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Part (1)

Motivation and Literature Review



Early Complexity Analyses for Nonconvex Optimization

min f(x),x € X in R",
* where f Is nonconvex and twice-differentiable,
gr = Vf(xx), He = V2 f (x)
* Goal: find x; such that:
| V(x,) IS € (primary, first-order condition)
Amin(Hy) = —+/€ (In active subspace, secondary, second-order condition)
* For the ball-constrained nonconvex QP: min c’x + 0.5xTQx s.t. | x || , <1
O(loglog(e)); see Y (1989,93), Vavasis&Zippel (1990)
* For nonconvex QP with polyhedral constraints: O(e™!); see Interior-Trust-Region

method Y (1998), Vavasis (2001)



Standard methods for general nonconvex optimization |

First-order Method (FOM): Gradient-Type Methods

* Assume f has L-Lipschitz cont. gradient

* Global convergence by, e.g., linear-search (LS)

* No guarantee for the second-order condition

* Worst-case complexity, 0(e~2); see the textbook by Nesterov (2004)

Each iteration requires O(n¢) operations



Standard methods for general nonconvex optimization |
Second-order Method (SOM): Hesslan-Type Methods
* Assume f has M-Lipschitz cont. Hessian

* Global convergence by, e.qg., linear-search (LS), Trust-region (TR), or

Cubic Regularization

* Convergence to second-order points

* No better than 0(e~4), for traditional methods (steepest descent and
Newton); according to Cartis et al. (2010) .

Each iteration requires O(n3) operations



Analyses of SOM for general nonconvex optimization since 2000

Variants of SOM

* Trust-region with the fixed-radius strategy, 0(e~3/2) , see the lecture notes by Y
since 207?77

* Cubic regularization, 0(e~3/2) , see Nesterov and Polyak (2006), Cartis, Gould,

and Toint (2011)

* A new trust-region framework, 0(e~3/?) , Curtis, Robinson, and Samadi (2017)

3
With “slight” modification, complexity of SOM reduces from 0(e~%) to O(E_E)!



Other complexity analyses for some structural nonconvex
optimization

* Ge, Jiang, and Y (2011), 0(e~*log(1/€)), for L,, minimization arisen from Comp. Sensing.
* Bian, Chen, and Y (2015), 0(e~3/2), for certain non-Lipschitz and nonconvex
optimization.

* Chen et al. (2014) shows strongly NP-hardness for L, — L, minimization; but later Ge,
He, and He (2017) proposes a method with complexity of 0(log(e~1)) to find a local
minimum

* Haeser, Liu, and Y (2019) uses the first-order and second-order interior point trust-region
method achieving first-order e-KKT points with complexity of 0(e~2) and 0(e~3/?),
respectively.



Recent efforts for general nonconvex optimization

FOM Improvements:
* FOM with Hessian negative curvature (NC) detections, 0(e~"/*log(1/€))
» Carmon et al. (2018), with Hessian-vector product (HVP) and Lanczos
» cost 0(e~1/*) for each negative curvature request
» Also, Carmon et al. (2017), does not require HVP (only first-order condition)
. Agarwal et al. (2016), also 0(e~7/%), using accelerated methods for fast approximate

matrix inversion
They are hybrid and/or randomized methods and seem difficult to be implemented

Our approach: Reduce dimension in SOM



Part (2)

The Algorithm and Preliminary Convergence Analyses



Motivation from multi-directional FOM

* Two-directional FOM, with d; being the momentum direction (x; — x5 _1)
Xpr1= X — AV (xp) + ajdy = Xpt+ diys
where step-sizes are constructed; including CG, PT, AGD, Polyak, and many others.

* In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to

obtain direction vector d; .. FOr example, one TR step solves for d;,, from
min, (g,)'d + 0.5d"H,d s.t.||d]|]|, < A
where A, Is the trust-region radius.

« DRSOM: Dimension Reduced Second-Order Method

Motivation: using few directions in SOM



DRSOM |

* The DRSOM In general uses m-independent directions
d(a):=D,a,D, e R"™ qgeRM
* Plug the expression into the full-dimension TR quadratic minimization problem,

we minimize a m-dimension trust-region subproblem to decide "m stepsizes”

min m§ (o) = (¢;)" a + %aTQka

llaflg, = Ak
Gk: DIZDk) Qk — Dl’{Hka: Ck = (gk)TDk

How to choose D,? How great would m be?



DRSOM I

* |In following DRSOM adopts two FOM directions
d=—a'Vf(x,)+ a*d, = d(a)
where gy, = Vf(xy), He = V2f(x%), dy = x — x4
* Then we minimize a 2-D trust-region problem to decide “two step-sizes”:

min m§ (&) = f(x;) + (c)" a + %aTQka

o], < A
| 9k9x  —9rdk | 9kHr9r  —9iHidi R
Gk — T T )Qk — T T y Ok = Td
—grdr  dpdg —9grHedy  djHpdyg Ji Qg



DRSOM I

DRSOM can be seen as:
* "Adaptive” Accelerated Gradient Method (Polyak’'s momentum 60)

* A second-order method minimizing guadratic model in the reduced 2-D

my(d) = f(x) + V()" d +5dTV2f (x)d, d € span{—gy, di}
compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method
d € span{gx, [H(x:)] 1g.} (e.g., Powell 70)
* A conjugate direction method for convex optimization exploring the Krylov
Subspace (e.g., Yuan&Stoer 95)

* For convex qguadratic programming with no radius limit, terminates in n steps



Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

| 9xHr9x _gngdk] B —Hngzl
Qk - )Ck T

—giHkdx  diHydy i dx
How to "cheaply"” obtain Q? Compute H,gs, H, d;, first.
* Finite difference:
1
Hi v ~ - [g(x +€-v) — gi,
* Analytic approach to fit modern automatic differentiation,

1
Higk =V g i), Hiedr = V(digr),

* or use Hessian if readily available !



Subproblem adaptive strategies in DRSOM |

Recall 2-D quadratic model:

minmg (o) = f(x) + (cx)" a + E(xTQka
99k —9rdk - [ 9rHi gi _gngdk] - —HngZ]
iQk — ) Cp =

~gikdr  didy — g Hkdx  diHydy i dx
Apply two strategies that ensure global and convergence

o, < Ak, Gk = [

* Trust-region: Adaptive radius

Ik Ik —gﬁdk]
~gidx  didy
* Radius-free: Apply Lagrangian multiplier 4,

main m}c{((a)’ ” o4 ”GI{S Ak' Gk — [

min mi(@) + Acllall?,

* The subproblems can be solved efficiently.



Subproblem adaptive strategies in DRSOM i

At each iteration k, the DRSOM proceeds:

* Solving 2-D Quadratic trust-region model

* Computing quality of the approximation*

G R G A B CO R (AR

P Tk (0) — mE(dk ) mk (0) — m¥(ak)

* |f pis too small, increase A (Radius-Free) or decrease A (trust-region)

* Otherwise, decrease A or increase A

*Can be further improved by other acceptance criteria, e.g., Curtis et al. 2017



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE)

Assumption. (a) f has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixed-

radius strategy: A, = €/B) (c) If the Lagrangian multiplier 4, < /e, assume
I (H, — H)dp.q1 II< C |l disq I* (Cartis et al.), where Hy is the projected Hessian in the

subspace (commonly adopted for approximate Hessian)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n
steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition,

DRSOM terminates in 0(e~3/2) iterations. Furthermore, the iterate x, satisfies the first-
order condition, and the Hessian Is positive semi-definite in the subspace spanned by the

gradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x; converges to a strict local optimum

x* such that H(x™) > 0, and if Assumption (c) Is satisfled as soonas A, < Cy |l dg+1 |,
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: || x4

—x* I= 0(ll x;, — x* 11%)



DRSOM: convergence behavior, an example

102 u

1074}

CUTEst model name := CHAINWOO-1000

2. Locally superlinear *’

convergence

-.._i______-_-.)

1. 2-D DRSOM improved
by periodic Krylov

periodic-Krylov 2-Dimensional

20.000000

93.321928 26.643856  7.643856 98.965784  99.965784

Iteration

213.287712

— DRSOM-F (periodic-Krylov)

GD-+Wolfe
LBFGS+Wolfe
DRSOM-F(2-D)

Example from the
CUTEst dataset

e GD and LBFGS both
use a Line-search

(Hager-Zhang)
* DRSOM-F (2-D):
original 2-dimensional

version with g, and
dy

* DRSOM-F (periodic-
Krylov), guarantees

(Hy — H)dgsq IS C
d, .1 |I* periodically.



Part (3)

Computational Experiments



Nonconvex L,-L, Minimization in Compressed Sensing

* Consider nonconvex L2-Lp minimization, p <1

f(@) = | Az = bll3 + M|z}

o DRSOM | AGD | LBFGS | Newton TR
Smoothed version kK ||IVfl time kK ||Vf] time kK ||IVfl time k  ||Vf] time
100 10 28 b5.8¢-07 1.3e400 58 8.5e06 4.3e-01 21 8.9e-06 1.4e-01 10 7.1e-07  1.4e-02
n 100 20 47 6.0e-07 1.0e-03 150 8.2e-06 7.0e-03 35 6.2-06 2.0e-03 9 4.9e-07  9.0e-03
2 100 100 98 1.8¢-06 1.1e-02 632 1.0e-05 4.6e-01 106 9.8¢-06 7.3e-02 47 9.9e-07 7.3e400
f(z) = || Az — bllz + A Z $(Zi,€)" 500 10 24 13606 10003 37 78006 10603 18 14606 10003 13 59610 4.06-03
i=1 200 20 47 9.3e-07 2.0e-03 115 9.4e-06 2.9¢-02 33 6.2e-06 2.0e-03 17 6.7e-06  5.2e-02
| f |z > e 200 100 107 4.3e-06 1.5e-02 814 9.9e¢-06 9.3e-01 85 6.2e-06 1.1e-01 36 1.1e-07 7.6e4-00
s(z,€) =4 1000 10 25 4.2e-06 3.0e-03 97 9.0e-06 3.6e-02 18 2.2¢-06 5.0e-03 16 3.2¢-07  5.4e-02
’ 224 if ] <e 1000 20 27 5.8¢-06 3.0e-03 68 7.6e-06 3.4e-02 27 4.5¢-06 4.7e-02 13 7.8e-06  1.6e-01
2¢ 2 — 1000 100 76 1.7e-05 2.6e-02 408 1.4e-05 2.6e+00 73 6.4e-06 6.1e-01 32 8.3e-07 1.3e+01

* Compare DRSOM to Accelerated Gradient Descend (AGD), LBFGS, and Newton Trust-region

lterations needed to reach € = 10e-6

DRSOM Is comparable to full-dimensional SOM in iteration number

DRSOM iIs much better in computation time !



Sensor Network Location (SNL)

* Consider Sensor Network Location (SNL)

No = {(i,5) : |z — @jll = dij < ra}, No = {(i, k) : l|zi — axl| = dix. < ra)
where 7,4 Is a fixed parameter known as the radio range.
The SNL problem considers the following QCQP feasibllity problem:

2
|zi — 25| = di;,(i, §) € No

sz — akHQ zkav(z k) € Ng

* We can solve SNL by the nonconvex nonlinear least square (NLS) problem

min Y (lzi— gl —d)*+ Y (lak —xll* — diy)?

X
(¢<7,J)ENg (k,j)EN,



Sensor Network Location (SNL)

* Graphical results using SDP relaxation (Biswas et al. 2004) to initialize the NLS
* n=80, m=>5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

* Both Gradient Descent and DRSOM can find good solutions !
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Sensor Network Location (SNL)

* Graphical results without SDP relaxation initialization

* DRSOM can still converge to optimal solutions
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Neural Networks and Deep Learning

To use DRSOM In machine learning problems

* We apply the mini-batch strategy to a vanilla DRSOM
* Use Automatic Differentiation to compute gradients

* Train ResNetl8 Model with CIFAR 10

* Set Adam with initial learning rate le-3
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Neural Networks and Deep Learning

loss

0 _ W — ! _ W —— Pros
- — * DRSOM has rapid convergence
< i (30 epochs)
75(J 2‘0 40 60 8‘0 100 75() 2I0 40 60 8‘0 100 ° DRSOM needs Iittle tuning
Trainina results for ResNet18 with DRSOM and Adam cons
— N L — * DRSOM may overfit the models
—ma | —ww | * Needs 4~5x time than Adam to
, run same number of epoch
Good potential to be a standard
I e optimizer for deep learning!
epoch epoch

Test results for ResNetl18 with DRSOM and Adam



DRSOM for Policy Gradient (PG) (Liu et al. SHUFE)

* As mentioned above, the goal is to maximize the expected discounted trajectory reward:
maxgeﬁd J(Q) . — ETmp(ﬂH IR T ‘ Q)d’T
* The gradient can be estimated by:
R . o
VJ(0) = 1 Yiep Viogp (7 | ) R (7:)

* With the estimated gradient, we can apply DRSOM to get the step size a, and update the
parameter by:

Qt-l—l — 0; + Od%ﬁj(gt) —+ Oﬁ% d;

where d; Is the momentum direction.



DRSOM/ADAM/SGD Preliminary Results |

We compare the performance of DRSOM-based Reinforce with Adam-based reinforce and SGD-based

reinforce(with(msgd) and without(sgd) momentum) on several GYM environments.
We set the learning rate of Adam and SGD both as 1e-3, and momentum of MSGD as 0.99

Walker2d-v2 Swimmer-v2

— drsom —=_adam —— sqd msgd — drsom —— adam sqd NSsge
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
timestep # ! timestep # e

In these two cases, DRSOM converges faster and gain higher return than other algorithms. And also DRSOM
seems to be more steady.



AVGReturn

DRSOM/ADAM/SGD Preliminary Results |

InvertedDoublePendulum-v2

Hopper-v2
—— drsom —— adam — sqgd msgd —— drsom —— adam
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100
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In these two cases, DRSOM performs better than SGD but worse than ADAM.

0.4 0.6 0.8 1.0
timestep # !




DRSOM for TRPO | (Xue et al. SHUFE)

* TRPO attempts to optimize a surrogate function (based on the current iterate) of the
objective function while keep a KL divergence constraint

IMaxg Lgk(f))
st KL (Pry || Pre) <4

* |n practice, It linearizes the surrogate function, quadratizes the KL constraint, and obtain

maxg g’ (0 —6;)
st. S (0—60r)" Fr(60—0) <6

where F;, Is the Hessian of the KL divergence.



DRSOM/TRPO Preliminary Results |

* Although we only maintain the linear approximation of the surrogate function, surprisingly the
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Average Discounted Return

DRSOM/TRPO Preliminary Results |l

* Sometimes even better than TRPO !
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DRSOM/TRPO Preliminary Results llI
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DRSOM/TRPO Preliminary Results IV
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DRSOM for Riemannian Optimization (Tang et al. NUS)

min  £(x) (ROP)

@ M is a Riemannian manifold embeded in Euclidean space R".

@ f:R" — R is a second-order continuously differentiable function that is lower

bounded in M.
R-DRSOM: Choose an initial point xo € M, set Kk =0, p_1 = 0O;
for Kk =0,1,..., T do

Step 1. Compute gx = gradf(x«), dic = T ., (Pxk—1), Higx = Hessf(xx)|[gx] and

dek = HeSSf(Xk)[dk];

— (8k> 8k) 5,
<gk? dk)xk
(&K, Hkgr),, ~ (—dk, Hkgk) G — | (88K —(dk, 8K),

’ 9 k -— .

(—dk, Hegi),,  (dk, Hkdk) — (dk, 8k}, (di, dic) .,

Step 3. Solve the following 2 by 2 trust region subproblem with radius Ay > 0

Step 2. Compute the vector ¢, = [ ] and the following matrices

Q= |

: 1
Qe 1= ar min f(x )+ cl oo+ o' Qrax:
“ gllﬁfkllckﬁék (>) “ 2 “
Step 4. xxi+1 := R, (xk — i gk + aidk);
end
Return xi.



Max-CUT SDP

Max-Cut: min{— (L, X) :

diag(X) = e, X €S} .
min {— <L, RRT> - diag(RRT) = e, R ¢ R”X"} .

gb7 Fval -30977.7  -30977.7  -30977.7  -30977.7  -30977.7
n=10000 Residue 1.3e-10 2.4e-10 0.7e-10 2.6e-10 8.3e-09
m=20000 Time[s] 131.0 1371.4 177.8 1114 .4 356.9
g70 Fval -30446.1  -39446.1  -39446.1  -39446.1  -39446.1
n=10000 Residue 2.2e-10 3.7e-12 1.6e-09 2.3e-10 3.4e-09
m=9999 Time [s]  36.2 288.4 63.5 250.8 100.7
g72 Fval -31234.2  -31234.2  -312342  -31234.2  -31234.2
n=10000 Residue  8.2e-11 1.8e-12 5.8e-10 2.0e-10 1.1e-08
m=20000 Time[s] 110.4 881.2 191.9 907.5 359.2
g?7 Fval -44182.7  -44182.7  -44182.7  -44182.7  -44182.7
n=14000 Residue  7.8e-11 1.4e-10 7.1e-10 1.2e-10 1.0e-08
m=28000 Time[s] 268.3 1576.9 450.4 2402.6 603.8
g8l Fval -62624.8  -62624.8  -62624.8  -62624.8  -62624.8
n=20000 Residue  4.6e-11 1.3e-10 1.4e-09 7.9e-11 2.0e-08
m=40000 Time[s] 650.1 4283.9 1219.0 6087.4 1062.1




1D-Kohn-Sham Equation

min{%tr(RTLR) | jdiag(RRT)TL_ldiag(RRT): R'R =1, ReR””}, (3)

where L is a tri-diagonal matrix with 2 on its diagonal and -1 on its subdiagonal and
o > 0 is a parameter. We terminate algorithms when ||gradf(R)|| < 10™*.
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Figure 1: Results for Discretized 1D Kohn-Sham Equation. o = 1.



DRSOM for LP Potential Reduction (Gao et al. SHUFE)

We consider a simplex-constrained QP model We wish to solve a standard LP (and its dual)
min c'x
X
| 1 , ‘T4x — bt = subjectto Ax =b
min - glAxlt =r@ - cATy-ster o= 00 x>0
subjectto e'x =1 b'y—c x—K = 0
x =0 epx+els+k+t = 1 max b'y
v,S
| | | subjectto A'y+s=c
The self-dual embedding builds a bridge s> 0

‘ThEhenwduigeteuS Qitspesxs potastacfivedtion and apply DRSOM to it

* How to solve much more general LPs?

30 = plog(f () - 3 logx,

72 (x)
vo) = P ) _ -1, PYFOVF)T  ATA
f@) ST i it

Combined with scaled gradient(Hessian) projection, the method solves LPs



DR-Potential Reduction: Preliminary Results

One feature of the DR-Potential reduction is the use of negative curvature of

pVfVf(x)"  ATA oy
AORION

—2

V2 (x) =

Computable using Lanczos iteration

Getting LPs to high accuracy 107° ~ 1078 if negative curvature is efficiently computed

Problem Plnfeas Dlnfeas. @ Compl. Problem Plnfeas Dlnfeas. @ Compl.
ADLITTLE 1.347e-10 2.308e-10 2.960e-00 KB2 5.455e-11 6.417e-10 7.562e-11
AFIRO  7.641e-11 7.375e11 3.130e-10| LOTFI |2.164e-00 4.155e.00 8.663e-08
AGG2  3.374e-08 4.859¢.08 6.286e-07 | MODSZK1 |1.527¢-06 5.415e.05 2.597e-04
AGG3  2.248¢-05 1.151e06 1.518e-05| RECIPELP |5.868e-08 6.300e-08 1.285e-07 * Now solving small and medium Netlib
BANDM  2.444e-09 4.886e-09 3.769e-08| SC105 |7.315e-11 5.970e11 2.435e-10 : :
BEACONFD 5.765e-12 9.853e-12 1.022e-10| SC205 |6.392e-11 5.710e-11 2.650e-10 Instances in 10 seconds
BLEND  2.018e-10 3.729¢-10 1.179e-09| SC50A |1.078e-05 6.098e-06 4.279e-05 o _ _
BOEING2 1.144e-07 1.110e.08 2.307e-07| SC50B |4.647e-11 3.269e-11 1.747e-10 within 1000 iterations
BORE3D 2.389e-08 5.013e-08 1.165e-07| SCAGR25 |1.048e-07 5.298e-08 1.289e-06
BRANDY 2.702e-05 7.818e-06 1.849e-05| SCAGR7 [1.087e-07 1.173e-08 2.601e-07 ° In MATLAB and getting transferred into C
CAPRI  7.575e-05 4.488e-05 4.880e-05| SCFXMI1 |4.323¢-06 5.244e-06 8.681e-06 .
ED26  2.656e-06 4.7426.06 2.512¢-05| SCORPION | 1.674e-09 1.892e-00 1.737e-08 for acceleration
FINNIS  8.577e-07 8.367e-07 1.001e-05| SCTAP1 |5.567e-07 8.430e-07 5.081e-06
FORPLAN b5.874e-07 2.084e-07 4.979e-06| SEBA |2.919e-11 5.729e-11 1.448e-10
GFRD-PNC 4.558e-05 1.052e-05 4.363e-05| SHAREIB |3.367e-07 1.339e-06 3.578e-06
GROW7  1.276e-04 4.906e-06 1.024e-04| SHARE2B |2.142¢-04 2.014e-05 6.146e-05
ISRAEL  1.422¢-06 1.336e-06 1.404e-05| STAIR |b5.549¢-04 8.566e-06 2.861e-05
STANDATA 5.645e-08 2.735e-07 5.130e-06 | STANDGUB |2.934e-08 1.467e-07 2.753e-06
STOCFOR1 6.633e-09 9.701e-09 4.811e-08 | VTP-BASE |1.349¢e-10 5.098e-11 2.342e-10




Part (4)

Steepest Descent Integrating First and Second Order Information
(Zhang et al. SHUFE)



A Descent Direction Using Homogenized Quadratic Model

* Big Question: How to drop Assumption (c) iIn DRSOM analyses?
Recall the classical trust-region method minimizes the quadratic model

|
min m(d) = ¢ld + —d'H,d
deR” ma) Sk 2 k

st.|ld|| < A,.

* -0, Is the first-order steepest descent direction but ignores Hessian; the direction of H,-
negative curvature v meets Assumption (c) and also enables 0(e') decrease if
R(Hy,v) = v Hv/|lv||* < =/,
but such direction does not exist If it becomes nearly convex...

* Could we construct a direction integrating both?

Answer: Use the homogenized quadratic model!



A Descent Direction Using the Homogenized Quadratic Model

» Using the homogenization trick by lifting with extra scalar t:

=3[ L o) =2 BT [ 5[

 The homogeneous model Is equivalent to m;, up to scaling:

P (&o, t) = t% - my(§y/t)

* FInd a good direction & = ¢&,/t (ift =0 then set t=1) by the leftmost

elgenvector:

min , L
min e (6o, )

- Accessible at the cost of 0(e~1/*) via the randomized Lanczos method.



This Is the Classical Homogenization Trick in QCQP via SDP

* For inhomogeneous QP (and QCQP):

min x’ Qyx — 2b, xt

min x’ Qyx — 2b, x
) t. xIQx—=2bIxt+ct* <0, i=1,...,
s.t. xTQfx—ZbiTx+ci$0, i=1,....m st X0 XS0 "
> =1
o Used with SDP relaxation:
min M, e X T
c; b: 1 x
S.t. Mi'XSO, | = 1,...,m <: Mj= |f; Q£‘|’X= [IT X]
I I

 Homogenized QCQP and SDP relaxation enables strong performance and

theoretical analysis, and It guarantees a rank-one solution If m=1.

* Rojas and Sorensen 2001



The Homogenization Trick was Also Successful in LP

 The homogeneous self-dual embedding (HSD) for the linear conic program:

min c ' x max — b 'y

st.Ax+s=0>b st. —Aly+r=c
(x,5) € R" X A, (r,y) € {0} X A*

r 0 AT C X
[s] =|1-A O b]| |)
K T _bT 0 T

—C

 Homogenize to:

(x,8,7,y,7,kK) ER"XFA X{O}'" X A*XR, XR,

* |ntroduced for solving linear programs and later widely used In general

linear conic programs and MCPs (Andersen et al. 1999)



A Descent Direction Using the Homogenized Quadratic Model

* Coming back to the homogenized quadratic model at x;,:

o =3ff] [ S -1 i 5] )

* The "un-homogenized vector” ¢ = &,/t can be found by the leftmost
eigenvalue computation and scaling (if t = 0 then set t=1) ;
 Lemma 1 (strict negative curvature) : If g, + 0, H;, # 0, let 1, be the leftmost

H g
g 0
* The motivates us to use ¢ as a descent direction Alone or iIn DRSOM.

eigenvalue of [ ] , then 1; < 0.



Algorithm Frameworks Utilizing the Homogeneous Direction

 Compute the "homogeneous vector” & = &, /t at x;

DRSOM + homogeneous direction

* Use € In the subspace of DRSOM

 If we construct DRSOM subspace using {¢, g, }, then Assumption (c) holds
SOSDM: A second-order steepest descent method — a single loop method
 Use & alone just like a “steepest descent” direction

* Line-search and rescaling can be used for practical adaptive implementation.
Both frameworks will have first and second-order complexity guarantees:

» complexity of 0(e~3/?) in iterations

- complexity of 0(e~7/*) in function and gradient evaluations using the randomized

Lanczos method for eigenvector computation in O (e‘”‘*log(ﬁ))



Theoretical Guarantees of SOSDM

» Consider use Homogenized Direction only, and the length of each step

Iné|| Is fixed: |[né]| < Ay, = %E where f(x) has L-Lipschitz gradient and M-

Lipschitz Hessian.
» Previous Assumption (c): | (Hx — Hy)ds+1 IS C |l diyq II? is not needed!
 Theorem 1 (Global convergence rate) : If f(x) satisfies the Lipchitz
Assumption and the iterate moves along homogeneous vector &: x4 = Xy
+ 1. &, then, if we choose n;, = A, /||€]|, and terminate at [|€]| < Ay, then
algorithm has 0(e~3/2) iteration complexity. Furthermore, x,., satisfies
approximate first-order and second-order conditions.



Global Convergence Rate: Outline of Analysis

» A concise analysis using fixed radius A

Let xpy1= xx + &, R(Hy, &) = ETHRE/||€])2

o (sufficient decrease in large step) If ||&]| = A, we choose n = A /||&]|
. I R(Hk, &) < —Ve, f(xpe1) — fxp) < —0(e™)

i. If R(H,, &) = +Ve, the same order reduction.

iii. Otherwise we perturb the Hessian by 2ve and compute the eigenvector

which yields the same order reduction
o (small step means convergence) Otherwise ||¢|| < A, then we choose

step-size n = 1 and have ||gi.1|| < € and R(H, &) > —Ve




Theoretical Guarantees of SOSDM (cont.)

 Theorem 2 (Local convergence rate): If the iterate x;, of SOSDM converges to
a strict local optimum x* such that H(x™) > 0, then step-size n;, = 1 In the
following 1terations and SOSDM has a local superlinear (quadratic) speed of
convergence, namely: || xx.1 — x* I= O(ll x5, — x* ||?)

* The local convergence property of SOSDM Is very similar to classical trust-region
method when the iterate becomes unconstrained Newton steps



Comparison Summary to Other Recent Algorithms Again

Second-order algorithms: 0(e~3/?) iteration complexity

» Satisfy first and second-order conditions

» Each iteration takes 0(n?) to run a Lanczos-like algorithm

* Including: Ye 2005, Cartis et al., 2011; Curtis et al., 2017; Royer et al., 2018;

7
First-order hybrid algorithms: O(e = log G)) gradient and function evaluations*

» Satisfy first-order conditions, some of them has second-order guarantees.

1
 Extra O(e 4+log (i)) comes from eigenvector, perturbation, and so on.

* Including: Carmon et al., 2018; Agarwal et al., 2017; Carmon & Duchi, 2020; Jin et
al., 2018.
Our work: a single-looped (easy-to-iImplement) method with the same

complexity as the hybrid ones but guarantee to first and second-order points

* Recently, Li and Lin (2022) drops the “log (g) term to satisfy first-order conditions, but not for second-order points.
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Preliminary results: DRSOM + Homogenized Quadratic Model
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DRSOM

GD+ Wolfe
LBFGS+ Wolfe
Newton-T R*(Analytic)
DRSOM
—— DRSOMPIlus(homokrylov,1)
—— DRSOM-F(undef,truncate)
——  DRSOM-F(undef,full)

An example of CUTEst

 GD and LBFGS both use
a Line-search (Hager-
Zhang)

« DRSOM, DRSOM(Curtis)
use 2-D subspace

DRSOM(Curtis) « DRSOM Homogenized is

much better!
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Preliminary results: DRSOM + Homogenized Quadratic Model

L|Ax — b2+ |x||z,p= 0.5,A € R1%*%0 nnz = 0.5

102 |

10—2 |

1074 |-

10—6 |

DRSOM
Homogenized

\ DRSOM

DRSOM/(Curtis)

o GD+ Wolfe

—_— LBFGS+ Wolfe

——  Newton-T R*(Analytic)
—_— DRSOM

—— DRSOM Plus(homokrylov,1)
—— DRSOM-Curtis(undef,1)

An example of L2-Lp

minimization

 GD and LBFGS both use
a Line-search (Hager-
Zhang)

« DRSOM, DRSOM(Curtis)
use 2-D subspace

* DRSOM Homogenized Is
much better!
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[teration
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Ongoing Research and Future Directions

 Arethere other alternatives to remove Assumption c) in DRSOM analyses?

Hy,
T
Ik
sufficiently large scalar p so that it Is positive definite if necessary) to make the
leftmost eigenvector computing easier (Randomized rank reduction of a symmetric

matrix to log(n), So et al. 08) and “Hot-Start” eigenvector computing by Power
Methods (linear convergence of Liu et al. 2017)?

 Low-rank approximation of the homogenized matrix [ gok](+uol, that Is, adding

* Indefinite and Randomized Hessian rank-one updating via BFGS/SR1
 Dimension Reduced Non-Smooth/Semi-Smooth Newton

 Dimension Reduced Second-Order Methods for optimization with more complicated
constraints

THANK YOU



