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There are many settings when we need to fairly 
allocate shared resources to users online

Public Good Allocation Medical materials Allocation



Egalitarian Objective

maxmin
𝑖
𝑤𝑖 𝑈𝑖(𝒙𝑖)

Maximize the 
minimum (weighted) 

utility of any agent

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

Maximize the (weighted) 
geometric sum of 

agent’s utilities

Nash Social Welfare (NSW) 
Objective

[Nash, 1950], [Kaneko, Nakamura, 1979]

A key question is how to aggregate society’s (linear) 
utilities to reflect a fair division of resources

Efficiency Objective

max 

𝑖

𝑤𝑖𝑈𝑖(𝒙𝑖)

Maximize the (weighted) 
arithmetic sum of agent’s 
utilities, known as Linear 
Programming if u is linear

wi: population size or 
budget of type-i agent 



Arithmetic Objective Egalitarian Objective

max 

𝑖

𝑤𝑖𝑈𝑖(𝒙𝑖)

Maximize the (weighted) 
arithmetic sum of agent’s 
utilities, known as Linear 
Programming if u is linear

Nash Social Welfare (NSW) 
Objective

Larger weight (priority) 
implies higher utility unlike 

egalitarian objective

Robustness Property: 
Provides a lower bound for 
arithmetic mean objective

Geometric mean objective has several 
advantages

The NSW objective provides a compromise between 
the efficiency and egalitarian ideals of society

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

Maximize the (weighted) 
geometric sum of 

agent’s utilities

Nash Social Welfare (NSW) 
Objective

Egalitarian Objective

maxmin
𝑖
(𝑤𝑖 𝑈𝑖(𝒙𝑖))

Maximize the 
minimum (weighted) 

utility of any agent



Organization

• Advantages/Properties of (Weighted) Geometric Mean Objective

• Online Linear Programming

• Online Fisher Markets

• Summaries



Fairness: with the geometric mean objective, all users are 
guaranteed to get at least some fraction of the resources

2 Agents 1 unit of a 
divisible resource Arithmetic Allocation:

Under the arithmetic 
mean objective, the entire 

resource is allocated to 
agent 1: “big” takes all

Nash welfare allocation:
Under the geometric 
mean objective each 
agent receives some 

portion of the resource



The geometric mean objective retains several 
computational advantages

The objective can be 
formulated as a convex 
optimization problem

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

max 

𝑖

𝑤𝑖 log(𝑈𝑖(𝒙𝑖))

Rationality of data implies 
rationality of solution

Exact computation of 
optimal solutions is 

possible

Computational Complexity is 
identical to that of a linear 
program via Interior-Point 

Method

Optimal solution can be 
efficiently computed in 

polynomial time

[Jain 2007], [Y 2008], [Vazirazi 2012],…



The geometric mean objective has several additional 
advantages

The resulting allocation is 
Pareto efficient

The resulting allocation is 
envy-free

Each agent prefers 
their allocation to that 

of any other agent

The objective can be 
formulated as a convex 
optimization problem

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

max 

𝑖

𝑤𝑖 log(𝑈𝑖(𝒙𝑖))

The objective can be 
formulated as a convex 
optimization problem

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

max 

𝑖

𝑤𝑖 log(𝑈𝑖(𝒙𝑖))

The resulting allocation is 
Pareto efficient



The NSW objective has a decentralization property 
captured through the framework of Fisher Markets

9



The prices can be derived from a centralized optimization 
problem with a budget weighted geometric mean objective:

freedom-of-choice  fairness

10

𝑥𝑖𝑗∗ =
𝑤𝑖
𝑝𝑗∗
, 𝑗 ∗= argmin{

𝑝𝑗

𝑢𝑖𝑗
: 𝑢𝑖𝑗 > 0 }



The applicability of Fisher markets is restricted to the 
“complete information setting”

11

𝑥𝑖𝑗∗ =
𝑤𝑖
𝑝𝑗∗
, 𝑗 ∗= argmin{

𝑝𝑗

𝑢𝑖𝑗
: 𝑢𝑖𝑗 > 0 }



Can markets be implemented in an online setting but 
still achieve social fairness, efficiency and agent-privacy

Buyers arrive sequentially with utility and budget 
parameters in real time

Each agent distributedly optimizes their individual 
objectives in response to the set prices

Simulated Market: No trade takes place until 
equilibrium prices are reached 

[Cole, Fleischer, 2008] [Panageas, Tröbst, Vazirani, 
2021], [Jelota et al. 2021]

Real Market: Market designer learns prices from 
past buying behavior of users and makes an 

online  decision



Organization

• Advantages of (Weighted) Geometric Mean Objective

• Online Linear Programming

• Online Fisher Markets

• Summaries



Online Resource Allocation &
Revenue Management

• m type of resources; T customers

• Decision maker needs to decide whether and 
how much resources are allocated to each 
customer

• Resources are limited! 

• Online setting:

• Customers arrive sequentially and the 
decision needs to be made instantly upon 
the customer arrival: Sell or No-sell?

14

Performance of online algorithm measured with respect to regret from the offline linear objective
[Agrawal et al. 2010, 2014], [Kesselheim et al 2014]

[Li/Ye, 2019], [Li et al. 2020], 



Online Seller’s Market: An Illustration Example

Bid # $100 $30 …. … … Inventory

Decision X1=? X2=?

Pants 1 0 …. … … 100

Shoes 1 0 50

T-Shirts 0 1 500

Jackets 0 0 200

Hats 1 1 … … … 1000



Online Linear Programming
• Agents/Traders come one by one

sequentially,  buy or sell, or combination, 
with a combinatorial order/bid (at,t)

• The seller/market-maker has to make an 
order-fill decision as soon as an order 
arrives

• The seller/market-maker faces:

• Sell or No-sell – this is an irrevocable 
decision

• Optimal Policy/Mechanism?

• The off-line problem can be an (0 1) linear 
program

Off-Line LP



Regret-Ratio for Online Algorithm/Mechanism
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Impossibility Result on Regret-Ratio

Theorem: There is no online algorithm/decision-

policy/mechanism such that

.min   , )/log(O i) ( ibBBmR 

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online Linear 

Programming,” 2010.

Corollary: If B ≤ log(m)/ε2, then it is impossible to 

have a decision policy/mechanism such that R ≤ 

O(ε).



Possibility Result on Regret-Ratio
Theorem: There is an online algorithm/decision-

policy/mechanism such that

.min   , )/log(O i) ( ibBBnmR 

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online 

Linear Programming,” 2010.

Corollary: If B > mlog(n)/ε2, then there is an online 

algorithm/decision-policy/mechanism such that    

R ≤ O(ε).

Theorem: If B > log(mn)/ε2, then there is an online 

algorithm/decision-policy/mechanism such that    

R ≤ O(ε).
Kesselheim et al. “Primal Beat the Dual…,” 2014, …



Online Algorithm and Price-Mechanism: Learning-while-Doing
• Learn “ideal” itemized-prices

• Use the prices to price each bid 

• Accept if it is an over bid, and reject otherwise

Bid # $100 $30 …. … … Inventory Price?

Decision x1 x2

Pants 1 0 …. … … 100 45

Shoes 1 0 50 45

T-Shirts 0 1 500 10

Jackets 0 0 200 55

Hats 1 1 … … … 1000 15

Such ideal prices exist and they are shadow/dual prices of the offline LP



How to Learn Shadow Prices Online
For a given ε, solve the sample LP at t=εn, 2εn, 4εn, …; and use the 
new shadow prices for the decision in the coming period.
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Finite-Customer-Type Based LP formulation

In the original offline LP formulation, xt represents the decision for the t-th customer, at

represents the request vector of the t-th customer, and rt represents the reward of the 
t-th customer

In the finite-customer-type based formulation, there are in total J types of customers. 
The j-th type arrives with a probability 𝑝𝑗 (proportion of type j but unknown); the 

request vector and reward of the j-th type customer is 𝒄𝑗 and 𝜇𝑗

The decision variable 𝑦𝑗 represents the fraction/probability of j-th type customer being 

accepted. But, in real applications, most LPs have nonunique solutions… 22



A Motivation Example
• Consider an allocation problem: there exists three types of 

orders/customers, where the first two types have the reward/resource 

characteristics  that are considered equivalent from the system. 

• The following plots show the acceptance fraction/probability of the three types across time by 
two different online algorithms: the simplex and interior-point methods (Jasin 2015, Chen et al 
2021). 

23



Fairness Desiderata

• Technically, Non-Uniqueness/Degeneracy degrades the quality of online 
algorithm since the learning “targets” are ambiguous – no ground-truth.

• More importantly, Individual Fairness needs to be achieved: similar 
customers should be treated similarly. Since the optimal object value 
depends on the total resources spent, not on the resources spent on which 
groups, some individual or group may be ignored by a particular online 
algorithm/allocation-rule.

• Also, Time Fairness: The algorithm may tend to accept mainly the first half 
(or the second half of the orders), which is unfair or unideal…

24



Fair Optimal Solution for Offline Problem

• We define 𝒚∗ the fair offline optimal solution of the LP problem as the analytical 
center of the optimal solution set, which represents an “average” of all the 
optimal corner solutions – their product is maximized.

• The fair solution 𝒚∗ will treat individuals fairly, based on their similar reward and 
resource consumption.

• An online interior-point learning algorithm would use the data points up to time t 
and solve the sample-based linear program to decide fair yt.

25



Fairness-Performance Measure
• Let 𝒚𝑡 be the allocation rule at time 𝑡 which encodes the accepting probabilities 

under the online algorithm 𝜋. Then we define the cumulative unfairness of the 
online algorithm 𝜋 as 

𝑈𝐹𝑇 𝜋 = 𝐸[∑𝑡=1
𝑇 𝒚𝑡 − 𝒚

∗
2

2
]

• Intuition: If 𝑈𝐹𝑇 𝜋 is sub-linear, we know Time Fairness is satisfied since the 
deviation of the online solution cannot be large. Moreover, Individual Fairness is 
satisfied because we know 𝑈𝐹𝑇 𝜋 being sub-linear implies 𝒚𝑡 converging to 𝒚∗.

• Let 𝑗𝑡 denote the incoming customer type at time 𝑡, the Revenue Regret is 
defined as 

• 𝑅eg𝑇 𝜋 = 𝐸[∑𝑡=1
𝑇 𝑟𝑡(𝑦𝑗𝑡

∗ − 𝑦𝑡,𝑗𝑡)]

Regret measures the performance loss compared to the optimal policy.

26



Our Result
• We develop an algorithm [Chen, Li & Y (2021)] that achieve

𝑈𝐹𝑇 𝜋 = 𝑂 log 𝑇

𝑅eg𝑇 𝜋 Bounded independent of 𝑇

• Key ideas in algorithm design:

• At each time t, we use interior-point method to obtain the sample analytic-
center solution and randomly make decision based on sample solution yt. 

• We also adjust the right-hand-side resource of the LP to ensure the depletion 
of binding resources and non-binding resources does not affect the fairness.

• This state of the art result removes typical non-degeneracy or non-uniqueness
assumption in the OLP literature. 

27



The Online Algorithm can be 
Extended to Bandits with 
Knapsack (BwK) Applications

• For the previous problem, the decision 
maker first wait and observe the 
customer order/arm and then decide 
whether to accept/play it or not. 

• An alternative setting is that the 
decision maker first decides which 
order/arm (s)he may accept/play, and 
then receive a random resource 
consumption vector aj and yield a 
random reward 𝜋𝑗 of the pulled arm. 

• Known as the Bandits with Knapsacks, 
and it is a tradeoff exploration v.s. 
exploitation 28



• The decision variable 𝑥𝑗 represents the total-times of pulling the j-th arm.

• We have developed a two-phase algorithm
• Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic

variables/arms with as fewer number of plays as possible
• Phase II: Use the arms in the optimal face to exhaust the resource through an adaptive 

procedure and achieve fairness

• The algorithm achieves a problem dependent regret that bears a logarithmic 
dependence on the horizon T. Also, it identifies a number of LP-related 
parameters as the bottleneck or condition-numbers for the problem

• Minimum non-zero reduced cost 
• Minimum singular-values of the optimal

basis matrix.

• First algorithm to achieve the 𝑂(log 𝑇) regret bound [Li, Sun & Y 2021].
29

max  𝜋𝑗𝑥𝑗 s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 , 𝑥𝑗 ≥ 0 ∀ 𝑗 = 1, . . . , 𝐽

Takeaway: 
Stochastic data are learnable and
partial social fairness is achievable 
for online linear programming
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Prior work on online variants of Fisher markets have 
considered the setting of goods arriving sequentially

Prior Work: Goods Arrive Online
[Gorokh, Banerjee, Iyer, 2021]

This Work: Agents arrive Online and an irrevocable allocation 
has to be made:

How much the objective value degraded from offline 
version?



Agents maximize individual utilities based on posted prices 
that are adjusted based on discrepancy between supply & 

demand – Buyers’ market in real time

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

An agent 𝑖, with budget 
wi,  purchases an 

“regularized” optimal 

bundle 𝒙𝑖
𝑡 given price 𝒑𝑡

Then prices at time 𝑡 + 1 are updated based 

on observed consumptions 𝒙𝑖
𝑡 at time 𝑡

Increase Prices: 𝑝𝑗
𝑡+1 > 𝑝𝑗

𝑡 if ∑𝑖 𝑥𝑖𝑗
𝑡 > 𝑐𝑗

Decrease Prices: 𝑝𝑗
𝑡+1 < 𝑝𝑗

𝑡 if ∑𝑖 𝑥𝑖𝑗
𝑡 > 𝑐𝑗



Online for Geometric Objective: evaluate algorithms through 
the absolute regret of social welfare and capacity violation

Regret (Optimality Gap) Constraint Violation

Difference in the Optimal Social 

Objective of the online policy 𝝅 to that 

of the optimal offline social value

Norm of the violation of capacity 

constraints of the online policy 𝝅

Optimal Offline 
Objective

Objective of 
online policy

Violation of Capacity 
Constraint of good 𝑗

Norm of the expected 
constraint violation

Prior Work on concave objectives [Agrawal/Devanur 2014; Lu, 
Balserio, Mirrkoni, 2020] assume non-negativity and 

boundedness of utilities, none of which are true for the NSW



Using the optimal expect prices, one of the two measures 
must be Ω( 𝑛), where 𝑛 is the number of total agents

Two agent types specified by
(Utility for Good 1, Utility for Good 2)

Type I: (1, 0) Type II: (0, 1)

Arrival Probability = 0.5 Arrival Probability = 0.5

2 goods, each with 
a capacity of 𝒏

Expected Optimal Objective ≈ 𝒏 𝒍𝒐𝒈 𝟐
Since Type I users receive two units of good one, while type 

two receive two units of good two

While 
𝑛

2
users of Type I arrive in expectation, the realized 

arrivals of type I users deviates by 𝑂( 𝑛)

𝑛 − regret of NSW means: 
SW optimal geometric mean

SW geometric mean of online algorithm
≤ 𝑒
1

𝑛



Primal algorithms are often computationally 
expensive and do not preserve user-privacy

User parameters (𝑤, 𝒖) are revealed
With parameters until user t arrives, we 
can solve the following primal problem

Prices can be set 
based on dual of 
capacity constraints

Such algorithms require information 
on user parameters, which may not 

be known in practice

At each time instance, we solve a larger 
convex program, which may become 

computationally expensive in real time



We design a dual based algorithm, wherein users see 
posted prices at each time they arrive and make buy 

decisions (no need to worry truthfulness)

Agent 𝑡 Agent 𝑡 + 1

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

𝑤𝑡, 𝒖𝑡 ~𝑃 𝑤𝑡+1, 𝒖𝑡+1 ~𝑃

The price at time 𝑡 + 1 is updated based on 
observed consumption 𝒙𝑡 at time 𝑡

Agent purchase an 
optimal bundle 𝒙𝑡

given price 𝒑𝑡



Applying gradient descent to the dual of the social 
optimization problem motivates a natural algorithm

Dual of social optimization problem 
with Lagrange multiplier of the 

capacity constraints 𝑝𝑗

Equivalent Sample Average 
Approximation (SAA) of Dual Problem

(Sub)-gradient descent of dual problem 
for each agent: 𝑂(𝑚) complexity of 

price update

Difference between market share of 
each agent and goods purchased



The privacy-preserving algorithm has sub-linear 
regret and constraint violation guarantees 

Difference between market share of 
each agent and goods purchased

Theorem [Jelota & Y 2022]: Under i.i.d. budget and utility parameters and when good 
capacities are 𝑂(𝑛), Algorithm 1 achieves an expected regret 𝑅𝑛(𝝅) ≤ 𝑂( 𝑛) and the 
expected constraint violation 𝑉𝑛(𝝅) ≤ 𝑂( 𝑛), where 𝑛 is the number of arriving users.  

Only requires knowledge of user consumption 
(and not their budgets or utilities) to update prices

Step-size: 1/\sqrt{n}



Again, the price of a good is increased if the arriving 
user purchase more than its market share of the good

Agent 𝑡 Agent 𝑡 + 1

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

𝑤𝑡, 𝒖𝑡 ~𝑃 𝑤𝑡+1, 𝒖𝑡+1 ~𝑃

Increase Prices: 𝑝𝑗
𝑡+1 > 𝑝𝑗

𝑡 if 𝑥𝑗
𝑡+1 >

𝑐𝑗

𝑛

Decrease Prices: 𝑝𝑗
𝑡+1 < 𝑝𝑗

𝑡 if 𝑥𝑗
𝑡+1 <

𝑐𝑗

𝑛

Agent purchase an 
optimal bundle 𝒙𝑡

given price 𝒑𝑡



Our numerical results verify the obtained 
theoretical guarantee

Slope = 0.5



We also develop benchmarks that have access to more 
information to compare our algorithm’s performance

Known Probability Distribution User parameters (𝑤, 𝒖) are revealed

Benchmark 1: Set price based on 
solution of Stochastic Program

Benchmark 2: Set prices based 
on a sequence of dual problems 

using revealed parameters



Our numerical results demonstrate a tradeoff 
between regret and constraint violation



Summary: online algorithms are applicable to Fisher 
markets with geometric aggregation of social welfare and 

sub-linear regret guarantees

Buyers arrive sequentially with utility 
and budget parameters drawn as

There is a fundamental trade-off 
between regret and constraint 

violation metrics

Online Algorithm with sub-linear 
regret and constraint violation 

guarantees



Organization

• Advantages of (Weighted) Geometric Mean Objective

• Distributed ADMM Algorithm for Fisher Markets (Simulated Market)

• Online Fisher Markets (Real Market)

• Summaries



Geometrically aggregated welfare optimization: it is as 
easy as linear programming and more desirable in many 

social/economical settings

The weighted 
geometric average 

objective has several 
advantages including 

fairness, 
computational 

complexity, and the 
resulting allocation can 

be distributed using 
prices through Fisher 

markets

The Nash social 
welfare maximizing 
allocations can be 

computed in a 
distributed fashion by 
using the primal-dual 

and/or ADMM 
methods while 

preserving the privacy 
of individual utilities

The corresponding 
allocations can be 

implemented in the 
online setting with a 

sublinear regret



Future Work

Loss in social objective under 
integral allocations

Extensions of geometric social 
objective for online allocation 
in bandit and reinforcement 

learning problems

Extension of online Fisher 
markets under general 

concave utility functions and 
tight regret bounds


