The Sample Complexity in Data(Sample)-Driven Optimization

Yinyu Ye

Joint work with many others

Department of Management Science and Engineering
and ICME
Stanford University
Outline

1. Sample Complexity in Reinforcement Learning and Stochastic Game
 - Reinforcement Learning and MDP
 - The Sample-Complexity Problem in RL
 - The Near Sample-Optimal Algorithm
 - Variance Reduction
 - Monotonicity Analysis

2. Average Approximation with Sparsity-Inducing Penalty for High-Dimensional Stochastic Programming/Learning
 - Regularized sample average approximation (RSAA)
 - Theoretical generalizations
 - Theoretical applications:
 - High-dimensional statistical learning
 - Deep neural network learning
I. What Is Reinforcement Learning?

• Use samples/experiences to control an unknown system

Samples/Experiences: previous observations
Reinforcement learning achieves phenomenal empirical successes

Hessel et al’17

Median over 57 Atari games

Human

Median human-normalized score

Millions of frames
What if sample/trial is costly and limited?

Sample Size/Complexity is essential!
“What If” Model: Markov Decision Process

- States: S Actions: A
- Reward: $r(s, a) \in [0, 1]$
- State transition: $P(s'|s, a)$

- Policy: $\pi : S \rightarrow A$

$$\max_{\pi} v^\pi := \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r(s^t, a^t) \right]$$

$\gamma \rightarrow 1$ Effective Horizon: $(1 - \gamma)^{-1}$

- Optimal policy & value: $\pi^* \quad V^*$
- ϵ-optimal policy π: $V^* - V^{\pi} \leq \epsilon$

When model is known, solve via Linear Programming
Examples

• Three-States MDP
 - Optimal policy: \(\pi^*(1) = L \)
 - 0.1-optimal policy: \(\pi(1) = R \)

• Pacman
 - How to get an 0.1-optimal policy?
 - Learn the policy from sample data
 - Short episodes:
 \((s_1, a_1, s'_1), (s_2, a_2, s'_2), (s_3, a_3, s'_3), \ldots \)
For an $M = (S, A, P, r, \gamma)$ how many samples are **sufficient/necessary** to **learn** a **0.1-optimal** policy w. p. ≥ 0.9?

Data/sample: transition examples from every (s,a)

$$(s_1, a_1, s'_1), (s_2, a_2, s'_2), (s_3, a_3, s'_3), \ldots$$

• $(1 - \gamma)^{-3}$ samples per (s,a) is necessary!
• No previous algorithms achieves this sample complexity
• Sufficient side: what is the **best** way of learning policy?

[Azar et al (2013)]
Empirical Risk Minimization and Value-Iteration

- Collect m samples for each (s, a)
- Construct an empirical model
- Solve the empirical MDP via Linear Programming or Simply Value-Iteration:

$$v_s \leftarrow \max_a \left[r(s,a) + \hat{P}(s'|s,a) v_{s'} \right] \text{ for all } s$$

Sample-First and Solve-Second

- Simple and intuitive
- Space: model-based, all data
- Samples: $m \geq (1 - \gamma)^{-5}$

$$\gamma = 0.95, \quad m \geq 3,000,000$$

[Azar et al’ 2013]
Iterative Q-learning: Solving while Sampling

\[Q(s, a) : \text{quality of (s,a), initialized to } 0 \]

\[Q^* : \pi^*(s) = \arg\max_a Q^*(s, a) \]

\[Q(s, a) \leftarrow r(s, a) + \gamma \hat{E}_1[Q|s, a] \]

Converging to \(Q^* \)

Empirical estimator of the expected future value

\[\hat{E}_1[Q|s, a] = \frac{1}{m_1} \sum_{i=1}^{m_1} \max_{a'} Q(x^{(i)}, a') \]

\[x^{(i)} \sim P(\cdot|s, a) \]

After \((1 - \gamma)^{-1}\) iterations:

\[\pi(s) \leftarrow \arg\max_a Q(s, a) \]

• #Samples for 0.1-opt. policy w.h.p.:

\[m \geq (1 - \gamma)^{-7} \]

\[\gamma = 0.95, m \geq 1,000,000,000 \]
Why Iterative Q-Learning Fails

\[Q(s, a) \leftarrow r(s, a) + \gamma \hat{E}_1[Q|s, a] \]

“a little closer” to \(Q^* \)
\[\|Q^{i+1} - Q^*\|_\infty \leq \gamma \|Q^i - Q^*\|_\infty \]

Empirical estimator of the expected future value

- Runs for \(R = (1 - \gamma)^{-1} \) iterations
- Each iteration uses new samples of same number

Too many samples for too little improvement
Summary of Previous Methods

How many samples per \((s, a)\) are **sufficient/necessary** to obtain a 0.1-**optimal** policy w. p. > 0.9?

<table>
<thead>
<tr>
<th>Previous Algorithms</th>
<th>#Samples/(s,a)</th>
<th>(\gamma = 0.99)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phased Q-learning</td>
<td>((1 - \gamma)^{-7})</td>
<td>10^{14}</td>
<td>Kearns & Singh’ 1999</td>
</tr>
<tr>
<td>ERM</td>
<td>((1 - \gamma)^{-5})</td>
<td>10^{10}</td>
<td>Azar et al’ 2013</td>
</tr>
<tr>
<td>Randomized LP</td>
<td>((1 - \gamma)^{-4})</td>
<td>10^{8}</td>
<td>Wang’ 2017</td>
</tr>
<tr>
<td>Randomized Val. Iter.</td>
<td>((1 - \gamma)^{-4})</td>
<td>10^{8}</td>
<td>Sidford et al’ ISML2018</td>
</tr>
</tbody>
</table>

Previous Best Algorithm: \((1 - \gamma)^{-4}\) **Necessary**?

Information theoretical lower bound: \(\Omega[(1 - \gamma)^{-3}]\) **Sufficient**? \(\gamma \rightarrow 1\)
The Near Sample-Optimal Algorithm

Theorem (informal):

For an unknown discounted MDP, \(M = (S, A, P, r, \gamma) \) model size \(|S|^2|A|\).

We give an algorithm (vQVI) that

- Recover w.h.p. an 0.1-optimal policy with \(\tilde{\Theta}[(1 - \gamma)^{-3}] \) samples per \((s,a)\)
- Time: \#samples
- Space: model-free

The first sample-optimal* algorithm for learning policy of DMDP.

[Sidford, Wang, Wu, Yang, and Ye, NeurIPS (2018)]
Analysis Overview

Q-Learning

\[Q(s, a) \leftarrow r(s, a) + \gamma \hat{E}_1[Q|s, a] \]

- **Variance Reduction**
- **Monotonicity**
- **Bernstein**

Utilizing previous estimate
- **Q-Learning**
 \[(1 - \gamma)^{-7} \]
- **Var. Reduced Q-Learning**
 \[(1 - \gamma)^{-6} \]

Guarantee good policy
- **Monotonicity**
 \[(1 - \gamma)^{-4} \]

Precise control of error
- **Bernstein + Law of total var.**
 \[(1 - \gamma)^{-3} \]
Variance Reduction

• Original Q-Learning

\[Q(s, a) \leftarrow r(s, a) + \gamma \hat{E}_1[Q|s, a] \]

“a little closer” to \(Q^* \)

• Use milestone-point \(Q^0 \) to reduce samples used

\[Q(s, a) \leftarrow r(s, a) + \gamma \hat{E}_1[Q - Q^0|s, a] + \gamma \hat{E}_0[Q^0|s, a] \]

Compute many times; each time uses a small number of samples
Compute once; reused for many iterations

\[\hat{E}_1[Q - Q^0|s, a] = \frac{1}{m_1} \sum \text{[random variables with small variance]} \]
Algorithm: vQVI (sketch)

\[Q(s, a) \leftarrow r(s, a) + \gamma \hat{E}_1 [Q - Q^0 | s, a] + \gamma \hat{E}_0 [Q^0 | s, a] \]

Check-point

\[w^0(s, a) \approx \hat{E}_0(Q^0 | s, a) = \frac{1}{m_0} \sum_{k=1}^{m_0} \max_{a' \in A} Q^i(x^{(k)}, a') \]

Large number of samples

\[Q^{i+j}(s, a) \approx r(s, a) + \gamma \hat{E}[Q^{i+j-1} - Q^i | s, a] + \gamma w^0(s, a) \]

Small number of samples

\[H = (1 - \gamma)^{-1} \text{ iters} \]

\[\| Q^{i+H} - Q^* \|_\infty \leq \| Q^i - Q^* \|_\infty / 2 \]

"Big improvement"
Compare to Q-Learning

- Q-learning variants

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
</tr>
</thead>
</table>

#Samples: (minibatch size) \times R

\[R = (1 - \gamma)^{-1} \]

- Variance-reduced Q-Learning

#samples: \approx \text{single minibatch}
Precise Control of Error Accumulation

• Each modified Q-learning step has estimation error

\[Q^{i+j}(s, a) \approx r(s, a) + \gamma \hat{E}[Q^{i+j-1} - Q^i | s, a] + \gamma w^0(s, a) \]

• Error

\[\epsilon^{i+j} = |Q^{i+j} - E(Q^{i+j})| \]

• Bernstein inequality + Law of total variance

\[\sum_{j=1}^{H} \epsilon^{i+j} \sim \sqrt{\frac{\text{total variance of MDP}}{m}} \leq \sqrt{(1 - \gamma)^{-3}/m} \]

the intrinsic complexity of MDP
Extension to Two-Person Stochastic Game

- Fundamentally different computation classes even for the discount case.

 [Sidford, Wang, Yang, Ye (2019)]: \(\tilde{\Theta}[(1 - \gamma)^{-3}] \) samples per \((s, a)\) to learn 0.1-opt strategy w.h.p.

- But they achieve the same complexity lower bound for the discount case!
II. Stochastic Programming

• Consider a Stochastic Programming (SP) problem

\[
\min_{x \in \mathbb{R}^p : 0 \leq x \leq R} F(x) = \mathbb{E}_p f(x, W)
\]

• \(f\) deterministic. For every feasible \(x\), the function \(f(x, \cdot)\) is measurable and \(\mathbb{E}_p f(x, W)\) is finite. \(W\) is the support of \(W\).

• Commonly solved Sample Average Approximation (SAA), a.k.a., Monte Carlo (Sampling) method.
 Sampling Average Approximation

• To solve

\[x^{true} \in \text{argmin}\{F(x): 0 \leq x \leq R\} \]

• Solve instead an approximation problem

\[\min_{x \in \mathbb{R}^p: 0 \leq x \leq R} \left\{ \hat{F}_n(x) := n^{-1} \sum_{i=1}^{n} f(x, W_i) \right\} \]

• \{W_1, W_2, ..., W_i, ... W_n\} is a sequence of samples of W
• Simple to implement
• Often tractably computable

SAA is a popular way of solving SP
Equivalence between SAA and M-Estimation

<table>
<thead>
<tr>
<th>Stochastic Programming</th>
<th>Statistical learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAA</td>
<td>Model Fitting Formulation for M-Estimation</td>
</tr>
<tr>
<td>RSAA</td>
<td>Regularized M-Estimation</td>
</tr>
<tr>
<td>Suboptimality gap ϵ</td>
<td>Excess Risk: $F(\cdot) - F(x^{true})$</td>
</tr>
<tr>
<td>Minimizer x^{true}</td>
<td>True parameters x^{true}</td>
</tr>
<tr>
<td>Function</td>
<td>Statistical Loss</td>
</tr>
</tbody>
</table>

Bach & Moulines, 2011. *NeuIPS*
Efficacy of SAA

- **Assumptions:**
 - (a) The sequence \(\{f(x, W_1), f(x, W_2), \ldots, f(x, W_n)\} \) i.i.d.
 - (b) Subgaussian \((\text{can be generalized into sub-exponential})\)
 - (c) Lipschitz-like condition

- Number \(n \) of samples required to achieve \(\epsilon \) accuracy with probability \(1 - \alpha \) in solving an \(p \)-dimensional problem.
 \[
 \Pr[\mathbf{F}(\mathbf{x}^{SAA}) - \mathbf{F}(\mathbf{x}^{true}) \leq \epsilon] \geq 1 - \alpha
 \]

- If \(n \) is large enough to satisfy
 \[
 n \geq \frac{p}{\epsilon^2} \ln \frac{1}{\epsilon} + \frac{1}{\epsilon^2} \ln \frac{1}{\alpha}
 \]

Sample size \(n \) grows polynomially when number of dimensions \(p \) increases

Shapiro et al., 2009, Shapiro, 2003, Shapiro and Xu, 2008
High-Dimensional SP

• What if p is large, but acquiring new samples are prohibitively costly?

• What if most dimensions are (approximately) ineffective, e.g., $x^{true} = [80; 131; 100; 0; 0; \ldots; 0]$

• Consider a problem with $p = 100,000$
 • SAA requires $n \geq 100,000 \sim 10,000,000$
 • If only it is known which dimensions (e.g., three of them) are nonzero, then original problem can be reduced to $p = 3$, then $n \geq 10 \sim 1,000$

Conventional SAA is not effective in solving high-dimensional SP
Convex and Nonconvex Regularization Schemes

RSAA formulation: \(\min_{x: \ 0 \leq x \leq R} F_{n, \lambda}(x) := \hat{F}_n(x) + \sum_{j=1}^{p} P_{\lambda}(x_j) \)

- \(l_q \)-norm (0 < \(q \leq 1 \) or \(q = 2 \)), biased or non-sparse
 - \(P_{\lambda}(t) := \lambda \cdot t^q \)

- \(l_0 \)-norm (\(\cdot \)), not continuous
 - \(P_{\lambda}(t) := \lambda \cdot \mathbb{1}(t \neq 0) \)

- Folded concave penalty in the form of minimax concave penalty (\(\cdot \))
 - \(P_{\lambda}(t) := \int_{0}^{t} \frac{(a\lambda - s)^+}{a} \, ds \)

FCP entails unbiasedness, sparsity, and continuity

Frank and Friedman, 1993. *Technometrics*
Fan and Li, 2001. *JASA*
Raskutti et al., 2011, *IEEE Trans. Inf. Theory*
Existing Results on Convex Regularization

- **Lasso** (Tibshirani, 1996), *compressive sensing* (Donoho, 2006), and *Dantzig selector* (Candes & Tao, 2007):

 - **Pro:**
 - Computationally tractable
 - Generalization error and oracle inequalities (e.g., \(\ell_1, \ell_2\)-loss): Bunea et al. (2007), Zou (2006), Bickel et al. (2009), Van de Geer (2008), Negahban et al. (2010), etc.

 - **Cons:**
 - Requirement of RIP, restricted eigenvalue (RE), or RSC
 - Absence of (strong) oracle property: Fan and Li (2001)
 - Biased: Fan and Li (2001)

 - **Remark**
 - Excess risk bound available for linear regression beyond RIP, RE, or RSC (e.g., Zhang et al., 2017)
Existing Results on (Folded) Concave Penalty

- Pro:
 - Generalization error (ℓ_1, ℓ_2-loss) and oracle inequalities: Loh and Wainwright (2015), Wang et al. (2014), Zhang & Zhang (2012), etc.

- Cons:
 - Strong NP-Hard, requirement of RSC, except for the special case of linear regression

- Remark:
 - Chen, Fu and Y (2010): threshold lower-bound property at every local solution;
 - Zhang and Zhang (2012): global optimality results in good statistical quality;
 - Fan and Lv (2011): sufficient condition results in desirable statistical property;
The S^3ONC Solutions Admits FPTAS

Assumption (d):

\[f(\cdot, z) \text{ is continuously differentiable and for a.e. } z \in \mathcal{W}, \]

\[
\left| \left[\frac{\partial \hat{F}_n(x, z)}{\partial x_j} \right]_{x=\bar{x}+\delta e_j} - \left[\frac{\partial \hat{F}_n(x, z)}{\partial x_j} \right]_{x=\bar{x}} \right| \leq U_L \cdot |\delta|
\]

- First-order necessary condition (FONC): The solution $x^* \in [0, R]^p$

 \[
 \langle \nabla \hat{F}_n(x^*) + (P'_{\lambda}(x_j^*): 1 \leq j \leq p), x - x^* \rangle \geq 0, \quad \forall x \in [0, R]^p
 \]

- Significant subspace second-order necessary condition (S^3ONC):
 - FONC holds, and, for all $j = 1, \ldots, p$: $x_j^* \in (0, a\lambda)$, it holds that

 \[
 U_L + P''_{\lambda}(x_j^*) \geq 0 \quad \text{or} \quad \nabla^2 \hat{F}_{jj}(x^*) + P''_{\lambda}(x_j^*) \geq 0
 \]

- S^3ONC is weaker than the canonical second-order KKT
 - Computable within pseudo-polynomial time

Result 1: Efficacy of RSAA at a Global Minimum

THEOREM 1

Assumptions:
- (a) – (d)

Consider a global minimal solution x^* to RSAA. If the sample size n satisfies

$$n \geq \frac{s^{2.5}}{\varepsilon^3} \left(\ln \frac{p}{\varepsilon} \right)^{1.5} + \frac{1}{\varepsilon^2} \ln \frac{1}{\alpha},$$

then $\mathbb{P}[F(x^*) - F(x^{true}) \leq \varepsilon] \geq 1 - \alpha$, for any $\alpha > 0$ and $\varepsilon \in (0, 0.5]$.

- Better dependence in p than SAA: $\frac{p}{\varepsilon^2} \ln \frac{1}{\varepsilon} + \frac{1}{\varepsilon^2} \ln \frac{1}{\alpha}$
- However, generating a global solution is generally computationally prohibitive

Liu, Wang, Yao, Li, Ye, 2018. *Math Program*
Result 2: Efficacy of RSAA at a Local Solution

THEOREM 2

Assumptions:
• (a) – (d)
• $f(\cdot, z)$ is convex for almost every $z \in \mathcal{W}$

Consider an S^3ONC solution x^* to RSAA. If $F_{n,\lambda}(x^*) \leq F_{n,\lambda}(0)$ a.s., and if the sample size n satisfies

$$n \gtrsim \frac{S^{2.5}}{\epsilon^4} \left(\ln \frac{p}{\epsilon} \right)^2 + \frac{1}{\epsilon^2} \ln \frac{1}{\alpha},$$

then $\Pr[F(x^*) - F(x^{true}) \leq \epsilon] \geq 1 - \alpha$, for any $\alpha > 0$ and $\epsilon \in (0, 0.5]$.

• Better dependence in p than SAA: $\frac{p}{\epsilon^2} \ln \frac{1}{\epsilon} + \frac{1}{\epsilon^2} \ln \frac{1}{\alpha}$
• Much easier solvable than a global minimizer: Pseudo-polynomial-time algorithms exist

Result 3: Efficacy of RSAA Under Additional Assumptions

THEOREM 3

Assumptions:
• (a) – (d)
• $f(\cdot, z)$ is convex for almost every $z \in \mathcal{W}$
• \mathbf{F} is strongly convex and differentiable (*)

Consider an S^3ONC solution \mathbf{x}^*. If $F_{n,\lambda}(\mathbf{x}^*) \leq F_{n,\lambda}(0)$ a.s., and if the sample size n satisfies

$$n \geq \frac{s^{1.5}}{\epsilon^3} \left(\frac{\ln p}{\epsilon} \right)^{1.5} + \frac{1}{\epsilon^2} \ln \frac{1}{\alpha},$$

then $\mathbb{P}[\mathbf{F}(\mathbf{x}^*) - \mathbf{F}(\mathbf{x}^{true}) \leq \epsilon] \geq 1 - \alpha$, for any $\alpha > 0$ and $\epsilon \in (0, 0.5]$.

• For some problems, while $f(\cdot, \mathcal{W})$ is only convex, \mathbf{F} can be strongly convex, e.g., high-dimensional linear regression with random design matrix
• Under additional assumption (*), Theorem 3 shows an improved sample complexity than Theorem 2

Liu, Wang, Yao, Li, Ye, 2018. Math Program
Result 4: Efficacy of RSAA Under Additional Assumptions

THEOREM 4

Assumptions:
- (a) – (d)
- $f(\cdot, z)$ is convex for almost every $z \in \mathcal{W}$
- F is strongly convex and differentiable (*)
- $\min\{|x_j^{true}| : x_j^{true} \neq 0, j = 1, \ldots, p\} \geq \text{Threshold} (**)$

Consider an S^3ONC solution x^*. If $F_{n,\lambda}(x^*) \leq F_{n,\lambda}(0)$ a.s., and if the sample size n satisfies

$$n \geq \frac{s}{\epsilon^2} \ln \frac{p}{\epsilon} + \frac{1}{\epsilon^2} \ln \frac{1}{\alpha},$$

then $\mathbb{P}[F(x^*) - F(x^{true}) \leq \epsilon] \geq 1 - \alpha$, for any $\alpha > 0$ and $\epsilon \in (0, 0.5]$.

Under additional assumptions (*) and (**), no compromise on the rate in ϵ compared to the SAA: $\frac{p}{\epsilon^2} \ln \frac{1}{\epsilon} + \frac{1}{\epsilon^2} \ln \frac{1}{\alpha}$.

Liu, Wang, Yao, Li, Ye, 2018. *Math Program*
Numerical Experiments

Fix sample size $n = 100$; Increase dimensionality

Fix dimension $p = 100$; Increase sample size

Liu, Wang, Yao, Li, Ye, 2018. Math Program
Generalizations and Applications

- **Theoretical Generalizations**
 - From subgaussian distribution to subexponentiality
 - From smooth to nonsmooth cost function

- **Theoretical Applications**
 - High-Dimensional Statistical Learning (HDSL)
 - Deep Neural Networks
Theoretical Generalizations

• Generalization from subgaussian distribution to subexponentiality

Assumption (e):

\[f(x, W) \text{ is subexponential for all } x \in [0, R]^p \]

• Generalization from smooth cost function \(f \) to non-smooth cost function

Assumption (f):

\[f(x, W) = f_1(x, W) + \max_{u \in \mathcal{H}} \{u^T A(W)x - \hat{\phi}(u, W)\} \]

where \(A(W) \in \mathbb{R}^{m \times p} \) is a linear operator, \(\hat{\phi} \) is a measurable, deterministic function, \(f_1(\cdot, W) \) is continuously differentiable with Lipschitz continuous gradient, \(\mathcal{H} \subset \mathbb{R}^m \) is a convex and compact set.
Result 5: Generalization to subexponentiality

Let $x^{\ell_1} := \arg \min_{x: 0 \leq x \leq R} \hat{F}_n(x) + \lambda \sum_{j=1}^{p} |x_j|$.

THEOREM 5

Assumptions: (a), (c), (d), (e) subexponentiality; $f_1(\cdot, z)$ is convex for almost every $z \in \mathcal{W}$

Consider an S^3ONC solution x^*. If $F_{n,\lambda}(x^*) \leq F_{n,\lambda}(x^{\ell_1})$ a.s., and if the sample size n satisfies

$$n \gtrsim \frac{s^3}{\epsilon^3} \left(\frac{\ln \frac{p}{\epsilon}}{\epsilon} \right)^{1.5} + \ln \frac{p}{\alpha} + \left(\frac{\ln 1}{\alpha} \right)^3,$$

then $\mathbb{P}[F(x^*) - F(x^{true}) \leq \epsilon] \geq 1 - \alpha$, for any $\alpha > 0$ and $\epsilon \in (0, 0.5]$.

- **Better dependence in ϵ** than Theorem 2: $\frac{s^{2.5}}{\epsilon^4} \left(\frac{\ln \frac{p}{\epsilon}}{\epsilon} \right)^2 + \frac{1}{\epsilon^2} \ln \frac{1}{\alpha}$

- Desired solution can be generated by solving for an S^3ONC solution initialized with x^{ℓ_1}.

Result 6: Generalization to non-smoothness

Let \(x^{\ell_1} := \arg \min_{x:0 \leq x \leq R} \hat{F}_n(x) + \lambda \sum_{j=1}^{p} |x_j| \).

THEOREM 6

Assumptions: (a), (c), (e) subexponentiality; (f); \(f(\cdot, z) \) is convex for almost every \(z \in \mathcal{W} \).
Consider an S\(^3\)ONC solution \(x^* \). If \(F_{n,\lambda}(x^*) \leq F_{n,\lambda}(x^{\ell_1}) \) a.s., and if the sample size \(n \) satisfies

\[
n \gtrsim \frac{s^4}{\epsilon^4} \left(\ln \frac{p}{\epsilon} \right)^2 + \ln \frac{p}{\alpha} + \left(\ln \frac{1}{\alpha} \right)^2,
\]

then \(\mathbb{P}[F(x^*) - F(x^{min}) \leq \epsilon] \geq 1 - \alpha \), for any \(\alpha > 0 \) and \(\epsilon \in (0, 0.5] \).

- Assumption (d) is replaced by (f)
- Desired solution can be generated by solving for an S\(^3\)ONC solution initialized with \(x^{\ell_1} \)
Theoretical Application 1: High-Dimensional M-Estimation

- Given knowledge of a statistical loss function \(f \), and hypothetically \(x^{true} \in \arg \min \{ F(x) : = \mathbb{E}[f(x,W)] \} \)

 \(x^{true} \): True parameters governing data generation model

- Estimate \(x^{true} \in \mathbb{R}^p \) given only \(f \) samples \(W_1, W_2, ..., W_n \).

- Assume that \(f(x,W_i), i = 1, ..., n \), is i.i.d. subexponential.

- Traditional approach: minimizing empirical risk to obtain unbiased estimator

 \[\hat{x} = \arg \min \left[\hat{F}_n(x) : = n^{-1} \sum_{i=1}^{n} f(x,W_i) \right] \]

- Under High-dimensional setting, \(p \gg n \)

- Consider Folded concave penalized (FCP) learning

 \[\min \left\{ F_{n,\lambda}(x) : = n^{-1} \sum_{i=1}^{n} f(x,W_i) + \sum_{j=1}^{p} P_\lambda(|x_j|) \right\} \]
Result 7: Learning Under Approximate Sparsity

- **Approximate sparsity:** Existence of \(\tilde{x} \) such that
 \[
 F(\tilde{x}) - F(x^{true}) \leq \hat{\epsilon}, \quad \text{and} \quad s := ||\tilde{x}||_0 \ll p
 \]

THEOREM 7

For any \(\Gamma \geq 0 \), consider an S\(^3\)ONC solution \(x^* \) with \(F_{n,\lambda}(x^*) \leq \min_x F_{n,\lambda}(x) + \Gamma \), a.s. Assume

(a) subexponentiality; (b) Lipschitz-like continuity of \(F \) and \(\nabla F \); (c) approximate sparsity

\[
\text{Excess risk of } x^* \leq \tilde{O}(1) \cdot \left(\frac{s \sqrt{\ln p}}{n^{1/3}} + \frac{\Gamma + \hat{\epsilon}}{n^{1/3}} + \Gamma + \hat{\epsilon} \right)
\]

with probability \(1 - O(1) \cdot \exp(-O(1)n^{1/3} \ln p) \)

- **First explication:** more general assumptions than sparsity;
 - \(\Gamma \) can be interpreted as the sub-optimality gap of \(x^* \)
 - No convexity or RSC assumed.

Removing Γ via Wise Initialization for Convex Loss

Step 1: Solve the LASSO program

$$x^{\ell_1} := \arg\min_x \hat{F}_n(x) + \lambda \sum_{j=1}^p |x_i|$$

Step 2: Solve for an S^3ONC stationary point initialized with β^{ℓ_1}

- A modified first-order method, ADMM

Algorithm-independent, fully polynomial-time approximation scheme

Complexity $\leq \text{Poly}(p, \text{desired_accuracy})$
Consider an S^3ONC solution x^* with $F_{n,\lambda}(x^*) \leq F_{n,\lambda}(x^\ell_1)$, a.s. Assume (a) subexponentiality; (b) Lipschitz-like continuity of F and ∇F; (c) sparsity (i.e., $\hat{\varepsilon} = 0$ in the assumption of approximate sparsity)

$$\text{Excess risk of } x^* \leq \tilde{O}(1) \cdot \left(\frac{s\|x^{true}\|_\infty \sqrt{\ln p}}{n^{1/3}} + \frac{s \ln p}{n^{2/3}}\right)$$

with probability $1 - O(1) \cdot \exp(-O(1)n^{1/3} \ln p)$

THEOREM 8

A pseudo-polynomial-time computable theory without RSC

Comparing This Research with Existing Results

- New insights on local solutions for folded concave penalty
- **Pros:**
 - No requirement of RSC, RIP, RE, or alike
 - Applicable to non-smooth learning and deep learning
 - Applicable to high-dimensional stochastic programming
 - Generalization error bounds on excess risk
- **Cons:**
 - Slower rate than alternative results that require RSC

<table>
<thead>
<tr>
<th>Under RSC (e.g., Loh & Wainwright 2015)</th>
<th>Without RSC, linear regression only (e.g, Zhang et al., 2017)</th>
<th>This research on M-estimation without RSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O\left(\frac{1}{n}\right)$</td>
<td>$O\left(\frac{1}{\sqrt{n}}\right)$</td>
<td>$O\left(\frac{1}{n^{1/3}}\right)$</td>
</tr>
</tbody>
</table>
Theoretical Application 2: Deep Learning

Date generation: for some unknown $g: \mathbb{R}^d \to \mathbb{R}$

\[b_i = g(a_i) + w_i \quad i = 1, ..., n \]

Traditional training model:

\[
\min_x \frac{1}{2n} \sum_{i=1}^{n} \|b_i - F_{NN}(a_i, x)\|^2
\]

- **Expressive power:** Yarotsky (2017) and Mhaskar (1996), DeVore et al. (1989), Mhaskar and Poggio (2016)

- **Two-layer, polynomial increase in dimensions, or sometimes exponential growth in layer number:** Arora et al. (2018), Barron and Klusowski (2018), Bartlett et al. (2017), Golowich et al. (2017), Neyshabur et al. (2015, 2017, 2018)

Scarcity of theoretical guarantee on generalization performance under over-parameterization
Approximate Sparsity and Regularization in Neural Networks

- Proposed training model: Find an S^3ONC solution to the formulation below

$$\min_x \frac{1}{2n} \sum_{i=1}^{n} \| b_i - F_{NN}(a_i, x) \|^2 + \sum_{j=1}^{p} P_\lambda(|x_j|)$$

- Expressive power of NN implies approximate sparsity
 - E.g., A ReLu network, with $cn^{1/3} \cdot (\ln n^{\frac{r}{3d}} + 1)$-many approximates any r-th order weakly-differentiable function with accuracy $O(1)n^{-\frac{r}{3d}}$ (Yarotsky, 2017)
 - $s = cn^{1/3} \cdot (\ln n^{\frac{r}{3d}} + 1)$ and $\hat{\epsilon} = O(1)n^{-\frac{r}{3d}}$ in approximate sparsity

- Empirical evidences on sparse neural networks
 - E.g., Dropout: Srivastava et al. (2014); DropConnect: Wan et al. (2013); Deep compression (remove link with small weights and retrain): Han et al. (2016)

Neural networks may not obey the RSC but they innately entail approximate sparsity
For $g: \mathbb{R}^d \to \mathbb{R}$ that has r-th order weak derivative;

Assume that the PDF of inputs to neurons have continuous density in a near neighborhood of 0.

$$\tilde{O}\left(\left(\frac{1}{n^3} + \frac{1}{n^6 + 6d} + \frac{1}{n^{3d}} + \sqrt{\frac{\Gamma}{n^3}}\right) \cdot \ln p + \Gamma\right)$$

Poly-logarithmic in dimensionality
For $g: \mathbb{R}^d \rightarrow \mathbb{R}$ being a polynomial function

$$\tilde{O}\left(\left(\frac{1}{n^{1/3}} + \sqrt{\frac{\Gamma}{n^{1/3}}}\right) \ln p + \Gamma\right)$$

Poly-logarithmic in dimensionality

Handwriting recognition problem:

- 28 x 28-pixel images of handwritten digits
- 60,000 training data
- 10,000 test data
Numerical Experiment 1: MNIST

- 800 × 800 + softmax
- Fully connected
- No preprocessing/distortion

<table>
<thead>
<tr>
<th>Model</th>
<th>Mean ± Std (%)</th>
<th>Aggregated (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>1.62 ± 0.037</td>
<td>1.40</td>
</tr>
<tr>
<td>NN-Dropout</td>
<td>1.28 ± 0.040</td>
<td>1.20</td>
</tr>
<tr>
<td>DropConnect</td>
<td>1.20 ± 0.034</td>
<td>1.12</td>
</tr>
<tr>
<td>Dropout-FCP</td>
<td>1.18 ± 0.052</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Wan et al., 2013, ICML
Numerical Experiment 1: MNIST

<table>
<thead>
<tr>
<th>Layer number</th>
<th>p</th>
<th>NN</th>
<th>NN-Dropout</th>
<th>NN-ℓ_2</th>
<th>NN-FCP</th>
<th>Dropout-FCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>468,500</td>
<td>2.77</td>
<td>2.86</td>
<td>3.16</td>
<td>3.00</td>
<td>2.80</td>
</tr>
<tr>
<td>3</td>
<td>470,000</td>
<td>2.64</td>
<td>2.51</td>
<td>2.87</td>
<td>2.61</td>
<td>2.55</td>
</tr>
<tr>
<td>5</td>
<td>471,600</td>
<td>3.25</td>
<td>3.02</td>
<td>2.69</td>
<td>3.26</td>
<td>2.79</td>
</tr>
<tr>
<td>9</td>
<td>472,000</td>
<td>77.32</td>
<td>3.86</td>
<td>6.36</td>
<td>3.19</td>
<td>2.83</td>
</tr>
<tr>
<td>17</td>
<td>472,800</td>
<td>30.86</td>
<td>88.65</td>
<td>88.65</td>
<td>3.89</td>
<td>3.18</td>
</tr>
</tbody>
</table>

- $500 \times 150 \times 10 \times \ldots \times 10 \times 150 + \text{softmax}$
- Fully connected
- No preprocessing/distortion
Numerical Experiment 2: Matrix Completion

$\mathbf{p} = 100 \times 100 = 10,000$, $n = 2,000$

Ratings of customers to products/restaurants/movies often constitutes an incomplete matrix
Numerical Experiment 2: Matrix Completion

<table>
<thead>
<tr>
<th>Method</th>
<th>Sub.</th>
<th>Nuclear norm (Lasso)</th>
<th>S3ONC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>85.7699</td>
<td>0.1072</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

\[p = 100 \times 100 = 10,000, \ n = 2,000 \]
Summary

- The Sample Complexity analysis is an essential problem in optimization driven by data or high-dimensional/deep learning.
- Theories can be developed to match a sample size upper bound to the information theoretical lower bound, such as in RL by smart sampling.
- Based on the structure of problems/solutions, adding certain regularizations can greatly reduce the sample complexity, such as RSAA achieves poly-logarithmic sample complexity on any S^3ONC solution based on standard statistical and sparse assumptions.
- Although the RSAA problem become nonconvex when the regularization is concave, an S^3ONC solution can be efficiently computed in both theory and practice.
- Future Research: further theoretical developments and more comprehensive numerical results.