Multi-Block ADMM - Managing
Randomness and Data Privacy In
Optimization Algorithm Design

EUROPT 2021
JuLy 7-9, 2021

Yinyu Ye

Stanford University

.
Today’s talk

Introduction to Multiblock-ADMM

Benefit of Data Exchange in Multi-Block ADMM Algorithm for
Regression Estimation

Applying RAC-ADMM to Mixed Integer Programming

e
Introduction to ADMM

e Consider the following convex optimization problem
min f(x)
S.t. Ax=D>b
x € X
e Where f is a convex function, and X the Cartesian product of possibly non-
convex, real, closed, nonempty sets.

e The corresponding augmented Lagrangian function is
L(x, Dxex = f(x) —2T(Ax —b) + *||Ax - b||3
where A Is the Lagrangian multipliers or dual variables, and p > 0 is the
step size.

Two-block ADMM with separable variables

o Consider the following optimization problem

min f(x) + g(s)
st. Ax+Bs=D>b
x € X, SES

e The corresponding augmented Lagrangian function is
L(X, S, Dxex,ses = f(*) + g(s) —A"(Ax+ Bs —b) + £||Ax + Bs — b||3

Two-block ADMM with separable variables

e Two-block ADMM updates as follows

i .
Xt = arg min,_y Ls(x, s*;)

ADMM = { sk = arg min _, Lg(x*t1, s+, 25)

k/lk—H _ /lk —ﬂ(A[X; S]k—H o b)

o« The two-block ADMM with separable objective is guarantee to converge.

N
Multi-block cyclic ADMM algorithm

o« We could also partition the variables into multiple blocks. Let x =

(X1, X5, ..., Xp]

o Direct extension of multi-block (cyclic) ADMM updates as follows

(Jk+1 : k.)k
X = arg min, .x Lp(X1, ..., x5; A%)

ADMM = xg“ = argmin, .y Lﬁ(fo, s Xp; A9)

k/lk—H _ /lk —ﬁ(AXk_H . b)

Direct extension of three-block ADMM does not converge

><1O4

3 : . ‘ . .
25| ’V

N
=
L
q’ | -
E 1.5
(@)
(2]
L0 ;
< 17
05+
" , . .
0 50 100 150 200 250 300

Number of iterations

Figure 1: Non-singular system of square equations, three blocks (Chen et al. 2016)

Several variants of multi-block ADMM

e Consensus ADMM (Bertsekas 1982)
e Double sweep ADMM (Sun et al. 2015)
e Randomly Permuted ADMM (RP-ADMM) (Sun et al. 2015)

o Randomly Assembled Cyclic ADMM (RAC-ADMM) (Mihi ¢ et al. 2020)

N
Consensus or Variable-Splitting ADMM |

e Consensus ADMM introduces auxiliaries to each block of variables.

o Consider the following optimization problem with separable objective
min I, f;(x;)
st. XX A;x;=b
x € X
o Primal Consensus ADMM reformulates the problem as
min 2:zb=1fi(x)
st. XX .y, =b
Axi—y; =0 Vi
x € X

N
Consensus or Variable-Splitting ADMM I

e Ineach cycle of ADMM
o Update all x, (independently) as one block
o Update all y, together as one block with a closed-form solution
o Update the multipliers the same way

e Consensus ADMM is guaranteed to converge with any fixed step-size.

e However, it suffers from slow convergence.

N
Double-Sweep ADMM

In each cycle of ADMM

« Sequentially update x, ,..., x, followed by updating x, ,,..., x; In
the reversed order.

« Update the multipliers the same way.

N
Randomly Permuted - ADMM (RP - ADMM)

In each cycle of ADMM

« Randomly generate a permutation of 1,...,b; and following the
permutation order to update x; sequentially.

« Update the multipliers the same way.

e RP - ADMM is guaranteed to converge in expectation.

N
Randomly Assembled Cyclic - ADMM (RAC-ADMM)

« In each cycle, stead of cyclic updating, double sweep updating,
or updating with block-wise random permutation, RAC-ADMM
first randomly assemble blocks of all primal variables, then
sequentially updates each of the blocks.

« Update the multipliers the same way.

« RAC - ADMM is guaranteed to converge in expectation.

E————————
RAC-ADMM

e RAC-ADMM can be viewed as introducing double randomness compared
with RP-ADMM: permuting block-wise order + grouping variables in

blocks

RAC = ¢

(Randomly (without replacement) group primal variables into blocks x;
Fori=1,...,l, compute x‘*" by:
K41

X;

_ - k+1 k+1 _k ok K. ok. 7k. .k
= argmin, cx Lg(X; ..., X] S Xi s Xig g XS AN)

/1k—|—1 _ /1[(—ﬁ(AXk+1 . b)

\

Performance on the diverging example

0.5 T T T T 15 T T T T T 35 T T T T T
045
3
04
0.35 ’| 25
1 L
E 03 18 g
M i g 2
2025] % g
o
g 02 i § 51.5-
015 0&f
. Al
0.1
051
0.05
ﬂ u 1 1 ﬂ
0 100 200 300 400 H00 0 B0 100 150 200 260 300 0 5 100 150 200 250 100

Hteration: Variable-Splitting Method Hteration: Double-Sweeping Method lteration: Random Permutation Method

e
RAC — ADMM Performance

e RAC - ADMM overcomes the slow convergence issue of cyclic-ADMM

and RP-ADMM

Number of Iterations | E(iter) | var(iter) | miniter | max iter
RAC-ADMM 166.4 36.7 o6 221
Cyclic ADMM - - 50,000 -
RP-ADMM 1884. 0 56.2 1729 2006

Table 2: n = 3000, p = 50, tolerance= |Ax — b|; = 107°

RAC - ADMM is guaranteed to converge in expectation.

However, RAC - ADMM is not guaranteed to converge almost surely, and
there are problem instances that RAC - ADMM may diverge/oscillates.

.
Today'’s talk

Introduction to Multiblock-ADMM

Benefit of Data Exchange in Multi-Block ADMM Algorithm for

Regression Estimation
Mingxi Zhu, Graduate School of Business, Stanford University
Yinyu Ye, Management Science & Engineering, Stanford University

Applying RAC-ADMM to Mixed Integer Programming

Statistical learning across decentralized data centers

Decentralized Learning : Method that learns or trains an algorithm across
multiple decentralized centers holding local data.

Pros: Such method protects data privacy and data security.

Cons: Many decentralized learning algorithms suffers from slow
convergence.

Statistical Learning Model

Each center i possess model data matrix X; € R°*P and dependent
variable vector y; € R5*1,

Let (x; ;,v; ;) be the j** data pair of the i*" data center.

The decision maker tries to find the global estimator g € RP*! that
minimizes the following loss function

2y % f((x:), v B)

where f((xi,j,yi,j);ﬁ) Is the loss function.

Commonly used loss functions

Commonly used loss function are convex in 8, including
Least Square

(¥ B) = ||xB-ylI3

Ridge
() B) = [1xB- ylI5 + al|BlI5
Lasso
() B) = l1xB- ylI5 + allBllx
Elastic Net
f((xy);B) = l1xB-yll5 + al|BllL + (1 — a) [IBII5
Logistic

f((x,¥); B) = log(1 — exp(—yxp))

Statistical learning across decentralized data centers

e Centralized Learning
e Alllocal data are uploaded to one

e
=

Data Center 2

e et
I_ X2,y2 I_
—_—— | |

Data Center 1 l Data Center 3

X1, vyl X3,vy3
N e &

()

Decision Maker Receives
X =[X1; X2; X3]
Y =[yl;y2; y3]

And trains in one server

IE X2,y2 I
|

Data Center 1 \LT Data Center 3

e Decentralized Learning

Local data cannot be exchanged

e
=

Data Center 2

10N

X1, y1 Q . % X3, y3

)

Decision Maker trains local
data in local servers, pools
the training results and
aggregates the results
without accessing data

ADMM in decentralized learning

Consensus/distributed ADMM is widely used in decentralized learning.

Compared with another commonly used algorithm, Stochastic Gradient
Descend (SGD), consensus ADMM is more robust in step-size choice,
and it Is guaranteed to converge for any choice of step-size.

N
Algorithm : Consensus ADMM

Introducing local estimators g; to each center and reformulate the
problem as

Z?:l Zj‘:] S5y B

S.r. /8!—/820 Vizl,...,b

Let A; be the dual with respect to the constraint g; — g = 0, and p, be the
step-size to the primal consensus ADMM, the augmented Lagrangian Is
given by

L(B.B.A) =) Z f(i3: B+) N Bi=B)+ Y 2B~ B (Bi-)

i=1 j=1

Least Square Regression

Specifically, when f((x,y); B) = ||xB- y||5, the problem becomes a linearly
constrained quadratic optimization.

ming, 5 ., 2(X.8 - y) (X8 - y)
sit. 3i—3=0 Vi
Let D; = X] X; and ¢; = —X; y; , primal consensus ADMM becomes
p,I+D)B" =p,B' =X —c
Bl = B+ - NN

A;+1 — Ai’ +pp(ﬁ:+1 _ 6.?4—1)

Consensus ADMM suffers from slow convergence

- While consensus ADMM does not exchange local data, and enjoys benefit
from parallel computing, it suffers from slow convergence.

- The following table reports the performance of GD, primal consensus ADMM,
and Dual Randomly-Assembled Cyclic ADMM (DRC-ADMM), which we
designed to carefully balance the trade-off between data privacy and

efficiency.
Algorithms Run Time (s) | Number of Iterations | Absolute Loss
Gradient Descent 100 0,817,048 1.71 x 107!
Primal Consensus ADMM 100 1,520,752 3.60x 1072
DRC-ADMM 100 4153 4.56x 107

Table 1 : Algorithm Performances on UCI machine learning repository (Dua and Graff(2017)) regression data YearPrediction-MSD (Chang and Lin
(2011)) with number of observations n=463,715, and number of features p=90, number of local data centers = 4. Table 1 report the number of

iterations, and absolute L2 loss defined by AL = ||B* — B'||,. For ADMM method the step-size we set equals to 1 and for GD the step-size is
optimally chosen.

Why data exchange helps convergence

Consider the following example withn = 4, p = 1, and number of data
center b = 2.

. 0.99 0.9
X.l - ’ XZ - ’
0.01 0.1

Normalized the model matrix X by the Frobenius norm || X]||r

0.7379 0.6708

0.0075 0.0745

Why data exchange helps convergence

« The convergence rate under the previous data structure is 0.6661, and one can
show that if model matrix is normalized, with number of data centers equals to 2, the
upper bound of convergence rate (worst case convergence rate) is 0.6667.

1
- Convergence rate a: lim sup —log||lzx — 1y ® 2] = loga

k—o0

« However, if we apply data exchange

.

079 0.6708

Xl = s Xz —
0.0075 0.0745

« The convergence rate becomes 0.5264, and one can show that the lower bound of
convergence rate (best case of convergence rate) is 0.5000.

Theory on worst case data structure
Generally, under the following assumption
Assumption 1. The regressor matrix X is normalized by its Frobenius norm ||X||;, and the smallest and

largest eigenvalue of X' X, q and g are fixed, with X' X, >0 foralli€{l,...,b}.

When step-size is relatively large, the worst-case data structure and the
upper bound of convergence rate of consensus ADMM is given by

bpp
bpp +q

Theorem 1. For p, > g, the convergence rate of distributed ADMM is upper bounded by , and the upper

bound is achieved when D, =D for all i, je{1,...,b}.

e
Several Remarks

The upper bound on convergence speed is increasing with respect to number of
data centers and decreasing with smallest eigenvalue of covariance model matrix.
This implies that a greater number of data centers and ill conditioning of
matrix hurt convergence.

- Intuitively, for large step size, ADMM converges faster when each block “differs”
from one another significantly.
- When updating dual, ADMM takes average of all local estimators, which are
essentially, the product of inverse matrix and vector. When each block
differs from one another, it creates more momentum for dual updating .

- When applying data augmentation in machine learning with ADMM based
optimization algorithm, one need to be careful as data augmentation are more
likely to creates similar blocks.

Comparison between Gradient Descend

Gradient Descend is also widely used in decentralized learning, with the
bounds of distributed ADMM, we could compare performance between the
two algorithms under different step-size.

Proposition 2. For p, € (0, 5,) U (s,,0), p(M,) < p(Mp), where

| 2b - gq + \/4b2 +(gq)
A} =mln(§—q,ql], S, = qu

Consensus ADMM is indeed more robust in step-size choice, and for
gradient descend method, there is only a small range of sweet spot of step-
size that leads to faster convergence.

.
Introducing Dual Randomly-Assembled Cyclic ADMM

Inspired by Mihi ¢ et al. (2020), we introduce the Dual Randomly-
assembled Cyclic ADMM (DRC-ADMM)
the least square regression problem is equivalent as
min, 5¢'¢
sit. XB-y=(
Let t be the dual variables, the dual is given by

min, ;t't+y't

s.t. X't =0

the dual variables serves as a label for each (potentially) exchanged data
pair, and the randomization is more effective in the dual space.

Introducing Dual Randomly-Assembled Cyclic ADMM

"t "t "t
= = =

Data Center 1 Data Center 2 Data Center 3

(x1,1,y1,1), (x1,z; 3’1,2), (x1,3:3’1,3)} (x2,1f3’2,1): (xz,Z:YZ,z):(x2,3JJ’2,3)i (x3,1: 3’3,1)x (xS,Z’yB,Z)* (X33, ¥3,3);

Local data L ocal data Local data

&y

Global Data Pool

Introducing Dual Randomly-Assembled Cyclic ADMM

"t "t "t
= = =

Data Center 1 Data Center 2 Data Center 3

(x1,1; y1,1); (x1,z; y1,z); (x2,1r y2,1): (x2,3: y2,3); (xS,Z! y3,2)r (x3,3! y3,3);
Local data _) L ocal data —) Local data
Cyclic updating Cyclic updating

&y

Global Data Pool

(%13,Y1,3); (xz,z:J/z,z): (x3,1: 3’3,1)’

.
Introducing Dual Randomly-Assembled Cyclic ADMM

Algorithm 2 DRC-ADMM
Initialization: 7 = 0, step size p, € R" t, € R", 3, € R”, and stopping rule 7

Randomly select a% of total observations. Let r = [r',..., "] be the index of selected data (m = |a%n)).

Let r' = B'Nr be the index of selected data belongs to data center 4.
while 7 < 7 do

Random permute r to o(r), partition o,(r) = [0 (r), ..., 0”(r)] according to || (size of r').

Fori=1,...,b

r
%)

t.t, ...t 0, 3

t
o.
i—1

— o! , o!
Let o/ = (B'Nr) Uoi(r) Center i updates t,', = argmin,, .51 L(t,.},....t

1+1° > Pl 0

Decision maker updates 3,,, = 3, — p,.X"t,.,
end

Output: 3. as global estimator

Data exchange is essential

- If each the time we directly add all global data to each of the block (here the
data structure at each block is fixed), and compare
- Distributed ADMM with global data
- Cyclic ADMM with global data
- Randomly Permuted ADMM with global data

Algorithms Run Time (s) | Number of Iterations | Absolute Loss
Primal Consensus ADMM 100 1,520,752 3.60x 1073
Primal Consensus ADMM (with global data) 100 1,627,174 3.51x 107!
Cyclic ADMM (with global data) 100 1,124,016 2.62x 107!
RP ADMM (with global data) 100 1,103,549 3.04x 107!
DRC-ADMM 100 4153 4.56x107°

Numerical Results on UCI ML regression repository

Fix run time = 100 s

Fix number of iteration = 200

Primal distributed | DRC-ADMM | Primal distributed | DRC-ADMM
Bias Correction 1.60 x 107~ 371 x 107" 3.20x 107 6.31 x 107’
Bike Sharing Beijing 8.43 x 10~ 9.57 x 107"* 2.03x 107° 6.61 x 107°
Bike Sharing Seoul 2.60 x 1077 1.71 x 1078 8.87 x 10" 5.80 x 1077
Wine Quality Red 3.45x 107 231 x 1071 8.10 x 10~ 1.22 x 107/
Wine Quality White 7.36 x 1071 1.24 x 1075 2.40x 107> 1.56 x 107°
Appliance Energy 5.02x 1072 1.61 x 10~ 7.56 x 107" 4.77 x 107>
Online News Popularity * 9.42 x 1071° 3.23x 1070 7.70 x 10~ 4.63 x 107°
Portugal 2019 Election * 3.97 x 107'° 497 x 10~ 3.22x 107 1.99 x 1071
Relative Location of CT 1.65x 107" 6.44 x 107* 1.29 x 10° 4.79 x 107*
SEGMM GPU 2.63x 107" 2.20x 1077 4.60 x 10~ 2.65 x 107°
Superconductivity Data 1.25x 107" 2.98 x 107° 6.97 x 107" 4.99 x 107
UJIIndoorLoc Data 3.76 x 107! 4.48 x 1078 8.45 x 107! 2.53 %1072
Wave Energy Converters 3.40 x 107 7.12x 107" 7.70 x 10~ 2.39 x 107’
Year Prediction MSD 3.60 x 107° 4.56 x 107~ 3.91 x 107* 2.64 x 107

* The covariance matrix’s spectrum is of 10?°, which is hard for all algorithms to converge. We further scale

- eachentry by n.

Numerical Results on UCI ML regression repository

With 5% of access to global data, DRC ADMM utilizes the
benefit of data exchange, and outperforms primal distributed

ADMM.

Benefit of DRC-ADMM
Manage to get a good quality of solution within fewer
iteration, which further reduces the communication load

across centers
Manage to get a good quality of solution within a fixed

time.

N
Privacy-Preserved DRC-ADMM

Privacy would be a major concern when performing data exchange. The
privacy-preserved DRC-ADMM (PDRC-ADMM) utilizes the random
Gaussian projection for data required to be exchanged, which is known to
be differentially private.

Let R € R*¥*¥ be a square matrix with entries i.i.d. sampled from normal
Gaussian, and k = an , where a Is the percentage of global data.

Algorithms Number of Iterations | Absolute Loss
Gradient Descent 100 38.71 x 10!
Primal distributed ADMM 100 420 % 1072
PDRC-ADMM 100 3.01 x 1072

.
Today’s talk

Introduction to Multiblock-ADMM

Benefit of Data Exchange in Multi-Block ADMM Algorithm for
Regression Estimation

Applying RAC-ADMM to Mixed Integer Programming
Kresimir Mihic, School of Mathematics, The University of Edinburgh
Yinyu Ye, Management Science & Engineering, Stanford University

.
Approaches to MIP

Using RACQP
min %XTHX+CTX
st. Ax=b : (1)
1<x<u x;eZ,x;eR,i=1,....d, j=d+1,...,n

() RACQP using external MIP solver for sub-problems
* RACQP is the upper-level engine, sub-problems solved to integrality using an (external) MIP solver
® Good solutions for large MIQP found fast

® Can not guarantee the optimal solution; feasibility often met, but can not be guaranteed

(Il) Branch-and-bound solver based on RACQP (work in progress)
e RACQP is “internal”, low-level engine solving relaxed problems

® Optimal solution (within mipGap) or certificate of infeasibility returned

RACQP using external MIP solver for sub-problems

Solves the problem (1) using two-level approach. Lower-level finds a locally optimal solution given some
initial point x":
® Integrality constraints enforced by a sub-problem solver,

k+1
i

. k+1 k.
=argmin{Lg(X|",...,X;,... X,

X yf\)l lgxisua X,‘GX,‘},

where (X;); = Z or R for integer and continuous variables respectively.

Upper-level “escapes” from the local optimum by producing x?,,, in a neighborhood of the current best
solution, Xpest:

0

®* X, found by perturbing values of randomly chosen components of Xpes;

®* Number of variables to change: chosen from a truncated exponential distribution (experimentally
found to produce good results).

® Swap, exchange, permute,...

Improving the performance: grouping variables

Smart-grouping is a pre-processing method which uses a block structure of matrix A to pre-group certain
variables as a single asuper-variablea (a group of variables which are always solved together).

vV, 0 . 0 X, b,
0 - f— .
. V. 0 Xy b,
Wl .. W, W. l [Xy+1 _br+l_
L V v+14 . —_———
A X b
® One super-variable X; is made for each group x;, i = 1,...,v.

® Primal variables x,,; stay shared and are randomly assigned to sub-problems to complement
super-variables to which they are coupled with via block-matrices W;, i =1,...,v.

* More than one super-variable can be assigned to a single sub-problem, dependent upon the
maximum size of a sub-problem, if defined.

Improving the performance: partial augmented Lagrangian
approach

Splitting the matrix A such that the block W=[W,,..., W,,,] is admitted by the augmented Lagrangian
while the rest of the constraints (blocks V;) are solved exactly as a part of a sub-problem,

X!.H-I = argmin{[#)(XfH, cee s Xjyoun axf)ayk)lvf B;’ - b;aj € ja 1 < X; S U, X; € Xf'}’

l

where 7 is a set of indices of super-variables b; constituting sub-problem i at any given iteration.

The partial augmented Lagrangian is defined with

p

1)
Lp(X,y) = EXTHX +e' x—y' (Wx=b,)+ 5||WX—b\..+| I°.

The approach found to be useful for both continuous and mixed integer QP

For MIQP local constraints are sets of rules that relate integer variables, while constraints between
continuous variables are left global. In the case of a problems where such straight separation does not
exist, or when problems are purely integer, a problem structure is let to guide the local/global constraints
decision.

Experiments: maximum bisection problem

A variant of the Max-Cut problem that involves partitioning the vertex set V of a graph G = (V, E) into two
disjoint sets V; and V, of equal cardinality (L.e. VinV, =0, V, UV, =V, |Vi| = |V,|) such that the total
weight of the edges whose endpoints belong to different subsets is maximized.

A standard formulation can be re-formulated into mixed binary quadratic problem:

min x! Hx
X

st. e x=|n/2]
x € {0, 1}".

At each iteration we update the i block by solving

: T B2
min - X; H; x; —yr+5r
1

st. elx;,—r=»b;
x; € {0, 1}*! re[0,1].

where b; = [n/2] — e’ x_; with x_; being the sub-vector of x with indices of variables not in block i.

Experiments: maximum bisection problem

Gurobi used for solving RACQP sub-problems (called via Matlab interface).

The penalty parameter g = 0.005, number of blocks p = 4, Perturbation mechanism: swapping.

e & E = Gap'

e o o o ®
SE oN = g- run time = 5 min run time = 10 min run time = 30 min run time = 60 min
wn c b c 4—!'-5‘

£ & g8 80 Gurobi RACQP Gurobi RACQP Gurobi RACQP Gurobi RACQP
G63 7000 2:1073 26988 -0.263 -0.007 -0.160 -0.006 -0.160 -0.005 -0.037 -0.003
G67 10000 5-10~* 6938 -0.272 -0.016 -0.168 -0.014 -0.004 -0.011 -0.001 -0.010
G70 10000 3-10~* 9581 -0.009 -0.008 -0.007 -0.007/ -0.006 -0.005 -0.003 -0.004
G77 14000 3-107* 9918 -0.468 -0.015 -0.468 -0.013 -0.247 -0.012 -0.095 -0.010
G81 20000 2-10~* 14030 -0.280 -0.017 -0.280 -0.015 -0.253 -0.014 -0.214 -0.012

Average (across all G1-G81 instances): -0.1228 -0.0101 -0.1046 -0.0088 -0.0735 -0.0073 -0.0513 -0.0065

Table 1: Max-Bisection, GSET instances [4]. Gap between best known results and RACQP/Gurobi objective values [6].

Ygap = (f(xg) — f(x")/(1 + |[f(x")]) where f(x") and f(x{) are objective values of the best known solution and of a solver, respectively

Experiments: quadratic assignment problem (QAP)

The objective of QAP is to assign n facilities to n locations in such a way that the assignment cost is
minimized. The assignment cost is the sum, over all pairs, of a weight or flow between a pair of facilities
multiplied by the distance between their assigned locations.

A standard formulation can be re-formulated into a binary quadratic problem:

mxin vec(X)" Hvec(X)

st. Y ,x;=LVYji=1,...r (a)
Yx;=1,V¥i=1,...r (b)

j=1
0<ux;, Vi, j=1,...r

ij»

where x; is the entry of the permutation matrix X € R™, and H = (A®B) with A € R” and B € R™
being the “flow” and “distance” matrices respectively.

Experiments: quadratic assignment problem (QAP)

Variables grouped following the structure of constraints, which is dictated by the permutation matrix
X € {0, 1}"*": one super-variable, x; for each row i of X.

Sub-problem is defined with

k+1

X(

= arg mln{L‘P()l A[m'cr[X; = 1, X; € {O, 1}”}-

where A,,., contains constraints described by (2 a), and the the partial Lagrangian is
N 1 T T B 2
LP(X, }) - 5 x" Hx - y (Agi’oba! X — 1) + 5 ” Ag!oba! x—1 ” .

where A, consists of constraints coming form (2 b).

The initial point is a random feasible vector. The penalty parameter is a function of the problem size,
B =n, n=r?, while the number of sub-problems depends on the permutation matrix size, p = [r/2].
Perturbation mechanism: swapping (of the super-variables). Gurobi used for solving

sub-problems.

Experiments: quadratic assignment problem (QAP)

Gap
Instance Pr.oblem Density Best !mown Gurobi RACQP
name size(n) (H) Obj val
10 min 5 min 10 min

tai100a 10000 0.96 21043560 -0.97 0.06 0.05
tai150b 22500 0.44 498896643 -1.00 0.19 0.18
tho150 22500 0.42 8133398 -0.89 0.09 0.06
wil100 10000 0.88 273038 1.19 0.03 0.02

Table 2: QAPLIB [2], selected large problems. [6].

QAPLIB benchmark results summary Gurobi RACQP
Num. instances opt/best found 3 18
Num. instances gap < 0.01 (excluding opt/best) 0 17
Num. instances gap < 0.1 (excluding opt/best and < 0.01) 3 70

Table 3: Number of instances = 133. Max run-time: 10 min. [6]

N
Ongoing: Branch-and-bound solver based on RACQP

Extending RACQP by embedding it within a branch-and-bound method:
® Search strategy: depth first until first incumbent, then best bound
® Branching method: the variable closest to an integer
® Warme-start: initializing RACQP with primal and dual solutions from the parent nodes

® Pre-factorization for RD/ADMM modes: using the same factorization together with the parent node
solution.

Current implementation is a proof a concept:
* |Implementation done for mixed binary problems only.
® Basic branching algorithm used.

Next in pipeline: Branch-and-cut algorithm implementation. Much later in pipeline: port RACQP to
C/C++.

Solving a node: convex relaxation

Relaxing integrality constraints of (1) to

x----.
=
e
+
n‘--l
v

min

.
st. Ax=Db
x—x=0 (3)
I<x<u
X, X € R”

The augmented Lagrangian of (3) is then
Ly(w;y;z) = 3x Hx+c¢' x—y'(Ax-b) - z"(x-X)

+5UAX =D + I x-%|*)

and the optimal x has a closed form solution given by

. ax(L, X — — z). u)
X = min(max(l, x ﬁz u

Solving a node: Certificates of primal and dual infeasibility

For some arbitrary A; € R, Motzkin’s theorem of the alternative states that exactly one of the following
sets is nonempty

) xeR":A; x>0, A,x>0, A;x =0}
I {y.y,20,y;€R™ :Aly, +Ajy, +Ajy; =0,e’y, >0} “
Substituting constraints of (3) into (4), and taking into account that x is found by a projection, gives
P= (xeR"'xe[lLu]":Ax=Db, x—-x=0}

D= {yeR",zeR":A"y+z=0,b"y >0}, or
(yeR",zeR":A"y+z=0},when b=0

meaning that any variable y € 9 serves as a certificate that problem (3) is primal infeasible.

Solving a node: Finding an integer feasible solution

Applying rounding heuristics to find a feasible solution after solving the relaxation at each node:
® Nearest-neighbor rounding

¢ Randomized rounding, Prob (round(x;) = 1)= x;
® Dependent randomized rounding:
* Geometric rounding : Y, x; = 1, x € {0, 1}V

® Pipage random rounding [2]:

D
Pyt

LVt Y yir =% ¥r 1 y € (0,11, x € {0, 1}
=1

N

Z\,, < 1,Vr

=1

M&
,-

® additional solutions that utilize constraint structure will be implemented.

Followed by the optimization of the remaining continuous variables by running RACQP for a couple of
iterations (root relaxation usually ran with more iterations that the rest).

Experiments: Randomly constructed problems

Created random MBQP with varying dimensions n, m and number of binary variables r: Density of H is
0.1, with entries generated from the uniform distribution U(0, 1), the linear cost ¢ from the normal
distribution N(O, 1), and the constraints A ~ N(O, 1).

For each set of parameters 5 random problems were constructed.

n r m max. runtime [s]
500 50, 100 100, 200, 300 600
1000 50,100 300, 500, 800 600
2000 50,100 500, 1000 600
5000 50, 100 500, 1000 1800

Table 4: MBQP parameters

Presolve option was turned off for Gurobi. Runs limited to one thread.

Experiments: Randomly constructed problems

RACQP Gurobi

= =R —
% Sw% 235 5% 9% et 5@
n ‘g @ g o E & E' & ‘g’ T gnjj E' it

e~ . 7] 4]

£E g £ g2 8 -§ 2 E ~o S -g

o 3 © —
500 014 0.88 25(30) 0.05 0.25 9.90 0.06
1000 217 3 .95 23(30) 013 2.94 1036 1.83
2000 9.76 5.94 20(20) 0.28 21516 22599 2.77
5000 48.52 /.48 13(20) 0.91 19212 212 27 295

Table 1: Summary of the results. Average time given.

¢ Rounding scheme used by RACQP finds good incumbents very fast.

o Solutions found by RACQP match those of Gurobi, but satisfying mipGap requirement takes time.
Gurobi produces good cuts that eliminate much of the tree.

Cost per node is much lower for RACQP, making room for time for non-linear cut generation.

Current RACQP implementation is Matlab, which greatly limits its performance. Migrating the
implementation to C/C++.

References

[1] G. Banuac, P. Goulart, B. SteLLato, anD S. Bovp, Infeasibility detection in the alternating direction method
of multipliers for convex optimization, Journal of Optimization Theory and Applications, 183 (2019),
pp- 490-519.

[2] R. GanpHi, S. KHULLER, S. PARTHASARATHY, AND A. SRINIVASAN, Dependent rounding and its applications to
approximation algorithms, Journal of the ACM (JACM), 53 (2006), pp. 324-360.

[3] Y. L, E. K. Ryu, anD W. YN, A new use of douglas-rachford splitting and admm for identifying
infeasible, unbounded, and pathological conic programs, arXiv preprint arXiv:1706.02374, (2017).

[4] K. MiHic, M. ZHu, anp Y. YE, Managing randomization in the multi-block alternating direction method of
multipliers for quadratic optimization, Mathematical Programming Computation, (2020), pp. 1-75.

[5] Y. L, E. K. Ryu, ano W. YN, A new use of douglas-rachford splitting and admm for identifying
infeasible, unbounded, and pathological conic programs, arXiv preprint arXiv:1706.02374, (2017).

[6] K. MIHIC, M. ZHy, anp Y. YE, Managing randomization in the multi-block alternating direction method of
multipliers for quadratic optimization, Mathematical Programming Computation, (2020), pp. 1-75.

Thank you! -

COMMENTS AND QUESTIONS?
KMIHIC@ALUMNI.STANFORD.EDU
MINGXIZ@STANFORD.EDU
YYYE@STANFORD.EDU

Stanford University

mailto:mingxiz@Stanford.edu
mailto:mingxiz@Stanford.edu

