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Outline

We present several optimization models and/or computational
algorithms dealing with uncertain, dynamic/online, structured
and/or massively distributed data:

� Distributionally Robust Optimization (data uncertainty)

� Online Linear Programming (data dynamics)

� Least Squares with Nonconvex Regularization (data structure)

� The ADMM Method with Multiple Blocks (data size)
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Mathematical Optimization

Classic mathematical optimization considers:

maximizex∈D h(x)

Since h(x) may be partially decided by other input data, say ξ, we
actually

maximizex∈D h(x,E[ξ])
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Distributionally Robust Optimization (DRO)

This may be too simplistic, people consider a stochastic
optimization problem as follows:

maximizex∈D EFξ
[h(x, ξ)] (1)

where x is the decision variable vector with feasible region D, ξ is
a random parameter vector with density or distribution Fξ.

� Pros: In many cases, the expected value is a good measure of
performance.

� Cons: One has to know the exact distribution of ξ to perform
the stochastic optimization. Deviant from the assumed
distribution may result in sub-optimal solutions.

Yinyu Ye June 2014



Distributionally Robust Optimization (DRO)
Online Linear Programming (OLP)

Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Robust Optimization

In order to overcome the lack of knowledge on the distribution,
people proposed the following (static) robust optimization
approach:

maximizex∈D minξ∈Ξ h(x, ξ) (2)

where Ξ is the support region of ξ.

� Pros: Only the support of the uncertain parameters are
needed.

� Cons: Too conservative. The decision that maximizes the
worst-case pay-off may perform badly in practical cases.
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Motivation of Distributionally Robust Optimization

� In practice, although the exact distribution of the random
variables may not be known, people usually know certain
moments based on rich empirical data.

� We want to choose an intermediate approach between
stochastic optimization, which has no robustness to the error
of distribution; and robust optimization, which ignores
available problem data.
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Distributionally Robust Optimization Approach

maximizex∈D minFξ∈Γ EFξ
[h(x , ξ)]; (3)

where we consider a set Γ of density functions or distributions,
and maximize the worst-case expected cost value among those
distributions in Γ.
When choosing Γ, we need to consider the following:

� Practical (Statistical) Meanings

� Tractability

� Performance (the potential loss comparing to the fully robust
approach)
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DRO with Moment Uncertainty

We consider a DRO problem where

Γ =

⎧⎨
⎩fξ ≥ 0

∣∣∣∣∣∣
E[I (ξ ∈ Ξ)] = 1

(E[ξ]− μ0)
TΣ−1

0 (E[ξ]− μ0) ≤ γ1
E[(ξ − μ0)(ξ − μ0)

T ] � γ2Σ0,

⎫⎬
⎭

where μ0 and Σ0 are given (estimated) mean vector and
covariance matrix of ξ.
That is, the density function or distribution set is defined based on
the support, first and second order moment constraints.

Scarf [1958], Dupacova [1987], Prekopa [1995], Bertsimas and
Popescu [2005]...
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Confidence Region for fξ

Theorem

For Γ(γ1, γ2) =

⎧⎨
⎩fξ ≥ 0

∣∣∣∣∣∣
E[I (ξ ∈ Ξ)] = 1

(E[ξ]− μ0)
TΣ−1

0 (E[ξ]− μ0) ≤ γ1
E[(ξ − μ0)(ξ − μ0)

T ] � γ2Σ0

⎫⎬
⎭

When μ0 and Σ0 are point estimates from the empirical data (of
size m) and Ξ lies in a ball of radius R such that ‖ξ‖2 ≤ R a.s..

Then for γ1 = O(R
2

m log (4/δ)) and γ2 = O( R2√
m

√
log (4/δ)),

P(fξ ∈ Γ(γ1, γ2)) ≥ 1− δ.
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Tractability of DRO with Moment Uncertainty

Theorem
Under concave-convex conditions on h(x, ξ), DRO model presented
here is a convex minimization problem and it can be solved to any
precision ε in time polynomial in log (1/ε) and the sizes of x and ξ

Delage and Y [Operations Research 2011]
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Summary and Future Questions on DRO

� The DRO model with Moment Information constructed above
is tractable.

� The DRO model with Moment Information yields a solution
with a guaranteed confidence level to the possible
distributions. Specifically, the confidence region of the
distributions are defined upon the empirical data.

� This approach has been applied to a wide range of problems,
including inventory problems (e.g., newsvendor problem) and
portfolio selection problems with good numerical results.

� Incorporating higher-order moment information and/or other
statistical implication?

� More tractable cases of h(x , ξ).
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Outline

� Distributionally Robust Optimization

� Online Linear Programming

� Least Squares with Nonconvex Regularization

� The ADMM Method with Multiple Blocks
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Background

Consider a store that sells a number of goods/products

� There is a fixed selling period

� There is a fixed inventory of goods

� Customers come and require a bundle of goods and bid for a
certain price

� Objective: Maximize the revenue

� Decision: Accept or not?
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An Example

order 1(t = 1) order 2(t = 2) ..... Inventory(b)
Price(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100
Shoes 1 0 ... 50
T-shirts 0 1 ... 500
Jackets 0 0 ... 200
Hats 1 1 ... 1000
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Online Linear Programming Model

The offline version of the above program can be formulated as a
linear (integer) program as follows:

maximizex
∑n

t=1 πtxt
subject to

∑n
t=1 aitxt ≤ bi , ∀i = 1, ...,m

0 ≤ xt ≤ 1, ∀t = 1, ..., n

Now we consider the online version of this problem:

� We only know b and n at the start

� the constraint matrix is revealed column by column
sequentially along with the corresponding objective coefficient.

� an irrevocable decision must be made as soon as an order
arrives without observing or knowing the future data.
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Application Overview

� Revenue management problems: Airline tickets booking, hotel
booking;

� Online network routing on an edge-capacitated network;

� Combinatorial auction;

� Online adwords allocation
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Model Assumptions

Main Assumptions

� The columns at arrive in a random order.

� 0 ≤ ait ≤ 1, for all (i , t);

� πt ≥ 0 for all t

Denote the offline maximal value by OPT (A, π). We call an online
algorithm A to be c-competitive if and only if

Eσ

[
n∑

t=1

πtxt(σ,A)

]
≥ c ·OPT (A, π).

Yinyu Ye June 2014



Distributionally Robust Optimization (DRO)
Online Linear Programming (OLP)

Least Squares with Nonconvex Regularization (LSNR)
Alternating Direction Method of Multipliers (ADMM)

Distribution-Free

� We don’t make any explicit assumptions on the distributions
of the bids or orders. In fact, if the bids are drawn i .i .d . from
a certain distribution, then the first assumption is met.

� The random order of arrival assumption is an intermediate
path between a full information case and a worst-case analysis.

� Knowing n is necessary for one to obtain a near optimal
solution. However, it can be relaxed to an approximate
knowledge of n or the arrival rate and time length.
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A Learning Algorithm is Needed

� Unlike dynamic programming, the decision maker does not
have full information/data so that a backward recursion can
not be carried out to find an optimal sequential decision
policy.

� Thus, the algorithm needs to be data-driven and
learning-based, in particular, learning-while-doing.
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Sufficient and Necessary Results

Theorem
For any fixed ε > 0, there is a 1− ε competitive online algorithm
for the problem on all inputs when

B = mini bi ≥ Ω
(
m log (n/ε)

ε2

)
Theorem
For any online algorithm for the online linear program in random
order model, there exists an instance such that the competitive
ratio is less than 1− ε if

B = min
i

bi ≤ log(m)

ε2
.

Agrawal, Wang and Y [to appear in Operations Research 2014]
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Comments on the Main Theorems

� The condition of B to hold the main result is independent of
the size of OPT (A, π) or the objective coefficients, and is also
independent of any possible distribution of input data, and it
is checkable.

� On the other hand, our condition needs all inventories above
the threshold bound, while the condition on OPT (A, π) is an
aggregated bound. And neither one implies the other.

� The condition of B is shown to be necessary, but its
dependency on m and n could be further weakened while its
dependency on sample size, 1

ε2
, is optimal.

� The condition is only proportional to log n thus it is way
below to satisfy everyone’s demand.
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Key Observation and Idea of the Online Algorithm I

The problem would be easy if there is a ”fair and optimal price”
vector:

order 1(t = 1) order 2(t = 2) ..... Inventory(b) p∗

Bid(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100 $45
Shoes 1 0 ... 50 $45
T-shirts 0 1 ... 500 $10
Jackets 0 0 ... 200 $55
Hats 1 1 ... 1000 $15
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Key Observation and Idea of the Online Algorithm II

� Pricing the bid: The optimal dual price vector p∗ of the offline
problem can play such a role, that is x∗t = 1 if πt > aTt p

∗ and
x∗t = 0 otherwise, yields a near-optimal solution as long as
(m/n) is sufficiently small.

� Based on this observation, our online algorithm works by
learning a threshold price vector p̂ and use p̂ to price the bids.

� One-time learning algorithm: learns the price vector once
using the initial input (1/ε3).

� Dynamic learning algorithm: dynamically updates the price
vector at a carefully chosen pace (1/ε2).
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Summary of Current Work on Random-Arrival-Order
Models

Condition Technique
Kleinberg [2005] B ≥ 1

ε2 , for m = 1 Dynamic

Devanur et al [2009] OPT ≥ m2 log(n)
ε3 One-time

Feldman et al [2010] B ≥ m log n
ε3 and OPT ≥ m log n

ε One-time

Agrawal et al [2009] B ≥ m log n
ε2 or OPT ≥ m2 log n

ε2 Dynamic

Kesselheim et al [2014] B ≥ logm
ε2 Dynamic*

Table: Comparison of some existing results
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Summary and Future Questions on OLP

� We have designed a dynamic near-optimal online algorithm for
a very general class of online linear programming problems.

� The algorithm is distribution-free, thus is robust to
distribution/data uncertainty.

� The dynamic learning algorithm has the feature of
“learning-while-doing”, and the pace the price is updated is
neither too fast nor too slow.

� Is a dual algorithm to achieve optimal learning?

� Price-posting model for multi-products?
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� Distributionally Robust Optimization

� Online Linear Programming

� Least Squares with Nonconvex Regularization

� The ADMM Method with Multiple Blocks
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Unconstrained L2+Lp Minimization

Consider the Least Squares problem with Lp quasi-norm
regularization:

Minimizex fp(x) := ‖Ax− b‖22 + λ‖x‖pp (4)

where data A ∈ Rm×n,b ∈ Rm, parameter 0 ≤ p < 1, and

‖x‖pp =
∑
j

‖xj‖p.

When p = 0: ‖x‖00 := ‖x‖0 := |{j : xj �= 0}| that is, the number
of nonzero entries in x.
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Application and Motivation

The original goal is to minimize ‖x‖00 = |{j : xj �= 0}|, the size of
the support set of x, for

� Sparse data mining

� Sparse image reconstruction

� Sparse signal recovering

� Compressed sensing

which is known to be an NP-Hard problem.
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The Hardness Results

Question: is L2 + Lp minimization easier than L2 + L0
minimization?

Theorem
Deciding the global minimal objective value of either unconstrained
L2 + Lp minimization or constrained Lp minimization problem is
strongly NP-hard for any given 0 ≤ p < 1 and λ > 0.

Chen, Ge, Jian, Wang and Y [Math Programming 2011 and 2014]
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Theory of Constrained L2+Lp: First-Order Bound

Theorem
Let x∗ be any KKT point. Let

Li =

(
λp

2‖ai‖
√

f (x∗)

) 1
1−p

.

Then we have

for any i ∈ N , x∗i ∈ (−Li , Li ) ⇒ x∗i = 0.
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Theory of Constrained L2+Lp: Second-Order Bound

Theorem

Let Li =

(
λp(1− p)

2‖ai‖2
) 1

2−p

, i ∈ N . Then for any KKT point x∗

that satisfies the second-order necessary conditions, the following
statements hold:

(1)
for any i ∈ N , x∗i ∈ (−Li , Li ) ⇒ x∗i = 0.

(2) The support columns of x∗ are linearly independent.

Chen, Xu and Y [SIAM Journal on Scientific Computing 2010]
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The Easiness Results

Theorem
There are FPTAS algorithms that provably compute an ε-KKT
point of either unconstrained L2 + Lp minimization or constrained
Lp minimization problem.

Bian, Chen, Ge, Jian, and Y [Math Programming 2011 and 2014]
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Summary and Future Questions on LSNR

� There are desired structure properties of any KKT point of
LSNR problems.

� Unfortunately, finding the global minimizer of LSNR problems
is (strongly) NP-hard; but finding an KKT point is easy!

� Could one apply statistical analyses to local minimizers or
KKT points of LSNR? When is a local minimizer of LSNR
also global or the original problem?

� Faster algorithms for solving LSNR, such as ADMM
convergence for two blocks:

min f (x) + r(y), s.t. x− y = 0, x ∈ X?
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� Distributionally Robust Optimization

� Online Linear Programming
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� The ADMM Method with Multiple Blocks
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Alternating Direction Method of Multipliers I

min {θ1(x1) + θ2(x2) | A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2}
• θ1(x1) and θ2(x2) are convex closed proper functions;
• X1 and X2 are convex sets.

Original ADMM (Glowinski & Marrocco ’75, Gabay & Mercier
’76): ⎧⎪⎨

⎪⎩
xk+1
1 = argmin{LA(x1, xk2 , λ

k) | x1 ∈ X1},
xk+1
2 = argmin{LA(xk+1

1 , x2, λ
k) | x2 ∈ X2},

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b),

where the augmented Lagrangian function LA is defined as

LA(x1, x2, λ) =
2∑

i=1

θi(xi )− λT
( 2∑
i=1

Aixi − b
)
+

β

2

∥∥ 2∑
i=1

Aixi − b
∥∥2.
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ADMM for Multi-block Convex Minimization Problems

Convex minimization problems with three blocks:

min θ1(x1) + θ2(x2) + θ3(x3)
s.t. A1x1 + A2x2 + A3x3 = b

x1 ∈ X1, x2 ∈ X2, x3 ∈ X3

The direct and natural extension of ADMM:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+1
1 = argmin{LA(x1, xk2 , x

k
3 , λ

k) | x1 ∈ X1}
xk+1
2 = argmin{LA(xk+1

1 , x2, xk3 , λ
k) | x2 ∈ X2}

xk+1
3 = argmin{LA(xk+1

1 , xk+1
2 , x3, λk) | x3 ∈ X3}

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b)

LA(x1, x2, x3, λ) =
3∑

i=1

θi (xi)− λT
( 3∑
i=1

Aixi − b
)
+

β

2

∥∥ 3∑
i=1

Aixi − b
∥∥2
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Existing Theoretical Results of the Extended ADMM

Not easy to analyze the convergence: the operator theory for the
ADMM cannot be directly extended to the ADMM with three
blocks. Big difference between the ADMM with two blocks and
with three blocks. Existing results for global convergence:

• Strong convexity; plus β in a specific range (Han & Yuan ’12).
• Certain conditions on the problem; then take a sufficiently

small stepsize γ (Hong & Luo ’12)

λk+1 = λk − γβ(A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b).

• A correction step (He et al. 12, He et al. -IMA, Deng at al.
14, ...)

But, these did not answer the open question whether or not the
direct extension of ADMM converges under the simple convexity
assumption.
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Divergent Example of the Extended ADMM I

We simply consider the system of homogeneous linear equations
with three variables:

A1x1 +A2x2 +A3x3 = 0, whereA = (A1,A2,A3) =

⎛
⎝ 1 1 1

1 1 2
1 2 2

⎞
⎠ .

Then the extended ADMM with β = 1 can be specified as a linear
map⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

xk+1
1

xk+1
2

xk+1
3

λk+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

xk1
xk2
xk3
λk

⎞
⎟⎟⎟⎠ .
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Divergent Example of the Extended ADMM II

Or equivalently, ⎛
⎜⎝

xk+1
2

xk+1
3

λk+1

⎞
⎟⎠ = M

⎛
⎜⎝

xk2
xk3
λk

⎞
⎟⎠ ,

where

M =
1

162

⎛
⎜⎜⎜⎜⎜⎜⎝

144 −9 −9 −9 18

8 157 −5 13 −8

64 122 122 −58 −64

56 −35 −35 91 −56

−88 −26 −26 −62 88

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Divergent Example of the Extended ADMM III

The matrix M = VDiag(d)V−1, where

d =

⎛
⎜⎜⎜⎜⎝

0.9836 + 0.2984i
0.9836− 0.2984i
0.8744 + 0.2310i
0.8744− 0.2310i

0

⎞
⎟⎟⎟⎟⎠ . Note that ρ(M) = |d1| = |d2| > 1.

Theorem
There existing an example where the direct extension of ADMM of three
blocks with a real number initial point is not necessarily convergent for
any choice of β.

Chen, He, Y, and Yuan [Manuscript 2013]
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Strong Convexity Helps?

Consider the following example

min 0.05x21 + 0.05x22 + 0.05x23

s.t.

⎛
⎝ 1 1 1

1 1 2
1 2 2

⎞
⎠
⎛
⎝ x1

x2
x3

⎞
⎠ = 0.

� ρ(M) = 1.0087 > 1

� Able to find a proper initial point such that the extended
ADMM diverges

� even for strongly convex programming, the extended ADMM
is not necessarily convergent for a certain β > 0.
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The Small-Stepsized ADMM

Recall that, In the small stepsized ADMM, the Lagrangian
multiplier is updated by

λk+1 := λk − γβ(A1x
k+1
1 + A2x

k+1
2 + . . .+ A3x

k+1
3 ).

Convergence is proved:

� One block (Augmented Lagrangian Method): γ ∈ (0, 2),
(Hestenes ’69, Powell ’69).

� Two blocks (Alternating Direction Method of Multipliers:

γ ∈ (0, 1+
√
5

2 ), (Glowinski, ’84).

� Three blocks: for γ sufficiently small provided additional conditions
on the problem, (Hong & Luo ’12).

Question: Is there a problem-data-independent γ such that the method

converges?
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A Numerical Study

For any given γ > 0, consider the linear system⎛
⎝ 1 1 1

1 1 1 + γ
1 1 + γ 1 + γ

⎞
⎠
⎛
⎝ x1

x2
x3

⎞
⎠ = 0.

Table: The radius of M

γ 1 0.1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7
ρ(M) 1.0278 1.0026 1.0001 > 1 > 1 > 1 > 1 > 1

Thus, there seems no practical problem-data-independent γ such that the

small-stepsized ADMM variant works.
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Summary and Future Questions on ADMM

� We construct examples to show that the direct extension of ADMM
for multi-block convex minimization problems is not necessarily
convergent for any given algorithm parameter β.

� Even in the case where the objective function is strongly convex, the
direct extension of ADMM loses its convergence for certain βs.

� There doesn’t exist a problem-data-independent stepsize γ such
that the small-stepsized variant of ADMM would work.

� Is there a cyclic non-converging example?

� Our results support the need of a correction step in the ADMM-type
method (He&Tao&Yuan 12’, He&Tao&Yuan-IMA,...).

� Question: Is there a ”simple correction” of the ADMM for the
multi-block convex minimization problems? Or how to treat the
multi blocks ”equally”?
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How to Treat All Blocks Equally?

Answer: Independent uniform random permutation in each
iteration!

� Select the block-update order in the uniformly random fashion
– this equivalently reduces the ADMM algorithm to one block.

� Or fix the first block, and then select the rest block order in
the uniformly random fashion – this equivalently reduces the
ADMM algorithm to two blocks.

� It works for the example – the expected ρ(M) equals 0.9723!

� It works in general – my conjecture.
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