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Optimal Diagonal Preconditioner [QGHYZ 20]

Given matrix M = X ' X > 0, iterative methods are applied to solve
Mx = b

e Convergence of iterative methods depends on the condition number (M)
¢ Good performance needs preconditioning and we solve P~1/2MP~1/2x" = p

A good preconditioner reduces K(P_l/ZMP—l/Z)

e Diagonal P = D is called diagonal preconditioner

Most popular in practice: Jacobi, Ruiz, ADAM,...

More generally, we wish to find D (or E ) such that K (DXE) is minimized ?

Is it possible to find optimal D* and E£™* ? SDP works!



Optimal Diagonal Preconditioner

| min K
- min k(DMD) D,k
D diagonal,D =0 subject to | < DMD <kl
» min K
| min H}(XTDX) k,D >0
D diagonal,D =0 subject to kX' DX -y |
| = XTDX

 Finding the optimal diagonal preconditioner is an SDP
e Two SDP blocks and sparse coefficient matrices

e Trivial dual interior-feasible solution

e Anideal formulation for dual SDP methods D = Zdieieér

min K
D,k
subjectto D<M
» kD i M
max T
7,D >0
subject to X DX =1
| = X"DX

What about two-sided ?



Extension: Optimal preconditioner with arbitrary sparsity pattern

SDP can be generalized to tackle preconditioners with arbitrary sparsity parttern

Given sparsity pattern S, find P € § such that k(P~'*M) minimized

Given sparsity pattern S, find P! € S suchtha x(P~!M) minimized

ida { max T
g 1 7,{pij }
subject to Mt < Z Eijpij subject to M~1r < Z Eiipij
(i,j)ES (i,j)ES
M >" Z E,-J,-p,j, - e Z Eijp:j:
(i,j))eS (i,j))ES
Z Eijpij =0 Z Eijpij =
(i,j))ES (i,j))ES

e Both problems are SDP-representable
 Providing benchmark for non-diagonal preconditioners

e.g., tridiagonal, sparse approximate inverse...



Two-Sided Preconditioner

min H:( D1XD2)
D1>=0,D2>~0

e Common in practice and popular heuristics exist
e.g. Ruiz-scaling, matrix equilibration & balancing

e Notdirectly solvable using SDP

e Can be solved by iteratively fixing D, (D,) and optimizing the other side
Solving a sequence of SDPs

e Benchmark to answer questions:

How far can diagonal preconditioners go?
How good are those Heuristics?



Computational results: How far can optimal preconditioner go?
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Distribution of condition number improvement on SuiteSparse matrix collection
e A median of 2.2 factor of improvement for optimal right preconditioner
e 2.5 factor of improvement for optimal left preconditioner

e 3.6 factor of improvement for optimal two-sided preconditioner



Computational results: How good are the heuristic preconditioners

We use the optimal preconditioner to evaluate

two heuristic preconditioners: one-sided Jacobi and two-sided Ruiz

e Amedian factor of 1.5 improvement over Jacobi
e Amedian factor of 2.1 improvement over Ruiz
e For some matrices the improvement reaches >100

heuristics are often good, but sometimes harmful
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Computational results: Randomized preconditioner

e Many matrices result from statistical datasets

, , , - As few as
o M = X'X estimates the covariance matrix How few: '
O(log(sample))!
e |tsufficesto use a few samples to approximate
:,.1[1- | %_530/ . E, 2r . -;id- . :,,5 _E 3 . im1_5_ g?ﬂ

Experiment over regression datasets shows that

e [t generally takes 1% to 5% of the samples to approximate well

e Scales well with dimension and saves much time for matrix-matrix multiplication



Takeaways

e Finding optimal (non)diagonal preconditioner can be modeled by SDP
e Optimal preconditioner exhibits nice empirical performance for real-life matrices
e Providing a benchmark for evaluating heuristic preconditioners

e Good for solving systems with fixed left-hand-side matrices

min K
The theory of optimal preconditioner is attractive, but D,k
subjectto D<M
e For ann X n matrix, we need to solve a dual SDP of n + 1 variables
kD~ M

e Interior point method solvesa (n + 1) X (n + 1) dense linear system in a iteration

e Not scalable to matrices of size 5000

Finding the optimal preconditioner seems impractical in a real-time fashion

What about an preconditioner?
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Approximately optimal preconditioner is acceptable

e Condition number optimization is different from common convex optimization problems
e Peformance of algorithms moderately depends on condition number

e.g., O(klog(1l/e))
e An error of condition number up to moderate € does not affect performance

e We can be aggressive in the trade-off between accuracy and scalability

Our approach:

Step 1: we show that dimension of SDP can be reduced

Step 2: we show that the SDP can be solved via LP with cutting-planes



Step 1: Optimal combination of existing preconditioners

e The bottleneck of optimal diagonal preconditioner comes from 1 + 1 SDP variables
* Each “1” from 1 corresponds to a column of the identity matrix D — Z E.d

as if we are combining 1 bases in the space of diagonal preconditioner.

Focusing on the whole space is expensive. How about a subspace?

* Pick k “base” preconditioners D;, ..., D, that work well in practice D=3 Dia,
e.g. Jacobi, Ruiz, Sparse approximate inverse ... !
e Restrict preconditioner to lie in the subspace spanned by these bases e n '
e Reducing the SDP to k + 1 variables subject to ; Diai =M
* Get the optimal combination of the basic preconditioners Z Diai = Mr

No worse than the best of them i=1



Computational results: optimal combination of preconditioners
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e Choosing three basis preconditioners: Jacobi, Ruiz and Identity
We are much more scalable now.

* Able to deal with sparse matrices of size up to 20000 But solving an SDP is still not ideal

?
e 2.5 factor of improvement beyond Jacobi Can we go further:

e 2.8 factor of improvement beyond Ruiz Yes! We can even be “SDP-free”

e 1.2 factor of improvement beyond best among Jacobi/Ruiz/None



Step 2: Semi-infinite linear programming and cutting plane
method

We are faced with a dual SDP

MaX T
QT

e with very few dual variables subject to Z Diai = M
in practice 3 to 10 base preconditioners are needed =t

e with most constraint matrices diagonal Z Djaj = Mt
=1

Recall that an SDP conic constraint S > 0 can be represented by infinite linear constraints

C-—A*y >0 & (a,(C—A*y)a)>0,forallacR" & (A(aa'),y)<a'Ca

e the SDP can be written as an LP with infinite number of constraints and few variables
e we can employ a cutting plane/constraint generation approach to solve the LP

e similar to the interior point cutting plane method for semi-infinite programming



Cutting plane method for optimal preconditioner

To implement the cutting plane approach

e we initialize with a set of linear constraints
e solve the LP and obtain the LP solution
the LP has very few variables

e callthe separation oracle

compute the minimum eigenvalue of the dual slack (efficiently computable using Lanczos iteration)

If Amin(C — A*y) < —¢, then there exists (d, (C — A*y)d) <0
cutting plane (A(dd '), y) <d'Cd is added to the problem

e |terate till convergence

e We solve a sequence of low-dimension LPs rather than the original SDP

e LPscan be efficiently warm-started using dual simplex

How well does the cutting plane approach work in practice?



Computational results: LP + cutting plane

How does the method work in practice?

 For moderate number (<30) of base preconditioners,

only 5~20 LPs are needed to reach good accuracy 015

e The separation oracle runs very fast
when the matrix is sparse

e Dual simplex solves the LPs efficiently

A 10000 by 10000 sparse matrix needs <5 seconds '

scalable to very large matrices o2l _. ;_ _. _: . _ M |

X-axis: number of LP iterations
y-axis: up: violation of SDP conic constraint
low: relative optimality in condition number



Summary

e Finding the optimal (non)diagonal preconditioner can be modeled by SDP:
another SDP application

e The optimal diagonal preconditioner serves as a benchmark and has desirable
empirical performances compared to heuristic approaches

We further show that

 Finding the optimal combination of few heuristic diagonal preconditioners can be modeled
by SDP, and it improves scalability of the SDP approach without compromising much

performances

e The SDP from optimal combination of preconditioners can be efficiently solved using
Semi-infinite optimization + LP dual simplex + cutting plane method,...

Finding approximate optimal diagonal preconditioners may be
scalable?



