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There are many settings when we need to fairly 
allocate shared resources to users

Public Good Allocation Vaccine Allocation



Egalitarian Objective

maxmin
𝑖
𝑤𝑖 𝑈𝑖(𝒙𝑖)

Maximize the 
minimum (weighted) 

utility of any agent

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

Maximize the (weighted) 
geometric sum of 

agent’s utilities

Nash Social Welfare (NSW) 
Objective

[Nash, 1950], [Kaneko, Nakamura, 1979]

A key question is how to aggregate society’s 
preferences to reflect a fair division of resources

Efficiency Objective

max 

𝑖

𝑤𝑖𝑈𝑖(𝒙𝑖)

Maximize the (weighted) 
arithmetic sum of agent’s 
utilities, known as Linear 
Programming if u is linear

wi: population size or 
budget of type-i agent 



Arithmetic Objective Egalitarian Objective

max 

𝑖

𝑤𝑖𝑈𝑖(𝒙𝑖)

Maximize the (weighted) 
arithmetic sum of agent’s 
utilities, known as Linear 
Programming if u is linear

Nash Social Welfare (NSW) 
Objective

Larger weight (priority) 
implies higher utility unlike 

egalitarian objective

Robustness Property: 
Provides a lower bound for 
arithmetic mean objective

Geometric mean objective has several 
advantages

The NSW objective provides a compromise between 
the efficiency and egalitarian ideals of society

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

Maximize the (weighted) 
geometric sum of 

agent’s utilities

Nash Social Welfare (NSW) 
Objective

Egalitarian Objective

maxmin
𝑖
𝑤𝑖 𝑈𝑖(𝒙𝑖)

Maximize the 
minimum (weighted) 

utility of any agent
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Fairness: with the geometric mean objective, all users are 
guaranteed to get at least some fraction of the resources

2 Agents 1 unit of a 
divisible resource Arithmetic Allocation:

Under the arithmetic 
mean objective, the entire 

resource is allocated to 
agent 1: “big” takes all

Nash welfare allocation:
Under the geometric 
mean objective each 
agent receives some 

portion of the resource



The geometric mean objective retains several 
computational advantages

The objective can be 
formulated as a convex 
optimization problem

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

max 

𝑖

𝑤𝑖 log(𝑈𝑖(𝒙𝑖))

Rationality of data implies 
rationality of solution

Exact computation of 
optimal solutions is 

possible

Computational Complexity is 
identical to that of a linear 
program via Interior-Point 

Method

Optimal solution can be 
efficiently computed in 

polynomial time

[Jain 2007], [Y 2008], [Vazirazi 2012],…



The geometric mean objective has several additional 
advantages

The resulting allocation is 
Pareto efficient

The resulting allocation is 
envy-free

Each agent prefers 
their allocation to that 

of any other agent

The objective can be 
formulated as a convex 
optimization problem

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

max 

𝑖

𝑤𝑖 log(𝑈𝑖(𝒙𝑖))

The objective can be 
formulated as a convex 
optimization problem

max 

𝑖

𝑈𝑖 𝒙𝑖
𝑤𝑖

max 

𝑖

𝑤𝑖 log(𝑈𝑖(𝒙𝑖))

The resulting allocation is 
Pareto efficient



The NSW objective has a decentralization property 
captured through the framework of Fisher Markets

10



The prices can be derived from a centralized optimization 
problem with a budget weighted geometric mean objective

11

𝑥𝑖𝑗∗ =
𝑤𝑖
𝑝𝑗∗
, 𝑗 ∗= argmin{

𝑝𝑗

𝑢𝑖𝑗
: 𝑢𝑖𝑗 > 0 }



The applicability of Fisher markets is restricted to the 
“complete information setting”

12

𝑥𝑖𝑗∗ =
𝑤𝑖
𝑝𝑗∗
, 𝑗 ∗= argmin{

𝑝𝑗

𝑢𝑖𝑗
: 𝑢𝑖𝑗 > 0 }



Distributed algorithms for Fisher markets and show 
that it can be implemented in an online setting

Buyers arrive sequentially with utility and budget 
parameters in real time

Each agent distributedly optimizes their individual 
objectives in response to the set prices

Simulated Market: No trade takes place until 
equilibrium prices are reached 

[Cole, Fleischer, 2008] [Panageas, Tröbst, Vazirani, 
2021], 

Real Market: Market designer learns prices from 
past buying behavior of users and makes an 

online  decision
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Distributed algorithms for Fisher markets are necessary 
since the utilities of buyers may not be known



Review: Primal-Dual (Tatonnement) methods adjust prices 
based on discrepancy between supply & demand

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

Each agent 𝑖 purchases 

an optimal bundle 𝒙𝑖
𝑡

given price 𝒑𝑡

The price at time 𝑡 + 1 is updated based on 

observed consumptions 𝒙𝑖
𝑡 at time 𝑡

Increase Prices: 𝑝𝑗
𝑡+1 > 𝑝𝑗

𝑡 if  𝑖 𝑥𝑖𝑗
𝑡 > 𝑐𝑗

Decrease Prices: 𝑝𝑗
𝑡+1 < 𝑝𝑗

𝑡 if  𝑖 𝑥𝑖𝑗
𝑡 > 𝑐𝑗



Review: Using primal-dual methods, convergence 
is only guaranteed for strongly concave utilities

Each agent solves their 
individual optimization 

problem

Prices Updated based 
on discrepancy 

between demand and 
supply

Theorem [Cole, Fleischer, 2008]
If the objective function is strongly concave, the convergence of the tatonnement 
algorithm to the optimal solution is linear



Review: Furthermore, the step-size of the price 
updates often depends on the type of utility function

Each agent solves their 
individual optimization 

problem

Prices Updated based 
on discrepancy 

between demand and 
supply

Theorem [Cole, Fleischer, 2008]
If the objective function is strongly concave, the convergence of the tatonnement 
algorithm to the optimal solution is linear



We introduce ADMM, where a regularization term is 
added to obtain better convergence guarantees

Theorem [He&Yuan and Monteiro&Svaiter, 2010 ]: If the objective function is (weakly) concave, 

then ADMM converges to the optimal solution with rate 𝑂(
1

𝑘
), where 𝑘 is the number of 

iterations of the algorithm. 
Under strong concavity assumptions, the convergence is linear.

Dual variable 
of constraint

Penalty for 
constraint violation Glowinski&Marroco, 1975



The step-size of the price updates is 
independent of the utility functions of users

Dual variable 
of constraint

Penalty for 
constraint violation

Theorem [He&Yuan and Monteiro&Svaiter, 2010]: If the objective function is (weakly) concave, 

then ADMM converges to the optimal solution with rate 𝑂(
1

𝑘
), where 𝑘 is the number of 

iterations of the algorithm. 
Under strong concavity assumptions, the convergence is linear.



To apply ADMM for Fisher markets, we add an additional 
variable to achieve a distributed implementation

Each agent solves a 
“regularized” 

individual optimization 
problem

Prices Updated based 
on discrepancy 

between demand and 
supply

Add an additional variable 
to achieve distributed 

ADMM implementation



Agents again solve “regularized” objective and prices are 
adjusted based on discrepancy between supply & demand

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

Each agent 𝑖 purchases 
an “regularized”

optimal bundle 𝒙𝑖
𝑡

given price 𝒑𝑡

The price at time 𝑡 + 1 is updated based on 

observed consumptions 𝒙𝑖
𝑡 at time 𝑡

Increase Prices: 𝑝𝑗
𝑡+1 > 𝑝𝑗

𝑡 if  𝑖 𝑥𝑖𝑗
𝑡 > 𝑐𝑗

Decrease Prices: 𝑝𝑗
𝑡+1 < 𝑝𝑗

𝑡 if  𝑖 𝑥𝑖𝑗
𝑡 > 𝑐𝑗



Numerical results verify the theoretical 
guarantees for the two algorithms

Linear Utility (Weakly Concave) Stone-Geary Utility (Strictly Concave)



ADMM provides strong convergence guarantees for 
a broad range of utility functions

ADMM converges for 
weakly concave utility 
functions, e.g., linear 

utilities

The step-size of the price 
updates is independent of 

the utility functions of 
users

ADMM can also be 
extended to the setting 

when users have additional 
linear constraints
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There are many settings wherein agents arrive into 
the market sequentially and decisions have to be 
made immediately

Agents obtain vaccines over time
Agents arrive over time to use public 

goods



Prior work on online variants of Fisher markets have 
considered the setting of goods arriving sequentially

Prior Work: Goods Arrive Online
[Gorokh, Banerjee, Iyer, 2021]

This Work: Agents arrive Online and an irrevocable allocation 
has to be made:

How much the objective value degraded from offline version?



The setting of agents arriving online has been 
studied in online linear programming (OLP)

Performance of online algorithm measured with respect to regret from the offline linear objective
[Mehta et al. 2007], [Agrawal et al. 2010, 2014], [Kesselheim et al 2014]

[Li/Ye, 2019], [Li et al. 2020], 

Utility =  𝑗=1
𝑚 𝑢𝑡𝑗𝑥𝑡𝑗

Objective: Maximize  𝑡=1
𝑛  𝑗=1
𝑚 𝑢𝑡𝑗𝑥𝑡𝑗

Subject to resource constraints



Online Linear Programming
• Traders come one by one sequentially,  

buy or sell, or combination, with a 
combinatorial order/bid (ak,k)

• The seller/market-maker has to make an 
order-fill decision as soon as an order 
arrives

• The seller/market-maker faces a dilemma:

• To accept or reject – this is the 
decision

• Optimal Policy?

• The off-line problem can be an (0 1) linear 
program
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Regret for Online Algorithm/Mechanism
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 We know the total number of customers, say n;

 Assume customers arrive in a random order or with i.i.d data.

 For a given online 
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Impossibility Result on Regret

Theorem: There is no online algorithm/decision-

policy/mechanism such that

.min   , )/log(O i) ( ibBBmR 

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online Linear 

Programming,” 2010.

Corollary: If B ≤ log(m)/ε2, then it is impossible to 

have a decision policy/mechanism such that R ≤ 

O(ε).



Possibility Result on Regret
Theorem: There is an online algorithm/decision-

policy/mechanism such that

.min   , )/log(O i) ( ibBBnmR 

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online 

Linear Programming,” 2010.

Corollary: If B > mlog(n)/ε2, then there is an online 

algorithm/decision-policy/mechanism such that    

R ≤ O(ε).

Theorem: If B > log(mn)/ε2, then there is an online 

algorithm/decision-policy/mechanism such that    

R ≤ O(ε).
Kesselheim et al. “Primal Beat the Dual…,” 2014



Online Algorithm and Price-Mechanism
• Learn “ideal” itemized-prices

• Use the prices to price each bid 

• Accept if it is an over bid, and reject otherwise

Bid # $100 $30 …. … … Inventory Price?

Decision x1 x2

Pants 1 0 …. … … 100 45

Shoes 1 0 50 45

T-Shirts 0 1 500 10

Jackets 0 0 200 55

Hats 1 1 … … … 1000 15

Such ideal prices exist and they are shadow/dual prices of the offline LP



How to Learn Shadow Prices Online
For a given ε, solve the sample LP at t=εn, 2εn, 4εn, …; and use the 
new shadow prices for the decision in the coming period.
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Online for Geometric Objective: evaluate algorithms through 
the absolute regret of social welfare and capacity violation

Regret (Optimality Gap) Constraint Violation

Difference in the Optimal Social 

Objective of the online policy 𝝅 to that 

of the optimal offline social value

Norm of the violation of capacity 

constraints of the online policy 𝝅

Optimal Offline 
Objective

Objective of 
online policy

Violation of Capacity 
Constraint of good 𝑗

Norm of the expected 
constraint violation

Prior Work on concave objectives [Agrawal/Devanur 2014; Lu, 
Balserio, Mirrkoni, 2020] assume non-negativity and 

boundedness of utilities, none of which are true for the NSW



Using the optimal expect prices, the capacity violation 
must be Ω( 𝑛), where 𝑛 is the number of total agents

Two agent types specified by
(Utility for Good 1, Utility for Good 2)

Type I: (1, 0) Type II: (0, 1)

Arrival Probability = 0.5 Arrival Probability = 0.5

2 goods, each with 
a capacity of 𝒏

Expected Optimal Objective ≈ 𝒏 𝒍𝒐𝒈 𝟐
Since Type I users receive two units of good one, while type 

two receive two units of good two

While 
𝑛

2
users of Type I arrive in expectation, the realized 

arrivals of type I users deviates by 𝑂( 𝑛)

𝑛 − regret of NSW means: 
SW optimal geometric mean

SW geometric mean of online algorithm
≤ 𝑒
1

𝑛



Primal algorithms are often computationally 
expensive and do not preserve user privacy

User parameters (𝑤, 𝒖) are revealed
With parameters until user t arrives, we 
can solve the following primal problem

Prices can be set 
based on dual of 
capacity constraints

Such algorithms require information 
on user parameters, which may not 

be known in practice

At each time instance, we solve a larger 
convex program, which may become 

computationally expensive in real time



We design a dual based algorithm, wherein 
users see prices at each time they arrive

Agent 𝑡 Agent 𝑡 + 1

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

𝑤𝑡, 𝒖𝑡 ~𝑃 𝑤𝑡+1, 𝒖𝑡+1 ~𝑃

The price at time 𝑡 + 1 is updated based on 
observed consumption 𝒙𝑡 at time 𝑡

Agent purchase an 
optimal bundle 𝒙𝑡

given price 𝒑𝑡



Applying gradient descent to the dual of the social 
optimization problem motivates a natural algorithm

Dual of social optimization problem 
with Lagrange multiplier of the 

capacity constraints 𝑝𝑗

Equivalent Sample Average 
Approximation (SAA) of Dual Problem

(Sub)-gradient descent of dual problem 
for each agent: 𝑂(𝑚) complexity of 

price update

Difference between market share of 
each agent and goods purchased



We develop a privacy-preserving algorithm with sub-
linear regret and constraint violation guarantees 

Difference between market share of 
each agent and goods purchased

Theorem: Under i.i.d. budget and utility parameters and when good capacities are 
𝑂(𝑛), Algorithm 1 achieves an expected regret 𝑅𝑛(𝝅) ≤ 𝑂( 𝑛) and the expected 

constraint violation 𝑉𝑛(𝝅) ≤ 𝑂( 𝑛), where 𝑛 is the number of arriving users.  

Only requires knowledge of user consumption 
(and not their budgets or utilities) to update prices

Step-size: 1/\sqrt{n}



Again, the price of a good is increased if the arriving 
user purchase more than its market share of the good

Agent 𝑡 Agent 𝑡 + 1

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

𝑤𝑡, 𝒖𝑡 ~𝑃 𝑤𝑡+1, 𝒖𝑡+1 ~𝑃

Increase Prices: 𝑝𝑗
𝑡+1 > 𝑝𝑗

𝑡 if 𝑥𝑗
𝑡+1 >

𝑐𝑗

𝑛

Decrease Prices: 𝑝𝑗
𝑡+1 < 𝑝𝑗

𝑡 if 𝑥𝑗
𝑡+1 <

𝑐𝑗

𝑛

Agent purchase an 
optimal bundle 𝒙𝑡

given price 𝒑𝑡



Our numerical results verify the obtained 
theoretical guarantee

Slope = 0.5



We also develop benchmarks that have access to more 
information to compare our algorithm’s performance

Known Probability Distribution User parameters (𝑤, 𝒖) are revealed

Benchmark 1: Set price based on 
solution of Stochastic Program

Benchmark 2: Set prices based 
on a sequence of dual problems 

using revealed parameters



Our numerical results demonstrate a tradeoff 
between regret and constraint violation



Summary: online algorithms are applicable to Fisher 
markets with geometric aggregation of social welfare 
with sub-linear regret guarantees

Buyers arrive sequentially with utility 
and budget parameters drawn as

There is a fundamental trade-off 
between regret and constraint 

violation metrics

Online Algorithm with sub-linear 
regret and constraint violation 

guarantees



Organization
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Geometrically aggregated welfare optimization: it is as 
easy as linear programming and more desirable in many 
social/economical settings

The weighted 
geometric average 

objective has several 
advantages including 

fairness, 
computational 

complexity, and the 
resulting allocation can 

be distributed using 
prices through Fisher 

markets

The Nash social 
welfare maximizing 
allocations can be 

computed in a 
distributed fashion by 
using the primal-dual 

and/or ADMM 
methods while 

preserving the privacy 
of individual utilities

The corresponding 
allocations can be 

implemented in the 
online setting with a 

sublinear regret



Future Work

Loss in social objective under 
integral allocations

Extensions of geometric social 
objective for online allocation 
in bandit and reinforcement 

learning problems

Extension of online Fisher 
markets under general 

concave utility functions and 
tight regret bounds


