙𝑜𝑔(1 − 𝑒𝑥𝑝(−𝒚𝒙𝜷))

ADMM in Decentralized Learning

• The variable-splitting, or distributed, ADMM is widely used in
decentralized learning.

• Compared with another commonly used algorithm, Stochastic
Gradient Descend (SGD), consensus ADMM is more robust in
step-size choice, and it is guaranteed to converge for any
choice of step-size.

Recall Distributed MB-ADMM
• Introducing local estimators 𝜷𝑖 to each center and reformulate the

problem as

• Let 𝜆𝑖 be the dual with respect to the constraint 𝜷𝑖 − 𝜷 = 𝟎 , and 𝜌𝑝 be
the step-size to the primal distributed ADMM, the augmented
Lagrangian is given by

Algorithm : Distributed ADMM
• The algorithm of primal distributed ADMM is as follows

Distributed ADMM Suffers from Slow Convergence
• While consensus ADMM does not exchange local data, and enjoys benefit

from parallel computing, it suffers from slow convergence.

• The following table reports the performance of GD, primal distributed ADMM,
and Dual Randomly Assembled Cyclic ADMM (DRAC-ADMM) for L2
regression that we designed to carefully balance the trade-off between data
privacy and efficiency.

Table 1 : Algorithm Performances on UCI machine learning repository (Dua and Graff(2017)) regression data YearPrediction-MSD (Chang and Lin (2011)) with
number of observations n=463,715, and number of features p=90, number of local data centers = 4. Table 1 report the number of iterations, and absolute L2
loss defined by 𝐴𝐿 = | 𝜷∗ − 𝜷′ |2. For ADMM method the step-size we set equals to 1 and for GD the step-size is optimally chosen.

Outlines of Decentralized Learning: DRAC-ADMM

• Theory behind slow convergence for primal distributed ADMM
• Worst case data structure of distributed ADMM for L2 regression and Upper bound on

convergence rate of consensus ADMM

• Designing ADMM algorithm with data exchange that balance the trade-off
between privacy and efficiency
• Introducing Dual Randomly-Assembled Cyclic ADMM (DRAC-ADMM)
• Data exchange is necessary – comparison with Randomly-Permuted ADMM and cyclic ADMM.

• Numerical Results
• L2 Regression
• Logistic regression

Least Square Regression
• Specifically, when 𝑓 (𝒙, 𝑦); 𝜷 = ||𝒙𝜷- 𝑦||2

2, the problem becomes a
linearly constrained quadratic optimization.

• Let 𝑫𝑖 = 𝑿𝑖
𝑇𝑿𝑖 and 𝒄𝑖 = −𝑿𝑖

𝑇𝒚𝑖 , primal distributed ADMM becomes

Why Data Exchange Helps Convergence I
• Consider the following example with 𝑛 = 4, 𝑝 = 1, and number of data

center 𝑏 = 2. Here, two data centers share similar structure of data.

• Normalized the model matrix 𝑿 by the Frobenius norm ||𝑿||𝐹

Why Data Exchange Helps Convergence II
• The convergence rate under the previous data structure is 0.6661, and one can

show that if model matrix is normalized, with number of data centers equals to 2,
the upper bound of convergence rate (worst case convergence rate) is 0.6667.

• Convergence rate 𝛼:

• However, if we apply data exchange

• The convergence rate becomes 0.5264, and one can show that the lower bound of
convergence rate (best case of convergence rate) is 0.5000.

Theory on Worst Case Data Structure
• Generally, under the following assumption

• The worst-case data structure and the upper bound of convergence rate
of distributed ADMM is given by (1)

• Under such worst-case data structure, any data exchange/swap would
benefit the speed of convergence for distributed ADMM.

M. Zhu & Y, “How Data Sharing Benefits Distributed Optimization and Learning,” forthcoming

Several Discussions
• The upper bound on convergence speed is increasing with respect to number of data

centers and decreasing with smallest eigenvalue of covariance model matrix. This
implies that a greater number of data centers and ill conditioning of matrix hurt
convergence.

• Intuitively, for large step size, ADMM converges faster when each block “differs”
from one another significantly.

• When updating dual, ADMM takes average of all local estimators, which are
essentially, the product of inverse matrix and vector. When each block differs
from one another, it creates more momentum for dual updating .

• When applying data augmentation in machine learning with ADMM based
optimization algorithm, one need to be careful as data augmentation are more likely
to creates similar blocks.

Comparison Between Gradient Descend
• Gradient Descend is also widely used in decentralized (or federated) learning,

with the bounds of distributed ADMM, we could compare performance
between the two algorithms under different step-size.

• Consensus ADMM is indeed more robust in step-size choice, and for gradient
descend method, there is only a small range of sweet spot of step-size that
leads to faster convergence.

• This suggests that higher order methods like ADMM could be faster compared
with gradient descent method. What more could we do to further speed up
ADMM?

Introducing Dual Randomly-Assembled Cyclic ADMM
• Inspired by Mihi ́c et al. (2020), we introduce the Dual Randomly-Assembled

Cyclic ADMM (DRAC-ADMM)

• the least square regression problem is equivalent as

• Let 𝒕 be the dual variables, the dual is given by

• the dual variables serves as a label for each (potentially) exchanged data pair,
and the randomization is more effective in the dual space.

Data Center 1 Data Center 2 Data Center 3

Global Data Pool

Local data Local data Local data

Introducing Dual Randomly-Assembled Cyclic ADMM

Data Center 1 Data Center 2 Data Center 3

Local data Local data Local data

Cyclic updating Cyclic updating

Global Data Pool

Introducing Dual Randomly-Assembled Cyclic ADMM

Introducing Dual Randomly-Assembled Cyclic ADMM

Trade-Off Between Privacy and Efficiency

UCI machine learning repository (Dua and Graff(2017)) regression data YearPrediction-MSD (Chang and Lin (2011)) with number of observations
n=463,715, and number of features p=90, number of local data centers = 4.

Numerical Results

• L2 Regression

• Logistic Regression

L2 Regression: UCI ML regression repository

L2 Regression: UCI ML regression repository

• With 5% of access to global data, DRAC ADMM utilizes the benefit of
data exchange, and outperforms primal distributed ADMM.

• Benefit of DRAC-ADMM

• Manage to get a good quality of solution within fewer iteration,
which further reduces the communication load across centers

• Manage to get a good quality of solution within a fixed time.

Logistic Regression: Applications to Healthcare

• Real world problem
• Researcher trying to conduct joint research at multiple hospitals

• While researcher could operate at each data center, data could not be shared
across data center – cost per iteration is high as the researcher would have to
physically be at the data center for updating local variables per iteration

Logistic Regression: Applications to Healthcare

• p = 24; n = 2000; 4 hospitals; MAX-ITER = 50; fix time

logreg* Distributed
ADMM

DRAC-ADMM
(1%)

DRAC-ADMM
(5%)

DRAC-ADMM
(10%)

Objective
Value

0.0215 0.0853 0.0022 8.86 × 10−4 5.67 × 10−4

* logreg is a two-block ADMM based algorithm, it requires access to the whole global data

Privacy-Preserved DRAC-ADMM
• Privacy would be a major concern when performing data sharing/exchange.

The privacy-preserved DRAC-ADMM (PDRAC-ADMM) utilizes the random
Gaussian projection for data required to be exchanged, which is known to
be differentially private (Dwork et al. "Differential privacy and robust
statistics,” 2009)

• Let 𝑹 ∈ 𝑅𝑘×𝑘 be a square matrix with entries i.i.d. sampled from normal
Gaussian, and 𝑘 = 𝛼𝑛 , where 𝛼 is the percentage of global data.

Privacy-Preserved DRAC-ADMM

• As we add Gaussian projection to shared data, although the algorithm
protects privacy, it sacrifices the accuracy of prediction.

• However, notice that PDRAC-ADMM shared similar performance with
primal distributed ADMM. If data-exchange is not feasible and the
Gaussian projection has to be enforced to shared data, PDRAC-ADMM
could still obtain a fairly good quality of estimator.

Data Share in Distributed Preconditioned
Conjugate Gradient (PCG) Method

• Data share could also be applied in distributed conjugate
gradient method for better preconditioning

• L2 regression is same as solving

Data Share in Distributed PCG Method I

Data Share in Distributed PCG Method II

• Preconditioning could be arbitrarily bad without data share.

Zhu & Y, “How Data Sharing Benefits Distributed Optimization and Learning,” forthcoming

Data Share in distributed PCG method III
• Idea : if the distribution of data are different across centers, local

preconditioning give biased estimate of Hessian matrix

• Consider

• Let 𝜀 = 𝜀1 = 1/𝜀2. When each data center has different distributions of data,
one can show that the condition number of matrix without preconditioning is
1+𝜀2

2𝜀
, the condition number of matrix with local

preconditioning is
(1+𝜀2)2

4𝜀2 , when 𝜀 is small, the matrix condition number

could be arbitrarily bad

Data Share in Distributed PCG Method IV

• If we have access to sample of data from each center 𝑋𝜎𝑖
, we could

construct the preconditioning matrix as

• Intuitively, we use the sampled data to sketch the data from other
centers.

• With data share PCG, the condition number of matrix converges to 1
under previous example

Data Share in Distributed PCG Method V
Numerical evidence on showing data share helps PCG method.

Setup : 2 data centers, each data center has number of observations n = 1000, feature dimensionality p = 500;
Center 1 data i.i.d. follows gaussian distributed, center 2 data follows i.i.d. uniform distribution

Thank you!

C O M M E N T S A N D Q U E S T I O N S ?

K M I H I C @ A L U M N I . S T A N F O R D . E D U

M I N G X I Z @ S T A N F O R D . E D U

Y Y Y E @ S T A N F O R D . E D U

mailto:mingxiz@Stanford.edu
mailto:mingxiz@Stanford.edu

