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Today’s Talk

* Optimal Diagonal Precondition using SDP

* An Accelerated Second-Order Method Using Homogenized
Descent Direction

* A Dimension Reduced Trust-Region Method for Unconstrained
Optimization

* Potential Reduction Algorithm for Linear Programming



Optimal Diagonal Pre-Condition [QGHYZ 20]

Given X'X > 0,X € R™" jterative method (e.g., CG) is often applied to solve

(X"X)x = b

* Convergence of iterative methods depends on condition number of X
* |n practice we choose preconditioner D;, Dr and solve (D;XDg)" (D, XDp)x" = b
* Diagonal D= diag(d, ..., dm or ny) 1S Called diagonal pre-conditioner

More generally, we look for D;, Dp such that condition number of D; XDp is minimized

s it possible to find optimal D; and Dp? SDP works!



Optimal Diagonal Pre-Conditioner

min K
} IIllIl I‘L((XDR)T(XDR)) Dgr >0 diagonal, s
Dr 0 diagonal subject to D <X "X <kDz"
max T=K 1
\/ \/ DEQEO diagonal, T
min K subject to D —7X "X >0
min P Dpr >0 diagonal,x : XTX — D§2 = ()
Dpr =0 diagonal,x subject to D=k 1X'TX
subject to [ < DpX '"'XDp=<kl D§2 < xXTYX

* Finding the optimal diagonal pre-conditioner is an SDP

* Two SDP blocks and sparse coefficient matrices

* Trivial dual interior-feasible solution DL >0 diagonal. x &
: : : T M2
* An ideal formulation for dual SDP methods subject to I XX " DpX =l

* Similar trick applies to D; X



Two-Sided Optimal Pre-Conditioner

min k(DrX Dpg)
Dy, Dgr >0 diagonal

* Common In practice and popular heuristics exist
e.g. Ruiz-scaling, matrix equilibration & balancing

* Not directly solvable using SDP

* Can be solved by iteratively fixing D;, Dp, and optimizing the other side
Solving a sequence of SDPs
* Computation cost of the preconditioner is often amortized by successive solves

* Answer a question: how far can diagonal pre-conditioners go



Computational Results: Solving for the Optimal Pre-Conditioner

min
D,k

subjectto D<M

K

kD > M

SDP from optimal diagonal pre-conditioning problem HDSDP

* Perfectly in the dual form

* Trivial dual feasible interior point solution

* 1is an upper-bound for the optimal objective value

* A dual SDP algorithm (successor of DSDP5.8 by
Benson)

MaX

5,d

0

subjectto D — M <0
oM —D <0

* Support initial dual solution

n for the diagonal pre-conditioner

* Customizatio
n | Sparsity | HDSDP (start from (—10°0)) | COPT | Mosek | SDPT3
500 | 0.05 71 6.8 9.1 18.0
1000 | 0.09 44.5 53.9 | 54.2 | 327.0
2000 | 0.002 34.3 307.1 | 374.7 | 572.3
5000 | 0.0002 64.3 >1200 | >1200 | >1200




Computational Results: Bulld Preconditioner from Samples

* Many matrices result from statistical datasets

. . . ?
e XX estimates the covariance matrix How few?
* |t suffices to use a few (row) samples to approximate
:nn- gsan/ E :ﬁs % *
1 | 3520- F\A\m '-13 31.5: -

Experiment over regression datasets shows that

* |t generally takes 1% to 5% of the samples to approximate well

e Scales well with dimension and saves much time for matrix-matrix
multiplication
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Computational Results: Optimal Diagonal Pre-Conditioner

* Test over 491 Suite Sparse Matrices of fewer than 1000 columns

Reduction | Number Average reduction | 49.7%
>80% 121 :
Better than diagonal | 36.0%
>50% 190 A o 199
>20% 561 verage time .
* LIBSVM datasets
Mat Size Cbef Caft Reduce
YearPredictionMSD 90 5233000.00 470.20 0.999910
YearPredictionMSD.t 90 5521000.00 359900.00  0.934816
abalone_scale.txt 8 2419.00 2038.00 0.157291
bodyfat_scale.txt 14 1281.00 669.10 0.477475
cadata.txt 8 8982000.00 7632.00 0.999150
cpusmall_scale.txt 12 20000.00 6325.00 0.683813
eunite2001.t 16  52450000.00 8530.00 0.999837
eunite2001.txt 16  67300000.00 3591.00 0.999947
housing_scale.txt 13 153.90 83.22 0.459371
mg _scale.txt 6 10.67 10.03 0.059988
mpg_scale.txt 7 142.50 107.20 0.247842
pyrim_scale.txt 27  49100000.00 3307.00 0.999933
space_ga._scale.txt 6 1061.00 729.60 0.312041
triazines_scale.txt 60  24580000.00 15460000.00 0.371034
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Summary

PCG I1s one of the most popular methods to accelerate SOM

* Optimal Diagonal Precondition, either one-side or two-sides, Is “polynomially”
computable

* [t would be efficient for solving systems with the stable left-nand matrix and variable
right-hand vectors, such as in Regression and ADMM

* |t establishes the bench-mark for evaluating other pre-conditioners based on
heuristics and/or machine-learning

* HDSDP a general purpose SDP solver which using dual-scaling and simplified HSD

* |t is developed with effective heuristics and computational tricks from DSDP
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Early Complexity Analyses for Nonconvex Optimization

min f(x),x € X in R",
* where f Is nonconvex and twice-differentiable,
gr = Vf(xx), He = V2 f (x)
* Goal: find x; such that:
| V(x,) IS € (primary, first-order condition)
Amin(Hy) = —+/€ (In active subspace, secondary, second-order condition)
» For the ball-constrained nonconvex QP: min c¢’x + 0.5x"Qx s.t. I x || , <1
O(loglog(e)); see Y (1989,93), Vavasis&Zippel (1990)
* For nonconvex QP with polyhedral constraints: O(e!); see Y (1998), Vavasis

(2001)



Standard methods for general nonconvex optimization |

First-order Method (FOM): Gradient-Type Methods

* Assume f has L-Lipschitz cont. gradient

* Global convergence by, e.g., linear-search (LS)

* No guarantee for the second-order condition

* Worst-case complexity, 0(e~2); see the textbook by Nesterov (2004)

Each iteration requires O(n¢) operations



Classical Methods for General Nonconvex Optimization Il
Second-order Method (SOM): Hesslan-Type Methods

* Assume f has M-Lipschitz cont. Hesslan

* Trust-region (More 70, Sorenson 80) with a fixed-radius strategy, 0(6_3/ Y |

see the lecture notes by Y since 2005

* Cubic regularization, 0(e~3/?) ,see Nesterov and Polyak (2006), Cartis, Gould,
and Toint (2011)

* An adaptive trust-region framework, 0(e~3/2) ,Curtis, Robinson, and Samadi

(2017)

Each iteration requires O(n3) operations: How to reduce it?



An Integrated Descent Direction Using the Homogenized Quadratic
Model | (Zhang at al. SHUFE)

* Recall the fixed-radius trust-region method minimizes the Taylor quadratic model

1
min my(d) := g, d + —d' Hd
deR” 2

st|ld|| < A,.

* where A, =€1/2/M is the trust-ball radius.

* -0, IS the first-order steepest descent direction but ignores Hessian,;

* the most-left eigenvector of H -would be a descent direction for the second order
term but such direction may not exist If it becomes nearly convex...

 Could we construct a direction integrating both?

Answer: Use the homogenized quadratic model of SDP relaxation



An Integrated Descent Direction Using the Homogenized Quadratic

Model II o o
* Using the homogenization trick by lifting with extra scalar t:

e =i | 4] (=515 [ 4]

 The homogeneous model is equivalent to m,; up to scaling:

P (&0, t;6) = t2 - (my(§o/t) — 6)
* FInd the direction & =¢&,/t (ift =0then set t=1) by the leftmost

eigenvector:

8
‘[ggn]r‘lq Yi (o, t;6)

« Fix § and compute the direction at the cost of 0(e~/*log(1/¢)) via the
randomized Lanczos method (Curvature computation of H, was used In

few hybrid 0(e~7/*log(1/€)) methods of first and second orders; see Agarwal



Global Convergence Rate: Outline of Analysis

* A concise analysis using fixed radius A

Let xgi1=x; + &, R(Hy, &) = ETHRE/NEN? € = &/t
o (sufficient decrease in large step) If ||&]| = A, we choosen = A /||€]]

> f(xeen) — fla) < =25

— + %A:*, regardless of t = 0 or not
3
> & must be some greater than 0(+Ve) to have O(eE) decrease

o (small step means convergence) Otherwise ||| < A, then we choose
step-size n=1and

> Ngrsall < 4(L + 6)243 + =42 + (2L5 + 262) A

» & must be some less than 0(vVe) and converge

o & should also be set in 0(Ve) !

» This results a single-looped (easy-to-implement) 0(e~7/*log(1/€)) method



Theoretical Guarantees of HSODM

 Consider use the second-order homogenized direction, and the length of each

step [[né]] is fixed: |[né]|| < Ay = %E where f(x) has L-Lipschitz gradient and M-

Lipschitz Hessian.

 Theorem 1 (Global convergence rate) : If f(x) satisfies the Lipchitz Assumption
and § = Ve, the iterate moves along homogeneous vector &: x;.1= X + Ni<,
then, if we choose n;, = A, /||€]|, and terminate at ||¢]|| < A, then algorithm has
0(e~3/?) iteration complexity. Furthermore, x,., satisfies approximate first-
order and second-order conditions.

 Theorem 2 (Local convergence rate): If the iterate x;, of HSODM converges to a
strict local optimum x* such that H(x™) > 0 ,and then n;,, = 1 If k Is sufficiently
large. If we do not terminate HSODM and set § = 0, then HSODM has a local
superlinear (quadratic) speed of convergence, namely: || x,+1 — x* [I= O(ll xg



HSODM for Convex Optimization

f(x)1s aconvex function with M-Lipschitz Hessian.

At every iteration, choos s, = O (Hg;ﬂHUQ) and solve
. T r } -
S Hyi gk | | &0
min - '
[[€ost]|| <1 'f-_ KL —f};g_ If_

Update x,,1=x, +¢&, € =&/t (t = 0won’t happen when f(x) IS convex)
Theorem 3 (Global convergence rate) : suppose the sublevel set {x: f(x) <
f(x9)}1s bounded, then the sequence {x,} satisfies

flax) — f(z%) <O (k77)

Ongoing: iImproved bounds of accelerated HSODM
Practical remarks: homogenized direction can be used with any Line-Search
(e.g., Hager-Zhang)
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DRSOM |
* Motivation from Multi-Directional FOM and Subspace Method, DRSOM In general

uses reduced m-independent directions d(a):= D,a,D, e R"™, ae R™

* Plug the expression into the full-dimension Trust-Region quadratic minimization
model, we minimize a m-dimension trust-region subproblem to decide "m
stepsizes™:

min m§ () = (cp) o + %ocTQka

o] |G, < A
Gy = D/ZDk: Qx = DZHka» Cr = (gk)TDk

How to choose D,? Provable complexity result?



DRSOM I

* In following, as an example, DRSOM adopts one or two FOM directions
d =—a'Vf(x,) + a?d;, := d(a)
where g, = Vf(xy), He = V2f(x%), dy = x — xx_1
* Then we minimize a 1 or 2-D trust-region problem to decide “two step-sizes”:

min m§ (o) == f(x;) + (c)" a + %aTQka

o], < A
| gkgr  —9rkdr | 9kHrgx  —9xHidi R
Gy = T T , U = T T y Ok = T
—grdr  didg —9grHedy  djHpdyg Jr g



DRSOM I

DRSOM can be seen as:
* "Adaptive” Accelerated Gradient Method (Polyak’'s momentum 60)

* A second-order method minimizing quadratic model in the reduced 2-D subspace

my(d) = f(x) + Vf()Td +5dTV2f (x,)d, d € span{—g, dic}
compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method
d € span{gy, [H(xx)] *gx} (e.qg., Powell 70, Byrd 88)
* A conjugate direction method for convex optimization exploring the Krylov Subspace

(e.qg., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)

* For convex quadratic programming with no radius limit, it reduces to CG and BFGS

terminating In n steps



Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

| gkHrgr  —9iHedi|]  [—1lgkll?
Qk — ,Ck —

— g Hedx  diHydy, i dx
How to cheaply obtain Q? Compute H, g, H,d; first.

* Finite difference:

1
Hy v zg[g(xk +€-v) — gil,
* Analytic approach to fit modern automatic differentiation,
1T T
Higk = V(5 9k 9k), Hrdx = V(dj gi),

* Use Hessian If readily avallable !

* Three(-or more)-Point Interpolation: it Is almost as fast as Polyak and CG!



DRSOM: Key Assumptions and Theoretical Results (Zhang at al.
SHUFE)

Assumption. (a) f has Lipschitz continuous Hessian. (b) If the Lagrangian multiplier 4,
< +/€e,assume | (Hy — Hp)d).1 I< C |l d.4 II* (Cartis et al.), where H,, is the projected
Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n
steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let A,

=2e1/2 /M, then DRSOM terminates in 0(e~3/2) iterations. Furthermore, the iterate x;,

satisfies the first-order condition, and the Hessian Is positive semi-definite in the subspace
spanned by the gradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x; converges to a strict local optimum

x* such that H(x™) > 0, and Iif Assumption (b) Is satisfied as soon as A;, < Cy Il dg41 |l
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: || x4
—x* II=0(ll x — x* 1I%)
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Preliminary Results: HSODM and DRSOM + HSODM

CUTEst model name := SPMSRTLS-1000

HSODM (0.15)

DRSOM-Homo (0.519)

Newton-TR (5s)

LBFGS (0.339)
CG (0.465)
DRSOM (0.675)

GD (0.665)

[teration

66666666

GD+ Wolfe
LBFGS+ Wolfe
Newton-TR
CG
DRSOM
DRSOMPIlus(homokrylov,1)
HSODM (warm)

CUTESt example
GD and LBFGS both use a Line-

search (Hager-Zhang)
« DRSOM uses 2-D subspace
« HSODM and DRSOM + HSODM
are much better!
« DRSOM can also benefit from the
homogenized system



Sensor Network Location (SNL)

* Consider Sensor Network Location (SNL)
No = {(i,5) : |z — 2l = dij < ra}, Na = {(i, k) : [|zi — ax]| = dix < ra}

where rq Is a fixed parameter known as the radio range. The SNL problem considers
the following QCQP feasibility problem,

2
|zi — 2 = di;,V(i,§) € No

|lzi — ax||* = d2,,¥(i, k) € N,

* We can solve SNL by the nonconvex nonlinear least square (NLS) problem

: 2 2 \2 2
m)%n Z (Ha’:@ —-fl’f'jH _dij) T Z (Hak _xjH _&%ﬁj)Z'
(@(j,j)eNﬂ: (k::j)eNa



Sensor Network Location (SNL)

* Graphical results using SDP relaxation to initialize the NLS
* n=80, m=>5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

* Both Gradient Descent and DRSOM can find good solutions !
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Sensor Network Location (SNL)

* Graphical results without SDP relaxation

* DRSOM can still converge to optimal solutions
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Sensor Network Location, Large-scale instances

* Test large SNL instances (terminate at 3,000s and | g, | < 1e™>)

* Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch)

t
CG DRSOM GD

500 50  2.2e+04 | 1.7e+01 1.1e4+01 2.3e+01
1000 80 4.6e+04 | 7.3e+01 3.9e+01 1.8e+02
2000 120 9.4e+04 | 2.5e+02 1.4e+02 1.1e+03
3000 150 1.4e+05 | 6.5e+02 1.4e+02 -
4000 400 1.8e+05 | 1.3e4+03 5.0e+02 -
6000 600 2.7e+05 | 2.0e+03 1.1e+03 -

10000 1000 4.5e+05 - 2.2e+03 -

n m | E|

Table 2: Running time of CG, DRSOM, and GD on SNL instances of different problem size, |E|

W

denotes the number of QCQP constraints. means the algorithm exceeds 3,000s.

* DRSOM has the best running time (benefits of 2" order info and interpolation!)



Sensor Network Location, Large-scale instances

* Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds
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* GD with Line-search

and Hager-Zhang CG
both timeout

« DRSOM can converge to
| gr| < 1e 2 in 2,200s



Neural Networks and Deep Learning

To use DRSOM In machine learning problems

* We apply the mini-batch strategy to a vanilla DRSOM
* Use Automatic Differentiation to compute gradients

* Train ResNetl8/Resnet34 Model with CIFAR 10

* Set Adam with initial learning rate le-3
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Neural Networks and Deep Learning
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Training and test results for ResNet34 with DRSOM and Adam

Pros

* DRSOM has rapid convergence (30
epochs)

* DRSOM needs little tuning
cons
* DRSOM may over-fit the models

* Running time can benefit from
Interpolation

* Single direction DRSOM is also
good

Good potential to be a standard
optimizer for deep learning!



DRSOM for Riemannian Optimization (Tang et al. NUS)

min  £(x) (ROP)

@ M is a Riemannian manifold embeded in Euclidean space R".

@ f:R" — R is a second-order continuously differentiable function that is lower

bounded in M.
R-DRSOM: Choose an initial point xo € M, set Kk =0, p_1 = 0O;
for Kk =0,1,..., T do

Step 1. Compute gx = gradf(x«), dic = T ., (Pxk—1), Higx = Hessf(xx)|[gx] and

dek = HeSSf(Xk)[dk];

— (8k> 8k) 5,
<gk? dk)xk
(&K, Hkgr),, ~ (—dk, Hkgk) G — | (88K —(dk, 8K),

’ 9 k -— .

(—dk, Hegi),,  (dk, Hkdk) — (dk, 8k}, (di, dic) .,

Step 3. Solve the following 2 by 2 trust region subproblem with radius Ay > 0

Step 2. Compute the vector ¢, = [ ] and the following matrices

Q= |

: 1
Qe 1= ar min f(x )+ cl oo+ o' Qrax:
“ gllﬁfkllckﬁék (>) “ 2 “
Step 4. xxi+1 := R, (xk — i gk + aidk);
end
Return xi.



1D-Kohn-Sham Equation

min{%tr(RTLR) | jdiag(RRT)TL_ldiag(RRT): R'R =1, ReR””}, (3)

where L is a tri-diagonal matrix with 2 on its diagonal and -1 on its subdiagonal and
o > 0 is a parameter. We terminate algorithms when ||gradf(R)|| < 10™*.
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Figure 1: Results for Discretized 1D Kohn-Sham Equation. o = 1.



Ongoing Research and Future Directions on HSODM/DRSOM

 Rigorous DRSOM analyses, that Is, removing Assumption (b)?

Hy  gg

T
Ik *
eigenvector computing by Power Methods (linear convergence of Liu et al. 2017)?

* Low-rank approximation of the homogenized matrix [ ] and “Hot-Start”

* Indefinite and Randomized Hessian rank-one updating via BFGS/SR1

 Dimension Reduced Non-Smooth/Semi-Smooth Newton
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DRSOM for LP Potential Reduction

We consider a simplex-constrained QP model We wish to solve a standard LP (and its dual)
- T
) Ax — bt = 0 e o
T _ ' —
in EHAXHZ —: F(x) —ATy —s+cT = 0 subject to Ax> b
g . <F bTy—cTx—xk = 0 <~ x =0
subjectto e'x =1
> 0 enx+e,s+rk+t = 1 .
X = Trﬂx b'y
The self-dual embedding builds a bridge subject to ATy +s=c
* The homogeneous QP seems so s> ()
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* How to solve much more general LPs?
Then we define the (nonconvex) potential function and apply DRSOM to it
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Combined with scaled gradient(Hessian) projection, the method solves LPs.




First-order Potential Reduction Algorithm

The first order steepest descent potential reduction algorithm would update x by solving

mdin Vo (x)! d

subjectto e'd=0,||X"1d|| <P

[ <1toguaranteetheupdatex +d > 0
- It admits a close-form solution d* = p(x) which is the scaled gradient projection vector

+ By choosing 8 = O(f(x)), itis guaranteed to generate a solution f(x) < €in
0(6_1 log(e‘l)) iterates, see Ye (2015).

Question: Can we achieve a faster convergence by including second order information?



DRSOM for LP Potential Reduction

Recall the DRSOM iIs to minimize a 2-D trust-region problem

min V()" d + —dTV2¢(x)d

subjectto e'd =0,||X7d| <A
d € span{ p(x), m(x)}

e p(x) is the scaled gradient projection vector and m(x) is the moment vector

* If the assumption || (Hy, — Hy)dj.1 IS C || dj.q ||* (Cartis et al.) still holds,

then a faster convergence rate 0(e~3/*1og(e™1)) can be guaranteed

Question: Can we remove this assumption?



DRSOM + Negative Curvature

Once DRSOM gets stuck at some local region:
* we can compute the smallest eigenvector (usually negative curvature) of the projected Hessian

T
matrix H(x) = (I — —)Vng(x) (I — %), which could help to escape local

* Theorem 3: For any point X satisfying min{x;} = C()f(x)l/z for some ¢y > 0, the smallest
—c5H(A)?p+1
c5 f(x)
constant for LP. Besides, let d be the smallest eigenvector of Q(X), then we have V¢ (x)! d

< _H@A)p

- feo
» A simple corrector step can be applied to guarantee the condition min{x;} > ¢, f(x)/? holds:

eigenvalue of H(x) satisfies Amin(H(X)) < , where H(A) is the Hoffman

x;” = 2x; and x} = x,, — x|, where | = argmin <<y, X; and m = argmaq<j<n Xj
if min{x;} = co f(x)¥/2, then d(x*) — p(x) < —0.15.



DRSOM-Potential Reduction

Repeat until stopping rule holds

o (Corrector step if necessary) If min{x;} = c,f(x)1/2, then apply the corrector step
> (DRSOM step) Choose 8 = O(f(x)~3/%) and take the DRSOM step

> (Negative curvature step if the decrease is slow) If p(x¥) — d(x) < —cf(x)~3/* do

not holds, go alone with the smallest eigenvector of H(x) = (I — —)qub(x)(l

eel
— —) and apply the linear search.

Theorem 4: By choosing f = O(f(x) 3/4), the algorithm is guaranteed to generate a solution

f(x) <einO (6_3/4 log(e‘l)) iterates.

 The theorem holds without using the Assumption on Hessian projection.

 Theresults can be extended to general function satisfying local error bound condition.



DR-Potential Reduction: Computational Techniques

Several computational techniques have been applied to accelerate

Scaling and matrix equilibration Other techniques
* Solving f(x):=1/2 || D,AD.x |I* with diagonal
D.s

| | | . * |teration averaging
* Using Ruiz, PC, [, scaling to equilibrate the c
matrix * Restart by projective

transformation

e Adaptively adjust D's during algorithm iteration

* Curvature filtering

Line-search * Interior point cleanup

* Given direction d, line-search reduces potential

o(x + ad)




Computational techniques: Averaging and Restart

lteration averaging

.1 5
* maintains a window of past iterates X = [x*,..., x*tV] R §HAX05H
» finds affine combination @ = (ay, ..., @) to minimize 1/2 || AXa ||> | Subject to  Xa >0
-
. . . e a=1
°* similar spirits to Anderson acceleration

* the QP Is solved using primal-dual interior point method at cost O(RWB)

After averaging, we restart via Kamarkar’s projective transformation

l o 1 o Lia o
SIAz |2 =Zl(AX)e|? = 5| Ae|

* restart from center of simplex

°* Improve numerical stability



Numerical Experiments: Netlib and Large Instances

* 114 Netlib LP instances

e Solving to 10 relative tolerance

* 600 seconds per-instance

* Allow final interior point iterations for
cleanup

Pure first-order methods work particularly well on LPs

with matrix coefficients {1, —1,0}

Method #Solved
Raw algorithm ~20
+Scaling ~50
+Negative curvature ~70
+Averaging and restart| ~90
+Newton cleanup 114/114

Table 1. Techniques vs. performance

Instance Ilteration to 1e-04 Instance lteration to 1e-04
| 2CTA3D 320 CTA-15-15-10 < 320
* Controlled tabular adjustment CTA-15-15-10 < 320 CTA-15-15-25 < 320
CTA-15-15-25 < 320 scpml Around 4096
* Set partitioning CTA-25-25-25 < 320 scpn2 Around 4096
CTA-15-15-10 < 320 scpk4 Around 4096
° PageRank CTA-15-15-25 < 320 scpn?2 Around 4096




Summary of DRSOM for LP

* Able to make use of dual information.

* Provide estimation of both primal and dual solutions.
» Faster speed In a few problems.

* Robust under noise.

* QP sub-problem solver

Overall Takeaways

Second-Order Information matters and simple accelerated SOMs, with
various computation tricks, work as faster as FOMs!

Algorithm customization/individualization Is very helpful

* THANK YOU



