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Today’s Talk

• Optimal Diagonal Precondition using SDP

• An Accelerated Second-Order Method Using Homogenized 

Descent Direction

• A Dimension Reduced Trust-Region Method for Unconstrained 

Optimization

• Potential Reduction Algorithm for Linear Programming



Optimal Diagonal Pre-Condition [QGHYZ 20]

Given 𝑿⊤𝑿 ≻ 𝟎,𝑿 ∈ ℝ𝒎×𝒏,  iterative method (e.g., CG) is often applied to solve

(𝑿⊤𝑿)𝒙 = 𝒃

• Convergence of iterative methods depends on condition number of 𝑋

• In practice we choose preconditioner 𝐷𝐿 , 𝐷𝑅 and solve (𝐷𝐿𝑋𝐷𝑅)
⊤(𝐷𝐿𝑋𝐷𝑅)𝑥

′ = 𝑏

• Diagonal D= diag(𝑑1, . . . , 𝑑{𝑚 𝑜𝑟 𝑛}) is called diagonal pre-conditioner

Is it possible to find optimal 𝑫𝑳
∗ and 𝑫𝑹

∗ ? SDP works!

More generally, we look for 𝐷𝐿, 𝐷𝑅 such that condition number of 𝐷𝐿𝑋𝐷𝑅 is minimized



Optimal Diagonal Pre-Conditioner

• Finding the optimal diagonal pre-conditioner is an SDP

• Two SDP blocks and sparse coefficient matrices

• Trivial dual interior-feasible solution

• An ideal formulation for dual SDP methods

• Similar trick applies to 𝐷𝐿𝑋



Two-Sided Optimal Pre-Conditioner 

• Common in practice and popular heuristics exist 

e.g. Ruiz-scaling, matrix equilibration & balancing

• Not directly solvable using SDP

• Can be solved by iteratively fixing 𝐷𝐿, 𝐷𝑅,  and optimizing the other side

Solving a sequence of SDPs

• Computation cost of the preconditioner is often amortized by successive solves

• Answer a question: how far can diagonal pre-conditioners go



Computational Results: Solving for the Optimal Pre-Conditioner

• Perfectly in the dual form 

• Trivial dual feasible interior point solution

• 1 is an upper-bound for the optimal objective value

SDP from optimal diagonal pre-conditioning problem HDSDP

• A dual SDP algorithm (successor of DSDP5.8 by  

Benson)

• Support initial dual solution

• Customization for the diagonal pre-conditioner



Computational Results: Build Preconditioner from Samples

• Many matrices result from statistical datasets

• 𝑋⊤𝑋 estimates the covariance matrix

• It suffices to use a few (row) samples to approximate

How few? As few as 

𝑂(log(#sample)!

• It generally takes 1% to 5% of the samples to approximate well

• Scales well with dimension and saves much time for matrix-matrix 

multiplication

Experiment over regression datasets shows that 



Computational Results: Optimal Diagonal Pre-Conditioner

• LIBSVM datasets

Distribution of condition number reduction

(Factor of improvement) 

• Test over 491 Suite Sparse Matrices of fewer than 1000 columns



Summary

• Optimal Diagonal Precondition, either one-side or two-sides, is “polynomially” 

computable

• It would be efficient for solving systems with the stable left-hand matrix and variable 

right-hand vectors, such as in Regression and ADMM 

• It establishes the bench-mark for evaluating other pre-conditioners based on 

heuristics and/or machine-learning

• HDSDP a general purpose SDP solver which using dual-scaling and simplified HSD

• It is developed with effective heuristics and computational tricks from DSDP

PCG  is one of the most popular methods to accelerate SOM
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min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

• where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝛻𝑓(𝑥𝑘) ∥≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (in active subspace, secondary, second-order condition) 

• For the ball-constrained nonconvex QP: min 𝑐𝑇𝑥 + 0.5𝑥𝑇𝑄𝑥 𝑠. 𝑡. ∥ 𝑥 ∥ 2 ≤1   

O(loglog(𝜖-1)); see Y (1989,93), Vavasis&Zippel (1990)

• For nonconvex QP with polyhedral constraints: O(𝜖-1); see Y (1998), Vavasis

(2001)

Early Complexity Analyses for Nonconvex Optimization



Standard methods for general nonconvex optimization I

First-order Method (FOM): Gradient-Type Methods

• Assume 𝑓 has 𝐿-Lipschitz cont. gradient 

• Global convergence by, e.g., linear-search (LS)

• No guarantee for the second-order condition

• Worst-case complexity, 𝑂 𝜖−2 ; see the textbook by Nesterov (2004)

Each iteration requires O(n2) operations



Second-order Method (SOM): Hessian-Type Methods

• Assume 𝑓 has 𝑀-Lipschitz cont. Hessian 

• Trust-region (More 70, Sorenson 80) with a fixed-radius strategy, 𝑂(𝜖−3/2) ,

see the lecture notes by Y since 2005

• Cubic regularization, 𝑂(𝜖−3/2) ,see Nesterov and Polyak (2006), Cartis, Gould, 

and Toint (2011)

• An adaptive trust-region framework, 𝑂(𝜖−3/2) ,Curtis, Robinson, and Samadi

(2017)

Each iteration requires O(n3) operations: How to reduce it?

Classical Methods for General Nonconvex Optimization II



An Integrated Descent Direction Using the Homogenized Quadratic 

Model I (Zhang at al. SHUFE)

• where Δ𝑘 =𝜖1/2/M is the trust-ball radius.

• -gk is the first-order steepest descent direction but ignores Hessian; 

• the most-left eigenvector of Hk-would be a descent direction for the second order 

term but such direction may not exist if it becomes nearly convex…

• Could we construct a direction integrating both?

Answer: Use the homogenized quadratic model of SDP relaxation

• Recall the fixed-radius trust-region method minimizes the Taylor quadratic model



An Integrated Descent Direction Using the Homogenized Quadratic 

Model II
• Using the homogenization trick by lifting with extra scalar 𝑡:

• Find the direction 𝜉 = 𝜉0/𝑡 (if t = 0 then set t=1) by the leftmost 

eigenvector:

min
| 𝜉0;𝑡 |≤1

𝜓𝑘 𝜉0, 𝑡; 𝛿

• Fix 𝛿 and compute the direction at the cost of 𝑂(𝜖−1/4log(1/𝜖)) via the 

randomized Lanczos method (Curvature computation of Hk was used in 

few hybrid 𝑂(𝜖−7/4log(1/𝜖)) methods of first and second orders; see Agarwal 

• The homogeneous model is equivalent to 𝑚𝑘 up to scaling:

𝜓𝑘 𝜉0, 𝑡; 𝛿 = 𝑡2 ⋅ 𝑚𝑘 ξ0/𝑡 − 𝛿



Global Convergence Rate: Outline of Analysis

• A concise analysis using fixed radius ∆

Let 𝑥𝑘+1= 𝑥𝑘 + η𝜉, 𝑅 𝐻𝑘 , 𝜉 = 𝜉𝑇𝐻𝑘𝜉/ 𝜉 2, 𝜉 = 𝜉0/𝑡

o (sufficient decrease in large step) If 𝜉 ≥ ∆, we choose η = ∆ / 𝜉

 𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 ≤ −
𝛿∆2

2
+

𝑀

6
𝛥3, regardless of 𝑡 = 0 or not

 𝛿 must be some greater than O(√𝜖) to have O 𝜖
3

2 decrease

o (small step means convergence) Otherwise 𝜉 < ∆, then we choose 

step-size  η = 1 and 

 𝑔𝑘+1 ≤ 4 𝐿 + 𝛿 2𝛥3 +
𝑀

2
𝛥2 + 2𝐿𝛿 + 2𝛿2 𝛥

 𝛿 must be some less than O(√𝜖) and converge

o 𝛿 should also be set in O(√𝜖) !

• This results a single-looped (easy-to-implement) 𝑂(𝜖−7/4log(1/𝜖)) method 



Theoretical Guarantees of HSODM

• Consider use the second-order homogenized direction, and the length of each 

step η𝜉 is fixed: η𝜉 ≤ Δ𝑘 =
2 𝜖

𝑀
where 𝑓(𝑥) has 𝐿-Lipschitz gradient and 𝑀-

Lipschitz Hessian. 

• Theorem 1 (Global convergence rate) : if 𝑓(𝑥) satisfies the Lipchitz Assumption 

and 𝛿 = √𝜀 , the iterate moves along homogeneous vector 𝜉: 𝑥𝑘+1= 𝑥𝑘 + η𝑘𝜉, 

then, if we choose η𝑘 = Δ𝑘/ 𝜉 , and terminate at 𝜉 < Δ𝑘, then algorithm has 

𝑂(𝜖−3/2) iteration complexity. Furthermore, 𝑥𝑘+1 satisfies approximate first-

order and second-order conditions.

• Theorem 2 (Local convergence rate): If the iterate 𝑥𝑘 of HSODM converges to a 

strict local optimum 𝑥∗ such that 𝐻(𝑥∗) ≻ 0 ,and then 𝜂𝑘 = 1 if 𝑘 is sufficiently

large. If we do not terminate HSODM and set 𝛿 = 0, then HSODM has a local 

superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1 − 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘



HSODM for Convex Optimization

• 𝑓(𝑥) is a convex function with 𝑀-Lipschitz Hessian.

• At every iteration, choose                 and solve

• Update 𝑥𝑘+1= 𝑥𝑘 + 𝜉, 𝜉 = 𝜉0/𝑡 (𝑡 = 0 won’t happen when 𝑓(𝑥) is convex)

• Theorem 3 (Global convergence rate) : suppose the sublevel set {𝑥: 𝑓(𝑥) ≤

𝑓(𝑥𝟎)} is bounded, then the sequence {𝑥𝑘} satisfies

• Ongoing: improved bounds of accelerated HSODM

• Practical remarks: homogenized direction can be used with any Line-Search 

(e.g., Hager-Zhang)
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• Motivation from Multi-Directional FOM and Subspace Method, DRSOM in general 

uses reduced m-independent directions  𝑑(α):= 𝐷kα , 𝐷k ∊ Rnm, α∊ Rm

• Plug the expression into the full-dimension Trust-Region quadratic minimization 

model, we minimize a  m-dimension trust-region subproblem to decide “m 

stepsizes”:

min 𝑚𝑘
α α ≔ 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘= 𝐷𝑘
𝑇𝐷𝑘, 𝑄𝑘 = 𝐷𝑘

𝑇𝐻𝑘𝐷𝑘, 𝑐𝑘 = 𝑔𝑘
𝑇𝐷k

How to choose Dk? Provable complexity result? 

DRSOM I



• In following, as an example, DRSOM adopts one or two FOM directions

𝑑 = −𝛼1𝛻𝑓 𝑥𝑘 + 𝛼2𝑑𝑘 ∶= 𝑑(α)

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Then we minimize a  1 or 2-D trust-region problem to decide “two step-sizes”:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

DRSOM II



DRSOM III

DRSOM can be seen as:

• “Adaptive” Accelerated Gradient Method (Polyak’s momentum 60)

• A second-order method minimizing quadratic model in the reduced 2-D subspace

𝑚𝑘(𝑑) = 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)
𝑇𝑑 +

1

2
𝑑𝑇𝛻2𝑓(𝑥𝑘)𝑑, 𝑑 ∈ 𝗌𝗉𝖺𝗇{−𝑔𝑘, 𝑑𝑘}

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method

𝑑 ∈ 𝗌𝗉𝖺𝗇{𝑔𝑘 , [𝐻(𝑥𝑘)]
−1𝑔𝑘} (e.g., Powell 70, Byrd 88)

• A conjugate direction method for convex optimization exploring the Krylov Subspace 

(e.g., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)

• For convex quadratic programming with no radius limit, it reduces to CG and BFGS 

terminating in n steps



Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

How to cheaply obtain Q? Compute  𝐻𝑘𝑔𝑘 , 𝐻𝑘𝑑𝑘 first.

• Finite difference:

𝐻𝑘 ⋅ 𝑣 ≈
1

𝜖
𝑔(𝑥𝑘 + 𝜖 ⋅ 𝑣) − 𝑔𝑘 ,

• Analytic approach to fit modern automatic differentiation,

𝐻𝑘𝑔𝑘 = 𝛻(
1

2
𝑔𝑘
𝑇𝑔𝑘), 𝐻𝑘𝑑𝑘 = 𝛻(𝑑𝑘

𝑇𝑔𝑘),

• Use Hessian if readily available !

• Three(-or more)-Point Interpolation: it is almost as fast as Polyak and CG! 



DRSOM: Key Assumptions and Theoretical Results (Zhang at al. 

SHUFE)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n 

steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let Δ𝑘

=2𝜖1/2/𝑀, then DRSOM terminates in 𝑂(𝜖  −3 2) iterations.  Furthermore, the iterate 𝑥𝑘
satisfies the first-order condition, and the Hessian is positive semi-definite in the subspace 

spanned by the gradient and momentum.

Assumption. (a)  𝑓 has Lipschitz continuous Hessian. (b) If the Lagrangian multiplier 𝝀𝒌
< 𝝐 , assume ∥ (𝑯𝒌 −  𝑯𝒌)𝒅𝒌+𝟏 ∥≤ 𝑪 ∥ 𝒅𝒌+𝟏 ∥

𝟐 (Cartis et al.), where  𝐻𝑘 is the projected 

Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 3. (Local convergence rate) If the iterate 𝑥𝑘 converges to a strict local optimum 

𝑥∗ such that 𝐻(𝑥∗) ≻ 0, and if Assumption (b) is satisfied as soon as 𝜆𝑘 ≤ 𝐶𝜆 ∥ 𝑑𝑘+1 ∥, 
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1
− 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)



20.000000 23.321928 26.643856 27.643856 28.965784 29.965784

10− 10

10− 8

10− 6

10− 4

10− 2

102

Iterat ion

=

CUTEst model name := SPMSRTLS-1000

GD+ Wolfe
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Preliminary Results: HSODM and DRSOM + HSODM

CUTEst example

• GD and LBFGS both use a Line-

search (Hager-Zhang)

• DRSOM uses 2-D subspace

• HSODM and DRSOM + HSODM 

are much better!

• DRSOM can also benefit from the 

homogenized system



Sensor Network Location (SNL)

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as the radio range. The SNL problem considers 

the    following QCQP feasibility problem,

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem



Sensor Network Location (SNL)

• Graphical results using SDP relaxation to initialize the NLS

• n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

• Both Gradient Descent and DRSOM can find good solutions !



Sensor Network Location (SNL)

• DRSOM can still converge to optimal solutions

• Graphical results without SDP relaxation



Sensor Network Location, Large-scale instances

• Test large SNL instances (terminate at 3,000s and | 𝒈𝒌| ≤ 𝟏𝒆−𝟓)

• Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch) 

• DRSOM has the best running time (benefits of 2nd order info and interpolation!)



Sensor Network Location, Large-scale instances

• Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

• GD with Line-search 

and Hager-Zhang CG 

both timeout

• DRSOM can converge to 

| 𝒈𝒌| ≤ 𝟏𝒆−𝟓 in 2,200s



Neural Networks and Deep Learning 

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM

• Use Automatic Differentiation to compute gradients

• Train ResNet18/Resnet34 Model with CIFAR 10

• Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning 

Training and test results for ResNet18 with DRSOM and Adam

Training and test results for ResNet34 with DRSOM and Adam

Pros

• DRSOM has rapid convergence (30 
epochs)

• DRSOM needs little tuning

Cons

• DRSOM may over-fit the models

• Running time can benefit from 
Interpolation

• Single direction DRSOM is also 
good

Good potential to be a standard 
optimizer for deep learning!



DRSOM for Riemannian Optimization (Tang et al. NUS)



1D-Kohn-Sham Equation



Ongoing Research and Future Directions on HSODM/DRSOM

• Rigorous DRSOM analyses, that is, removing Assumption (b)?

• Low-rank approximation of the homogenized matrix 
𝐻𝑘 𝑔𝑘
𝑔𝑘

𝑇 ∗
, and “Hot-Start” 

eigenvector computing by Power Methods (linear convergence of Liu et al. 2017)?

• Indefinite and Randomized Hessian rank-one updating via BFGS/SR1

• Dimension Reduced Non-Smooth/Semi-Smooth Newton
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DRSOM for LP Potential Reduction

𝑚𝑖𝑛
𝑥

1

2
‖𝐴𝑥‖2 =: 𝑓 𝑥

subject to 𝑒⊤𝑥 = 1
𝑥 ≥ 0

We consider a simplex-constrained QP model We wish to solve a standard LP (and its dual)

𝑚𝑖𝑛
𝑥

𝑐⊤𝑥

subject to 𝐴𝑥 = 𝑏
𝑥 ≥ 0

𝑚𝑎𝑥
𝑦,𝑠

𝑏⊤𝑦

subject to 𝐴⊤𝑦 + 𝑠 = 𝑐
𝑠 ≥ 0• The homogeneous QP seems so 

restrictive!

• How to solve much more general LPs?

𝐴𝑥 − 𝑏𝜏 = 0
−𝐴⊤𝑦 − 𝑠 + 𝑐𝜏 = 0

𝑏⊤𝑦 − 𝑐⊤𝑥 − 𝜅 = 0

𝑒𝑛
⊤𝑥 + 𝑒𝑛

⊤𝑠 + 𝜅 + 𝜏 = 1

The self-dual embedding builds a bridge

Then we define the (nonconvex) potential function and apply DRSOM to it

𝜙 𝑥 := 𝜌log(𝑓 𝑥 ) − ∑
𝑖=1

𝑛

log 𝑥𝑖

𝛻𝜙 𝑥 =
𝜌𝛻𝑓 𝑥

𝑓 𝑥
− 𝑋−1𝑒, 𝛻2𝜙 𝑥 = −

𝜌𝛻𝑓 𝑥 𝛻𝑓 𝑥 ⊤

𝑓 𝑥 2
+ 𝜌

𝐴⊤𝐴

𝑓 𝑥
+ 𝑋−2

Combined with scaled gradient(Hessian) projection, the method solves LPs.



First-order Potential Reduction Algorithm

• 𝛽 < 1 to guarantee the update 𝑥 + 𝑑 > 0

• It admits a close-form solution 𝑑∗ = 𝑝(𝑥) which is the scaled gradient projection vector

• By choosing 𝛽 = 𝑂(𝑓(𝑥)), it is guaranteed to generate a solution 𝑓 𝑥 ≤ 𝜖 in 

𝑂 𝜖−1 log 𝜖−1 iterates, see Ye (2015). 

Question: Can we achieve a faster convergence by including second order information? 

The first order steepest descent potential reduction algorithm would update x by solving 

𝑚𝑖𝑛
𝑑

𝛻𝜙 𝑥 𝑇 𝑑

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑒𝑇𝑑 = 0, 𝑋−1𝑑 ≤ 𝛽



DRSOM for LP Potential Reduction

• 𝑝 𝑥 is the scaled gradient projection vector and 𝑚(𝑥) is the moment vector

• If the assumption ∥ (𝑯𝒌 −𝑯
~

𝒌)𝒅𝒌+𝟏 ∥≤ 𝑪 ∥ 𝒅𝒌+𝟏 ∥
𝟐 (Cartis et al.) still holds, 

then a faster convergence rate 𝑂(𝜖−3/4 log 𝜖−1 ) can be guaranteed

Question: Can we remove this assumption?

Recall the DRSOM is to minimize a  2-D trust-region problem 

𝑚𝑖𝑛
𝑑

𝛻𝜙 𝑥 𝑇 𝑑 +
1

2
dT𝛻2𝜙 𝑥 𝑑

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑒𝑇𝑑 = 0, 𝑋−1𝑑 ≤ 𝛽
𝑑 ∈ 𝑠𝑝𝑎𝑛{ 𝑝 𝑥 ,m 𝑥 }



DRSOM + Negative Curvature 

Once DRSOM gets stuck at some local region:

• we can compute the smallest eigenvector (usually negative curvature) of the projected Hessian 

matrix H x = (𝐼 −
𝑒𝑒𝑇

𝑛
)𝛻2𝜙 𝑥 (𝐼 −

𝑒𝑒𝑇

𝑛
), which could help to escape local  

• Theorem 3: For any point 𝑥 satisfying min 𝑥𝑖 ≥ 𝑐0𝑓 𝑥  1 2
for some 𝑐0 > 0, the smallest 

eigenvalue of 𝐻(𝑥) satisfies 𝜆𝑚𝑖𝑛 H x ≤
−𝑐0

2𝐻 𝐴 2𝜌+1

𝑐0
2𝑓 𝑥

, where H(A) is the Hoffman 

constant for LP. Besides, let 𝑑 be the smallest eigenvector of Q x , then we have 𝛻𝜙 𝑥 𝑇 𝑑

≤ −
𝐻(𝐴)𝜌

𝑓(𝑥)
.

• A simple corrector step can be applied to guarantee the condition min 𝑥𝑖 ≥ 𝑐0𝑓 𝑥  1 2 holds: 

𝑥𝑙
+ = 2𝑥𝑙 𝑎𝑛𝑑 𝑥𝑚

+ = 𝑥𝑚 − 𝑥𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛1≤𝑖≤𝑛 𝑥𝑖 𝑎𝑛𝑑 𝑚 = 𝑎𝑟𝑔𝑚𝑎1≤𝑖≤𝑛 𝑥𝑖

If min 𝑥𝑖 ≥ 𝑐0𝑓 𝑥  1 2, then 𝜙 𝑥+ − 𝜙 𝑥 ≤ −0.15 .



DRSOM-Potential Reduction

Theorem 4: By choosing 𝛽 = 𝑂(𝑓 𝑥 −3/4), the algorithm is guaranteed to generate a solution 

𝑓 𝑥 ≤ 𝜖 in 𝑂 𝜖−3/4 log 𝜖−1 iterates.

• The theorem holds without using the Assumption on Hessian projection.

• The results can be extended to general function satisfying local error bound condition.

Repeat until stopping rule holds

o (Corrector step if necessary) If min 𝑥𝑖 ≥ 𝑐0𝑓 𝑥  1 2, then apply the corrector step

➢ (DRSOM step) Choose 𝛽 = 𝑂(𝑓 𝑥 −3/4) and take the DRSOM step

➢ (Negative curvature step if the decrease is slow) If 𝜙 𝑥+ − 𝜙 𝑥 ≤ −𝑐𝑓 𝑥 −3/4 do 

not holds, go alone with the smallest eigenvector of H x = (𝐼 −
𝑒𝑒𝑇

𝑛
)𝛻2𝜙 𝑥 (𝐼

−
𝑒𝑒𝑇

𝑛
), and apply the linear search. 



DR-Potential Reduction: Computational Techniques

• Solving  𝑓(𝑥):= 1/2 ∥ 𝐷𝒍𝐴𝐷𝒓𝑥 ∥
2 with diagonal 

𝐷.′ 𝒔

• Using Ruiz, PC, 𝑙2 scaling to equilibrate the 
matrix

• Adaptively adjust 𝐷′𝒔 during algorithm iteration

Several computational techniques have been applied to accelerate

Scaling and matrix equilibration

Line-search

• Given direction 𝑑, line-search reduces potential 

𝜙(𝑥 + 𝛼𝑑)

Other techniques

• Iteration averaging

• Restart by projective 

transformation

• Curvature filtering

• Interior point cleanup

• …



Computational techniques: Averaging and Restart

Iteration averaging

• maintains a window of past iterates 𝑋 = [𝑥𝑘 , . . . , 𝑥𝑘+𝑤]

• finds affine combination 𝛼 = (𝛼1, . . . , 𝛼𝑤) to minimize 1/2 ∥ 𝐴𝑋𝛼 ∥2

• similar spirits to Anderson acceleration

• the QP is solved using primal-dual interior point method at cost 𝑂(𝑛𝑤3)

After averaging, we restart via Kamarkar’s projective transformation

• restart from center of simplex

• improve numerical stability



Numerical Experiments: Netlib and Large Instances

• 114 Netlib LP instances

• Solving to 10−4 relative tolerance

• 600 seconds per-instance

• Allow final interior point iterations for 
cleanup

• Controlled tabular adjustment

• Set partitioning

• PageRank

Pure first-order methods work particularly well on LPs 

with matrix coefficients {1, −1,0}



Summary of DRSOM for LP

• Able to make use of dual information.
• Provide estimation of both primal and dual solutions.
• Faster speed in a few problems. 
• Robust under noise.
• QP sub-problem solver

Overall Takeaways
Second-Order Information matters and simple accelerated SOMs, with 
various computation tricks, work as faster as FOMs!

Algorithm customization/individualization is very helpful

• THANK YOU


