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Part (1)

Motivation and Literature Review



min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

• where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝛻𝑓(𝑥𝑘) ∥≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (in active subspace, secondary, second-order condition) 

• For the ball-constrained nonconvex QP: min 𝑐𝑇𝑥 + 0.5𝑥𝑇𝑄𝑥 𝑠. 𝑡. ∥ 𝑥 ∥ 2 ≤1   

O(loglog(𝜖-1)); see Y (1989,93), Vavasis&Zippel (1990)

• For nonconvex QP with polyhedral constraints: O(𝜖-1); see Interior-Trust-Region 

method Y (1998), Vavasis (2001)

Early Complexity Analyses for Nonconvex Optimization



Standard methods for general nonconvex optimization I

First-order Method (FOM): Gradient-Type Methods

• Assume 𝑓 has 𝐿-Lipschitz cont. gradient 

• Global convergence by, e.g., linear-search (LS)

• No guarantee for the second-order condition

• Worst-case complexity, 𝑂 𝜖−2 ; see the textbook by Nesterov (2004)

Each iteration requires O(n2) operations



Second-order Method (SOM): Hessian-Type Methods

• Assume 𝑓 has 𝑀-Lipschitz cont. Hessian 

• Global convergence by, e.g., linear-search (LS), Trust-region (TR), or 

Cubic Regularization 

• Convergence to second-order points

• No better than 𝑂 𝜖−2 , for traditional methods (steepest descent and 

Newton); according to Cartis et al. (2010) .

Each iteration requires O(n3) operations

Standard methods for general nonconvex optimization II



Variants of SOM

• Trust-region with the fixed-radius strategy, 𝑂(𝜖−3/2) , see the lecture notes by Y 

since 20??

• Cubic regularization, 𝑂(𝜖−3/2) , see Nesterov and Polyak (2006), Cartis, Gould, 

and Toint (2011)

• A new trust-region framework, 𝑂(𝜖−3/2) , Curtis, Robinson, and Samadi (2017)

With “slight” modification, complexity of SOM reduces from 𝑂(𝜖−2) to 𝑂 𝜖−
3

2 !

Analyses of SOM for general nonconvex optimization since 2000



• Ge, Jiang, and Y (2011), 𝑂(𝜖−1log(1/𝜖)), for 𝐿𝑝 minimization arisen from Comp. Sensing.

• Bian, Chen, and Y (2015), 𝑂(𝜖−3/2), for certain non-Lipschitz and nonconvex 

optimization.

• Chen et al. (2014) shows strongly NP-hardness for 𝐿2 − 𝐿𝑝 minimization; but later Ge, 

He, and He (2017) proposes a method with complexity of 𝑂(log(𝜖−1)) to find a local 

minimum

• Haeser, Liu, and Y (2019) uses the first-order and second-order interior point trust-region 

method achieving first-order 𝜖-KKT points with complexity of 𝑂(𝜖−2) and 𝑂(𝜖−3/2), 

respectively.

Other complexity analyses for some structural nonconvex 

optimization



FOM Improvements:

• FOM with Hessian negative curvature (NC) detections, 𝑂(𝜖−7/4log(1/𝜖))

• Carmon et al. (2018), with Hessian-vector product (HVP) and Lanczos

• cost 𝑂(𝜖−1/4) for each negative curvature request

• Also, Carmon et al. (2017), does not require HVP (only first-order condition)

• Agarwal et al. (2016), also 𝑂(𝜖−7/4), using accelerated methods for fast approximate 

matrix inversion

They are hybrid and/or randomized methods and seem difficult to be implemented

Our approach: Reduce dimension in SOM

Recent efforts for general nonconvex optimization



Part (2)

The Algorithm and Preliminary Convergence Analyses



• Two-directional FOM, with 𝑑𝑘 being the momentum direction (𝑥𝑘 − 𝑥𝑘−1)

𝑥𝑘+1= 𝑥𝑘 − 𝛼𝑘
1𝛻𝑓(𝑥𝑘) + 𝛼𝑘

2𝑑𝑘 = 𝑥𝑘+ 𝑑𝑘+1

where step-sizes are constructed; including CG, PT, AGD, Polyak, and many others. 

• In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to 

obtain direction vector 𝑑𝑘+1. For example, one TR step solves for 𝑑𝑘+1 from

min𝑑 𝑔𝑘
𝑇𝑑 + 0.5𝑑𝑇𝐻𝑘𝑑 𝑠. 𝑡. ||d||2 ≤ Δ𝑘

where Δ𝑘 is the trust-region radius.

• DRSOM: Dimension Reduced Second-Order Method

Motivation: using few directions in SOM 

Motivation from multi-directional FOM



• The DRSOM in general uses m-independent directions

𝑑(α):= 𝐷kα , 𝐷k ∊ Rnm, α∊ Rm

• Plug the expression into the full-dimension TR quadratic minimization problem, 

we minimize a  m-dimension trust-region subproblem to decide “m stepsizes”:

min 𝑚𝑘
α α ≔ 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘= 𝐷𝑘
𝑇𝐷𝑘, 𝑄𝑘 = 𝐷𝑘

𝑇𝐻𝑘𝐷𝑘, 𝑐𝑘 = 𝑔𝑘
𝑇𝐷k

How to choose Dk? How great would m be?

DRSOM I



• In following DRSOM adopts two FOM directions

𝑑 = −𝛼1 𝛻𝑓 𝑥𝑘 + 𝛼2 𝑑𝑘 ∶= 𝑑(α)

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Then we minimize a  2-D trust-region problem to decide “two step-sizes”:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

DRSOM II



DRSOM III

DRSOM can be seen as:

• “Adaptive” Accelerated Gradient Method (Polyak’s momentum 60)

• A second-order method minimizing quadratic model in the reduced 2-D 

𝑚𝑘(𝑑) = 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)
𝑇𝑑 +

1

2
𝑑𝑇𝛻2𝑓(𝑥𝑘)𝑑, 𝑑 ∈ 𝗌𝗉𝖺𝗇{−𝑔𝑘, 𝑑𝑘}

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method

𝑑 ∈ 𝗌𝗉𝖺𝗇{𝑔𝑘 , [𝐻(𝑥𝑘)]
−1𝑔𝑘} (e.g., Powell 70)

• A conjugate direction method for convex optimization exploring the Krylov

Subspace (e.g., Yuan&Stoer 95)

• For convex quadratic programming with no radius limit, terminates in n steps



Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

How to "cheaply" obtain Q? Compute  𝐻𝑘𝑔𝑘, 𝐻𝑘𝑑𝑘 first.

• Finite difference:

𝐻𝑘 ⋅ 𝑣 ≈
1

𝜖
𝑔(𝑥𝑘 + 𝜖 ⋅ 𝑣) − 𝑔𝑘 ,

• Analytic approach to fit modern automatic differentiation,

𝐻𝑘𝑔𝑘 = 𝛻(
1

2
𝑔𝑘
𝑇𝑔𝑘), 𝐻𝑘𝑑𝑘 = 𝛻(𝑑𝑘

𝑇𝑔𝑘),

• or use Hessian if readily available !



Subproblem adaptive strategies in DRSOM I

Recall 2-D quadratic model:

min𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘 , 𝐺𝑘 =
𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

Apply two strategies that ensure global and convergence

• Trust-region: Adaptive radius

min
𝛼

𝑚𝑘
𝛼 𝛼 , ∥ 𝛼 ∥𝐺𝑘≤ Δ𝑘 , 𝐺𝑘 =

𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

• Radius-free: Apply Lagrangian multiplier 𝝀𝒌

min
𝛼

𝑚𝑘
𝛼(𝛼) + 𝜆𝑘 𝛼 𝐺𝑘

2

• The subproblems can be solved efficiently.



Subproblem adaptive strategies in DRSOM II

At each iteration k, the DRSOM proceeds:

• Solving 2-D Quadratic trust-region model 

• Computing quality of the approximation* 

• If ρ is too small, increase λ (Radius-Free) or decrease Δ (trust-region)           

• Otherwise, decrease λ or increase Δ

𝜌𝑘: =
𝑓 𝑥𝑘 − 𝑓 𝑥𝑘 + 𝑑𝑘+1

𝑚𝑝
𝑘(0) − 𝑚𝑝

𝑘 𝑑𝑘+1
=
𝑓 𝑥𝑘 − 𝑓 𝑥𝑘 + 𝑑𝑘+1

𝑚𝛼
𝑘(0) − 𝑚𝛼

𝑘 𝛼𝑘

* Can be further improved by other acceptance criteria, e.g., Curtis et al. 2017



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n 

steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, 

DRSOM terminates in 𝑂(𝜖  −3 2) iterations.  Furthermore, the iterate 𝑥𝑘 satisfies the first-

order condition, and the Hessian is positive semi-definite in the subspace spanned by the 

gradient and momentum.

Assumption. (a)  𝑓 has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixed-

radius strategy: Δ𝑘 = 𝜖/𝛽) (c) If the Lagrangian multiplier 𝝀𝒌 < 𝝐 , assume 

∥ (𝑯𝒌 −  𝑯𝒌)𝒅𝒌+𝟏 ∥≤ 𝑪 ∥ 𝒅𝒌+𝟏 ∥
𝟐 (Cartis et al.), where  𝐻𝑘 is the projected Hessian in the 

subspace (commonly adopted for approximate Hessian)

Theorem 3. (Local convergence rate) If the iterate 𝑥𝑘 converges to a strict local optimum 

𝑥∗ such that 𝐻(𝑥∗) ≻ 0, and if Assumption (c) is satisfied as soon as 𝜆𝑘 ≤ 𝐶𝜆 ∥ 𝑑𝑘+1 ∥, 
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1
− 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)



DRSOM: convergence behavior, an example

Example from the 

CUTEst dataset

• GD and LBFGS both 

use a Line-search 

(Hager-Zhang)

• DRSOM-F (2-D):

original 2-dimensional 

version with 𝑔𝑘 and 

𝑑𝑘

• DRSOM-F (periodic-

Krylov), guarantees 

∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥≤ 𝐶

∥ 𝑑𝑘+1 ∥
2 periodically.



Part (3)

Computational Experiments



Nonconvex L2-Lp Minimization in Compressed Sensing

• Consider nonconvex L2-Lp minimization, p < 1

• Smoothed version

• Compare DRSOM to Accelerated Gradient Descend (AGD), LBFGS, and Newton Trust-region

• DRSOM is comparable to full-dimensional SOM in iteration number

• DRSOM is much better in computation time !

Iterations needed to reach ε = 10e-6



Sensor Network Location (SNL)

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as the radio range. 

The SNL problem considers the following QCQP feasibility problem:

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem



Sensor Network Location (SNL)

• Graphical results using SDP relaxation (Biswas et al. 2004) to initialize the NLS

• n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

• Both Gradient Descent and DRSOM can find good solutions !



Sensor Network Location (SNL)

• DRSOM can still converge to optimal solutions

• Graphical results without SDP relaxation initialization



Neural Networks and Deep Learning 

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM

• Use Automatic Differentiation to compute gradients

• Train ResNet18 Model with CIFAR 10

• Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning 

Training results for ResNet18 with DRSOM and Adam

Test results for ResNet18 with DRSOM and Adam

Pros

• DRSOM has rapid convergence 

(30 epochs)

• DRSOM needs little tuning

Cons

• DRSOM may overfit the models

• Needs 4~5x time than Adam to 

run same number of epoch 

Good potential to be a standard 

optimizer for deep learning!



DRSOM for Policy Gradient (PG) (Liu et al. SHUFE)

• As mentioned above, the goal is to maximize the expected discounted trajectory reward:

• The gradient can be estimated by:

• With the estimated gradient, we can apply DRSOM to get the step size 𝛼, and update the 
parameter by:

where 𝑑𝑡 is the momentum direction.



We compare the performance of DRSOM-based Reinforce with Adam-based reinforce and SGD-based

reinforce(with(msgd) and without(sgd) momentum) on several GYM environments.

We set the learning rate of Adam and SGD both as 1e-3, and momentum of MSGD as 0.99

In these two cases, DRSOM converges faster and gain higher return than other algorithms. And also DRSOM

seems to be more steady.

DRSOM/ADAM/SGD Preliminary Results I



In these two cases, DRSOM performs better than SGD but worse than ADAM.

DRSOM/ADAM/SGD Preliminary Results II



• TRPO attempts to optimize a surrogate function (based on the current iterate) of the 
objective function while keep a KL divergence constraint

• In practice, it linearizes the surrogate function, quadratizes the KL constraint, and obtain

where 𝐹𝑘 is the Hessian of the KL divergence. 

DRSOM for TRPO I (Xue et al. SHUFE)



DRSOM/TRPO Preliminary Results I

• Although we only maintain the linear approximation of the surrogate function, surprisingly the 

algorithm works well in some RL environments



DRSOM/TRPO Preliminary Results II

• Sometimes even better than TRPO ! 



DRSOM/TRPO Preliminary Results III



DRSOM/TRPO Preliminary Results IV



DRSOM for Riemannian Optimization (Tang et al. NUS)



Max-CUT SDP



1D-Kohn-Sham Equation



DRSOM for LP Potential Reduction (Gao et al. SHUFE)

𝑚𝑖𝑛
𝑥

1

2
‖𝐴𝑥‖2 =: 𝑓 𝑥

subject to 𝑒⊤𝑥 = 1
𝑥 ≥ 0

We consider a simplex-constrained QP model We wish to solve a standard LP (and its dual)

𝑚𝑖𝑛
𝑥

𝑐⊤𝑥

subject to 𝐴𝑥 = 𝑏
𝑥 ≥ 0

𝑚𝑎𝑥
𝑦,𝑠

𝑏⊤𝑦

subject to 𝐴⊤𝑦 + 𝑠 = 𝑐
𝑠 ≥ 0

• The homogeneous QP seems so restrictive!

• How to solve much more general LPs?

𝐴𝑥 − 𝑏𝜏 = 0
−𝐴⊤𝑦 − 𝑠 + 𝑐𝜏 = 0

𝑏⊤𝑦 − 𝑐⊤𝑥 − 𝜅 = 0

𝑒𝑛
⊤𝑥 + 𝑒𝑛

⊤𝑠 + 𝜅 + 𝜏 = 1

The self-dual embedding builds a bridge

Then we define the (nonconvex) potential function and apply DRSOM to it

𝜙 𝑥 := 𝜌log(𝑓 𝑥 ) − ∑
𝑖=1

𝑛

log 𝑥𝑖

𝛻𝜙 𝑥 =
𝜌𝛻𝑓 𝑥

𝑓 𝑥
− 𝑋−1𝑒

𝛻2𝜙 𝑥

= −
𝜌𝛻𝑓 𝑥 𝛻𝑓 𝑥 ⊤

𝑓 𝑥 2
+ 𝜌

𝐴⊤𝐴

𝑓 𝑥
+ 𝑋−2

Combined with scaled gradient(Hessian) projection, the method solves LPs



DR-Potential Reduction: Preliminary Results

One feature of the DR-Potential reduction is the use of negative curvature of

𝛻2𝜙 𝑥 = −
𝜌𝛻𝑓 𝑥 𝛻𝑓 𝑥 ⊤

𝑓 𝑥 2
+ 𝜌

𝐴⊤𝐴

𝑓 𝑥
+ 𝑋−2

• Computable using Lanczos iteration

• Getting LPs to high accuracy 10−6 ∼ 10−8 if negative curvature is efficiently computed

• Now solving small and medium Netlib

instances in 10 seconds

within 1000 iterations

• In MATLAB and getting transferred into C 

for acceleration



Part (4)
Steepest Descent Integrating First and Second Order Information 

(Zhang et al. SHUFE)



A Descent Direction Using Homogenized Quadratic Model

• -gk is the first-order steepest descent direction but ignores Hessian; the direction of Hk-

negative curvature 𝑣 meets Assumption (c) and also enables 𝑂 𝜖1.5 decrease if

𝑅 𝐻𝑘 , 𝑣 = 𝑣𝑇𝐻𝑘𝑣/ 𝑣 2 < − 𝜖,

but such direction does not exist if it becomes nearly convex…

• Could we construct a direction integrating both?

Answer: Use the homogenized quadratic model!

• Big Question: How to drop Assumption (c) in DRSOM analyses?

Recall the classical trust-region method minimizes the quadratic model



A Descent Direction Using the Homogenized Quadratic Model

• Using the homogenization trick by lifting with extra scalar 𝑡:

• Find a good direction 𝜉 = 𝜉0/𝑡 (if t = 0 then set t=1) by the leftmost 

eigenvector:

min
| 𝜉0;𝑡 |≤1

𝜓𝑘 𝜉0, 𝑡

• Accessible at the cost of 𝑂 𝜖−1/4 via the randomized Lanczos method.

• The homogeneous model is equivalent to 𝑚𝑘 up to scaling:

𝜓𝑘 𝜉0, 𝑡 = 𝑡2 ⋅ 𝑚𝑘 ξ0/𝑡



This is the Classical Homogenization Trick in QCQP via SDP

• For inhomogeneous QP (and QCQP):

• Used with SDP relaxation:

• Homogenized QCQP and SDP relaxation enables strong performance and 

theoretical analysis, and it guarantees a rank-one solution if m=1.

* Rojas and Sorensen 2001 



The Homogenization Trick was Also Successful in LP

• Homogenize to:

• Introduced for solving linear programs and later widely used in general 

linear conic programs and MCPs (Andersen et al. 1999)

• The homogeneous self-dual embedding (HSD)  for the linear conic program:



A Descent Direction Using the Homogenized Quadratic Model

• Coming back to the homogenized quadratic model at 𝑥𝑘:

• The “un-homogenized vector” 𝜉 = 𝜉0/𝑡 can be found by the leftmost 

eigenvalue computation and scaling (if t = 0 then set t=1) ;

• Lemma 1 (strict negative curvature) : if 𝑔𝑘 ≠ 0,𝐻𝑘 ≠ 0, let 𝜆1 be the leftmost 

eigenvalue of  
𝐻𝑘 𝑔𝑘
𝑔𝑘

𝑇 0
, then 𝜆1 < 0.

• The motivates us to use 𝜉 as a descent direction Alone or in DRSOM.



Algorithm Frameworks Utilizing the Homogeneous Direction

• Compute the “homogeneous vector” 𝜉 = 𝜉0/𝑡 at 𝑥𝑘

DRSOM + homogeneous direction

• Use 𝜉 in the subspace of DRSOM

• If we construct DRSOM subspace using 𝜉, 𝑔𝑘 , then Assumption (c) holds

SOSDM: A second-order steepest descent method – a single loop method

• Use 𝜉 alone just like a “steepest descent” direction

• Line-search and rescaling can be used for practical adaptive implementation.

Both frameworks will have first and second-order complexity guarantees:

• complexity of 𝑂(𝜖−3/2) in iterations

• complexity of 𝑂 𝜖−7/4 in function and gradient evaluations using the randomized 

Lanczos method for eigenvector computation in 𝑂 𝜖−1/4log(
1

𝜀
)



Theoretical Guarantees of SOSDM

• Consider use Homogenized Direction only, and the length of each step 

η𝜉 is fixed: η𝜉 ≤ Δ𝑘 =
2 𝜖

𝑀
where 𝑓(𝑥) has 𝐿-Lipschitz gradient and 𝑀-

Lipschitz Hessian. 

• Previous Assumption (c): ∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥≤ 𝐶 ∥ 𝑑𝑘+1 ∥
2 is not needed!

• Theorem 1 (Global convergence rate) : if 𝑓(𝑥) satisfies the Lipchitz 

Assumption and the iterate moves along homogeneous vector 𝜉: 𝑥𝑘+1= 𝑥𝑘
+ η𝑘𝜉, then, if we choose η𝑘 = Δ𝑘/ 𝜉 , and terminate at 𝜉 < Δ𝑘, then 

algorithm has 𝑂(𝜖−3/2) iteration complexity. Furthermore, 𝑥𝑘+1 satisfies 

approximate first-order and second-order conditions.



Global Convergence Rate: Outline of Analysis

• A concise analysis using fixed radius ∆

Let 𝑥𝑘+1= 𝑥𝑘 + η𝜉, 𝑅 𝐻𝑘 , 𝜉 = 𝜉𝑇𝐻𝑘𝜉/ 𝜉 2

o (sufficient decrease in large step) If 𝜉 ≥ ∆, we choose η = ∆ / 𝜉

i. If 𝑅 𝐻𝑘 , 𝜉 ≤ −√𝜖, 𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 ≤ −𝑂(𝜖1.5)

ii. If 𝑅 𝐻𝑘 , 𝜉 ≥ +√𝜖, the same order reduction.

iii. Otherwise we perturb the Hessian by 2√𝜖 and compute the eigenvector 

which yields the same order reduction

o (small step means convergence) Otherwise 𝜉 < ∆, then we choose 

step-size  η = 1 and have 𝑔𝑘+1 ≤ 𝜖 and 𝑅 𝐻𝑘 , 𝜉 > −√𝜖



Theoretical Guarantees of SOSDM (cont.)

• Theorem 2 (Local convergence rate): If the iterate 𝑥𝑘 of SOSDM converges to 

a strict local optimum 𝑥∗ such that 𝐻(𝑥∗) ≻ 0 , then step-size 𝜂𝑘 = 1 in the 

following iterations and SOSDM has a local superlinear (quadratic) speed of 

convergence, namely: ∥ 𝑥𝑘+1 − 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)

• The local convergence property of SOSDM is very similar to classical trust-region

method when the iterate becomes unconstrained Newton steps



Comparison Summary to Other Recent Algorithms Again

Second-order algorithms: 𝑂(𝜖−3/2) iteration complexity

• Satisfy first and second-order conditions   

• Each iteration takes 𝑂 𝑛3 to run a Lanczos-like algorithm

• Including: Ye 2005, Cartis et al., 2011; Curtis et al., 2017; Royer et al., 2018;

First-order hybrid algorithms: 𝑂(𝜖−
7

4 log
1

𝜖
) gradient and function evaluations*

• Satisfy first-order conditions, some of them has second-order guarantees.

• Extra 𝑂(𝜖−
1

4 log
1

𝜖
) comes from eigenvector, perturbation, and so on.

• Including: Carmon et al., 2018; Agarwal et al., 2017; Carmon & Duchi, 2020; Jin et 

al., 2018.

Our work: a single-looped (easy-to-implement) method with the same 

complexity as the hybrid ones but guarantee to first and second-order points

* Recently, Li and Lin (2022) drops the “log
1

𝜖
” term to satisfy first-order conditions, but not for second-order points.



Preliminary results: DRSOM + Homogenized Quadratic Model
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much better!
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An example of L2-Lp 

minimization

• GD and LBFGS both use 

a Line-search (Hager-

Zhang)

• DRSOM, DRSOM(Curtis)

use 2-D subspace

• DRSOM Homogenized is 

much better!



Ongoing Research and Future Directions

• Are there other alternatives to remove Assumption c) in DRSOM analyses?

• Low-rank approximation of the homogenized matrix 
𝐻𝑘 𝑔𝑘
𝑔𝑘

𝑇 𝟎
(+µ●I, that is, adding 

sufficiently large scalar µ so that it is positive definite if necessary) to make the 

leftmost eigenvector computing easier (Randomized rank reduction of a symmetric 

matrix to log(n), So et al. 08) and “Hot-Start” eigenvector computing by Power 

Methods (linear convergence of Liu et al. 2017)?

• Indefinite and Randomized Hessian rank-one updating via BFGS/SR1 

• Dimension Reduced Non-Smooth/Semi-Smooth Newton

• Dimension Reduced Second-Order Methods for optimization with more complicated 

constraints

THANK YOU


