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There are many settings when we need to fairly
allocate shared resources to users

Public Good Allocation Vaccine Allocation




A key question is how to aggregate society’s
preferences to reflect a fair division of resources

max Z Wi Ui (xi)
[

Maximize the (weighted)
arithmetic sum of agent’s
utilities, known as Linear
Programming if u is linear

o

w.: population size or
budget of type-i agent

Nash Social Welfare (NSW)
Objective

[Nash, 1950], [Kaneko, Nakamura, 1979]

Egalitarian Objective




The NSW objective provides a compromise between
the efficiency and egalitarian ideals of society

Nash Social Welfare (NSW) Egalitarian Objective

Objective

max Z Wi Ui (xl-)
[

Maximize the (weighted)
arithmetic sum of agent’s
utilities, known as Linear
Programming if u is linear

>

Robustness Property: Geometric mean objective has several salal sy,
Provides a lower bound for J implies higher utility unlike

arithmetic mean objective egalitarian objective

advantages
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Organization

» Advantages/Properties of (Weighted) Geometric Mean Objective



Fairness: with the geometric mean objective, all users are
guaranteed to get at least some fraction of the resources

2 Agents 1 unit of a

divisible resource Arithmetic Allocation:
s Under the arithmetic
w mean objective, the entire
resource is allocated to
d > Ui agent 1: “big” takes all
@
Nash welfare allocation:
w Under the geometric
mean objective each

agent receives some

portion of the resource
u;; : Preference of Agent % for one unit of good j



The geometric mean objective retains several
computational advantages

Computational Complexity is
identical to that of a linear
program via Interior-Point

Method

{

The objective can be
formulated as a convex
optimization problem
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EFFICIENCY

Exact computation of
optimal solutions is
possible




The geometric mean objective has several additional
advantages

The resulting allocation is The objective can be
Pareto efficient formulated as a convex
optimization problem
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QUANTITY OF ITEM 1

Each agent prefers
their allocation to that
of any other agent




The NSW objective has a decentralization property
captured through the framework of Fisher Markets

Agent 1
4 u;; : Preference of Agent 7 for one unit of good j
w z;; : Quantity of good j purchased by person %
p; : Price of Good ]

w; : Budget of Agent i

Individual Optimization Problem:
max E Ui T45

X -

J

S.t. pTXi < w;
X; > 0

M = Total Number of Goods 10



The prices can be derived from a centralized optimization
problem with a budget weighted geometric mean objective

Individual Optimization Problem: Social Optimization Problem:

. E w; lo E Ui L
H}{axi :“1333%3 x; Wie [V] ' g( *J ”)
.II ]
J

—

S.t.

s.t. plx;, <w;

tj

R Zﬂ?z‘j < Cj,\?’j € [M]

\
Capacity Constraints

zi; = 0,V,]

J *= argmin{j—j:uij >0}



The applicability of Fisher markets is restricted to the
“complete information setting”

Individual Optimization Problem: Social Optimization Problem:

.. E w; lo E Wi
H}{axi :“1333%3 x; Wie [V] ' g( *J ”)
.I' .

S.t
S.t. pTx%- < w; — Z%; <¢;,Vj € [M]

\
Capacity Constraints

zi; = 0,V,]

J *= argmin{j—j:uij >0}
Lj




Distributed algorithms for Fisher markets and show
that it can be implemented in an online setting

—— o— . m—

7 the
#1414

Simulated Market: No trade takes place until
equilibrium prices are reached
[Cole, Fleischer, 2008] [Panageas, Trobst, Vazirani,
2021],

Real Market: Market designer learns prices from
past buying behavior of users and makes an
online decision
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* Distributed ADMM Algorithm for Fisher Markets (Simulated Market)



Distributed algorithms for Fisher markets are necessary
since the utilities of buyers may not be known
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Centralized Distributed



Review: Primal-Dual (Tatonnement) methods adjust prices
based on discrepancy between supply & demand
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Review: Using primal-dual methods, convergence
IS only guaranteed for strongly concave utilities

Algorithm 1: Tatonnement for Fisher Markets

Each agent solves their Input : Initial price vector p
individual optimization Output: Equilibrium Price vector p*
problem for k=0,1,2,... do

xgkﬂ) = argmax, .y, {w;log (u;(x;)) — >_; p}k)mij}, for all ¢ ;

k
p(k+1} «— p{k) 4+ ﬂ(zz_ xi +1) c);
end

Prices Updated based

on discrepancy
between demand and

supply




Review: Furthermore, the step-size of the price
updates often depends on the type of utility function

Algorithm 1: Tatonnement for Fisher Markets

Each agent solves their Input : Initial price vector p
individual optimization Output: Equilibrium Price vector p*
problem for k=0,1,2,... do

xgkﬂ) = argmax, .y, {w;log (u;(x;)) — >_; p}k)mij}, for all ¢ ;

k
p(k+1} «— p{k) 4+ ﬂ(zz_ xi +1) c);
end

Prices Updated based
on discrepancy
between demand and

supply




We introduce ADMM, where a regularization term is
added to obtain better convergence guarantees

Algorithm 2: Two Block ADMM

max h(x =%
X EX y € y ( ? Y) f( ) 2 g(y) Input : Initial dual multiplier \(%), and initial vector y (%)
?
for £ =0,1,2.... do
R Ax+ By =c (1) = arg max. .y La(x, y®) ;
y*+) = argmax, ey Lp(x*+Y,y) ;
g (k+1) (k) (k+1) (k+1) _ ) -
ﬁﬁ(X,Y):f(X)+g(y)—uT(AerBy—c)—§||Ax+By_c||2 p+D  ®) 4 B(Ax(k+D) 4 By o) ;
l end
Penalty for Dual variabl
constraint violation __, Pualvariable  Glowinski&Marroco, 1975

of constraint




The step-size of the price updates is
independent of the utility functions of users

Algorithm 2: Two Block ADMM

max h(x,y) = f(x)+g(y)

xeX,ye)y Input : Initial dual multiplier A\(®), and initial vector y(®
for £ =0,1,2.... do
s.t. Ax+ By =c x(HD) = arg max, ey L3(x, y®) ;

y* ) = argmax, .y L(x* ), y) ;

I} (k+1) (k) (k+1) (k+1) _ :
flﬁ(?%bf):f(XHg(y)—;uJT(fﬁchrBy—c)—§||zibc+By—c||2 poT = it + B(AXTY + By c) ;
l end

Penalty for
constraint violation

Dual variable
of constraint




To apply ADMM for Fisher markets, we add an additional
variable to achieve a distributed implementation

Add an additional variable

max 3 wilog (ui(x)), to achieve distributed x; € th:nea’)ﬁ;“v@ e sz log (ui(xi))
x; € X, Vi € [n] ADMM implementation
s.t. Zym ¢j,¥j € [m],

st 2ru=aViClml ——

Algorithm 1: Two Block ADMM for Fisher Markets

Each agent solves a 0
" . ” Input : Initial price vector p, and initial baseline demand y,
regularized

Output: Equilibrium Price vector p*

yi = X;, Vi € [n].

individual optimization for k=0,1,2,... do
problem x("V = argmax, ¢ x {wilog (wi(x:)) — X, 0V wis — § X, 5 (s — uly)?), for all i ;
(HU = arg max, {—5 g > ( o Yij)? — %Zj (D2 vij — Cj)2} 3
Prices Updated based p(k“) —p® 4+ B(%, y(’““) c) :
on discrepancy end

between demand and
supply



Agents again solve “regularized” objective and prices are
adjusted based on discrepancy between supply & demand

'MI‘

Ehgt

optimal bundle x
given price pt
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Numerical results verify the theoretical
guarantees for the two algorithms

Linear Utility (Weakly Concave) Stone-Geary Utility (Strictly Concave)
z 106 ' z 104
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ADMM provides strong convergence guarantees for
a broad range of utility functions

ADMM can also be
extended to the setting

ADMM converges for The step-size of the price

weakly concave utility updates is independent of

when users have additional
linear constraints

functions, e.g., linear the utility functions of
utilities users




Organization

* Online Fisher Markets (Real Market)



There are many settings wherein agents arrive into
the market sequentially and decisions have to be
made immediately

. . . Agents arrive over time to use public
Agents obtain vaccines over time & g00ds P



Prior work on online variants of Fisher markets have
considered the setting of goods arriving sequentially




The setting of agents arriving online has been
studied in online linear programming (OLP)

)

Objective: Maximize Y1 X701 UgjXy;
Subject to resource constraints

Performance of online algorithm measured with respect to regret from the offline linear objective




Online Linear Programming

* Traders come one by one sequentially,
buy or sell, or combination, with a
combinatorial order/bid (a,, 7, )

* The seller/market-maker has to make an
order-fill decision as soon as an order
arrives

* The seller/market-maker faces a dilemma:

* To accept or reject — this is the
decision

* Optimal Policy?

* The off-line problem can be an (0 1) linear
program

max > mX
K

S.t. Z:aikxkébi VieS
K

0<x,<1 VkeN

Off-Line LP




Regret for Online Algorithm/Mechanism
OPT(Am)=max > mX

S.t. Zaikxk <b VieS$S
K

0<x<1 VkeN

= We know the total number of customers, say n;
= Assume customers arrive in a random order or with 1.1.d data.

= For a given online algorithm/decision-policy/mechanism
Z(A,)
OPT (A7)

Z(Ar)=E_[ Zn:nkxk ]| |[R(A)=1-

R=sup,,R(AT)




Impossibility Result on Regret

Theorem: There is no online algorithm/decision-
policy/mechanism such that

R<0( {/log(m)/B ), B=minp,.

Corollary: If B < log(m)/e?, then it is impossible to
have a decision policy/mechanism such that R <
O(g).

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online Linear
Programming,” 2010.



Possibility Result on Regret

Theorem: There is an online algorithm/decision-
policy/mechanism such that

R<0( {/mlog(n)/B ), B=minb,.

Corollary: If B > mlog(n)/e?, then there is an online
algorithm/decision-policy/mechanism such that
R < O(¢).

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online
Linear Programming,” 2010.

Theorem: If B > log(mn)/e?, then there is an online
algorithm/decision-policy/mechanism such that
R < O(¢).

Kesselheim et al. “Primal Beat the Dual...,” 2014




Online Algorithm and Price-Mechanism

* Learn “ideal” itemized-prices
» Use the prices to price each bid
* Accept if it is an over bid, and reject otherwise

Bid # $100 $30 Inventory | Price?
Decision x1 X2
Pants 1 0 100 45
Shoes 1 0 50 45
T-Shirts 0 1 500 10
Jackets 0 0 200 55
Hats 1 1 1000 15

Such ideal prices exist and they are shadow/dual prices of the offline LP



How to Learn Shadow Prices Online

For a given g, solve the sample LP at t=en, 2¢n, 4¢n, ...; and use the
new shadow prices for the decision in the coming period.

en 2¢n 4en

- r _r __r

t
max Y m.X
k=1

t
st. Yax <A-h) b Vies
k=1 N

0<x,<1 VkeN




Online for Geometric Objective: evaluate algorithms through
the absolute regret of social welfare and capacity violation

Regret (Optimality Gap) Constraint Violation

Difference in the Optimal Social
Obijective of the online policy m to that
of the optimal offline social value

Norm of the violation of capacity
constraints of the online policy

Ry (m) =
Vi(m) =) zi5(m) — ¢
Z w; log (Z uijm,}fj) — Z w; log (Z UijTij (71')) J
: A\ 7 : \ J Violation of Capacity
/ \ Constraint of good j
Optimal Offline Objective of

Objective online policy

Vo (m) = |[E[V (7) ]|l
Norm of the expected
constraint violation
|




Using the optimal expect prices, the capacity violation
must be Q(1/n), where n is the number of total agents

2 goods, each with .'.I'wo agent types s.|:3ecified by
. (Utility for Good 1, Utility for Good 2)
a capacity of n
Type I: (1, 0) Type 1I: (0, 1)
[ [ 4
Arrival Probability = 0.5 Arrival Probability = 0.5




Primal algorithms are often computationally
expensive and do not preserve user privacy

[ 4
‘ﬁ‘ w E;q ey D (Z)

s.t. Za: < —Cj Vi € [m] .
“Prices can be set

zi; >0, Vi€lt],je [m] based on dual of

capacity constraints




We design a dual based algorithm, wherein
users see prices at each time they arrive

Price pt ! P1

Agentt + 1

(Wt, ut)"’P

Agent purchase an
optimal bundle x*t
given price pt

S




Applying gradient descent to the dual of the social
optimization problem motivates a natural algorithm

T T TrL T
min Z we log(wy) — Zwt log (min p__?) + ijﬂj - Z wy
P t=1 JE€Im] Ut j=1 t=1
: _ G o4 _ S I

i

=|—C — X}

c. . v
j€[m] 4

Difference between market share of
each agent and goods purchased

p=p*



We develop a privacy-preserving algorithm with sub-
linear regret and constraint violation guarantees

Algorithm 1: Privacy Preserving Online Algorithm

Input : Number of users n, Vector of good capacities c

Initialize p' > 0 ;

fort=1,2,...,n do

Phase I: User Optimization

Each agent purchases an optimal bundle of goods x; given the price p* ;
Phase II: Price Update

P Pt —1|(5 — x5

Difference between market share of

end / t TT———ecach agent and goods purchased
/
Step-size: 1/\sqrt{n} — Only requires knowledge of user consumption

(and not their budgets or utilities) to update prices

Theorem: Under i.i.d. budget and utility parameters and when good capacities are
0(n), Algorithm 1 achieves an expected regret R,, () < 0(+/n) and the expected
constraint violation V,,(1r) < 0(y/n), where n is the number of arriving users.



Again, the price of a good is increased if the arriving
user purchase more than its market share of the good

1
. t+1
Price p} ! P1
|

Agentt + 1

(We, ug)~P

Agent purchase an
optimal bundle x*t
given price pt

S



Our numerical results verify the obtained
theoretical guarantee

o 1
® Algorithm 1 =
91" | — Theoretical Bound g
=05
coj 8 €2
= Y evoeocoeoeoe o o o ®
= S
E \ -
S
- Slope =0.5 - —0.5
i
l =
5 6 7 8 9 = —1

| |
0 1,000 2,000 3,000 4,000 5,000
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We also develop benchmarks that have access to more
information to compare our algorithm’s performance

 oown robasi Distbution et e reveaed
’H‘wm

Benchmark 2: Set prices based
on a sequence of dual problems
using revealed parameters

Benchmark 1: Set price based on
solution of Stochastic Program



Our numerical results demonstrate a tradeoff
between regret and constraint violation

0.2

Ratio of Regret to Optimal
Objective
o
-

—— Stochastic Program
Dynamic Learning using SAA |
—— Algorithm 1
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Summary: online algorithms are applicable to Fisher
markets with geometric aggregation of social welfare
with sub-linear regret guarantees
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Organization

e Advantages of (Weighted) Geometric Mean Objective

e Distributed ADMM Algorithm for Fisher Markets (Simulated Market)
* Online Fisher Markets (Real Market)

* Conclusion/Takeaway



Geometrically aggregated welfare optimization: it is as
easy as linear programming and more desirable in many
social/economical settings

The Nash social
welfare maximizing
allocations can be
computed in a
distributed fashion by

The corresponding
allocations can be

implemented in the
online setting with a
sublinear regret

using the primal-dual
and/or ADMM
methods while
preserving the privacy
of individual utilities




Future Work

Extension of online Fisher
markets under general
concave utility functions and
tight regret bounds

Extensions of geometric social
objective for online allocation
in bandit and reinforcement
learning problems

Loss in social objective under
integral allocations

DEGEENZRTION
—

COMTINUOUS
VALUE




