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One of the key resource allocation frameworks to
achieve a fair allocation is that of Fisher Markets

Agent 1
4 u;; : Preference of Agent 7 for one unit of good j
w z;; : Quantity of good j purchased by person %
p; : Price of Good ]

Ui1Ti1 Ui3 T3 w; : Budget of Agent 7
Ui2Zi2 Individual Optimization Problem:

maXZHij:II?;j
X; -
S.t. pTXi S w;
X; Z 0

Prices are posted and known to all agents
M = Total Number of Goods so that they have freedom to choose



The prices can be derived from a centralized optimization
problem with a budget weighted social-walfare objective
(Eisenberg-Gale)

Individual Optimization Problem: Social Optimization Problem:
R max w; lo Ui T
II:}{B.X E Ui T X Ve N i 108 (E : i %:r)
‘I' *
s.t. ;
S.t. pTX,!'_ < w; b Zm’ij < Cj,Vj S [M]
, ~_
X; :Z 0 Capacity Constraints

zi; = 0,V,]

p; : Price of Good j = Dual Variable of Constraint ;

Theorem: The social problem can be solved in polynomial time (Jain, Vazirazi, Ye 2005; Jalota, Qi et al. GEB 2023)



We study an online and incomplete
information variant of Fisher markets

Static

Pricing
(Single Price Point)

rice Point)
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Prior work on online variants of Fisher markets have
considered the setting of goods arriving sequentially




The setting of agents arriving online has been
studied in online linear programming (OLP)

)

Objective: Maximize Y1 X701 UgjXy;
Subject to resource constraints

Performance of online algorithm measured with respect to regret on offline linear objective




Organization

* Review of Online Linear Programming



Online Resource Allocation &
Revenue Management Booking

m type of resources; T customers

Decision maker needs to decide whether and
how much resources are allocated to each
customer

Resources are limited!

Online setting:

* Customers arrive sequentially and the
decision needs to be made instantly upon
the customer arrival: Sell or No-sell?

Performance of online algorithm measured with respect to regret from the offline linear objective

0<x <1 orxe{0,1}, t=1,...




Auction Markets: An lllustration Example

Bid # $100 $30 Inventory
Decision X1=? X2=?
Pants 1 0 100
Shoes 1 0 50
T-Shirts 0 1 500
Jackets 0 0 200
Hats 1 1 1000

* Agents/Traders come one by one sequentially, buy or sell, or combination,
with a combinatorial order/bid (a,, ;)

* The seller/market-maker has to make an order-fill decision as soon as an
order arrives

e Optimal Policy/Mechanism?



Regret-Ratio for Online Algorithm/Mechanism vs Offline

OPT(Am)=max > mX
K

S.t. Zaikxk <b VieS$S
K

0<x<1 VkeN

= We know the total number of customers, say n;
= Assume customers arrive in a random order or with 1.1.d distributions.

= For a given online algorithm/decision-policy/mechanism
Z(A,)
OPT (A7)

Z(Ar)=E_[ Zn:nkxk ]| |[R(A)=1-

R=sup,,R(AT)




Impossibility Result on Regret-Ratio

Theorem: There is no online algorithm/decision-
policy/mechanism such that

R<0( {/log(m)/B ), B=minp,.

Corollary: If B < log(m)/e?, then it is impossible to
have a decision policy/mechanism such that R <
O(g).

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online Linear
Programming,” 2010.



Possibility Result on Regret-Ratio

Theorem: There is an online algorithm/decision-
policy/mechanism such that

R<0( {/mlog(n)/B ), B=minb,.

Corollary: If B > mlog(n)/e?, then there is an online
algorithm/decision-policy/mechanism such that
R < O(¢).

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online
Linear Programming,” 2010.

Theorem: If B > log(mn)/e?, then there is an online
algorithm/decision-policy/mechanism such that
R < O(¢).

Kesselheim et al. “Primal Beat the Dual...,” 2014, ...




Online Algorithm and Price-Mechanism

* Learn “ideal” itemized-prices
* Use the prices to price each bid
* Accept if it is an over bid, and reject otherwise

Bid # $100 $30 Inventory Price?
Decision x1 X2
Pants 1 0 100 45
Shoes 1 0 50 45
T-Shirts 0 1 500 10
Jackets 0 0 200 55
Hats 1 1 1000 15

Such ideal prices exist and they are shadow/dual prices of the offline LP




How to Learn “Shadow Prices” Online

At time t, solve the sample LP at t=en, 2¢en, 4¢n, ...; and use the
new shadow prices for the decision in the coming period (the
resource allocations can be adaptively adjusted).

en 2¢n 4en

- r _r __r

t
max Y m.X
k=1

t
st. Yax <A-h) b Vies
k=1 N

0<x,<1 VkeN




leferences of Math/OR and AI Models
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The Online Algorithm can be
Applied to Bandits with
Knapsack (BwK) Applications

* For the previous problem, the decision
maker first wait and observe the
customer order/arm and then decide
whether to accept/play it or not.

* An alternative setting is that the

decision maker first decides which AFFILIATE

order/arm (s) he may accept/play, and o W
then receive a random resource o D ot c‘;”‘““ DFR
consumption vector a; and yield a JVF?I%SFE 880' I

== WEBSITE

random reward 7; of the pulled arm. el
* Known as the Bandits with Knapsacks, ADVERTI S I N G § -
and it is a tradeoff exploration v.s. =

ADVERTISEM

exploitation ; “U‘;Eﬁ‘,'ﬁf”“” AD 17



max ZTEJ'X]' S.t. Z anj <b , Xj >0 V] —
J

1,...

]

* The decision variable x; represents the total-times of pulling the j-th arm.

* We have developed a two-phase algorithm

* Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic

variables/arms with as fewer number of plays as possible

* Phase |l: Use the arms in the optimal face to exhaust the resource through an adaptive

procedure and achieve fairness

* The algorithm achieves a problem dependent regret that bears a logarithmic
dependence on the horizon T. Also, it identifies a number of LP-related
parameters as the bottleneck or condition-numbers for the problem

e Minimum non-zero reduced cost
* Minimum singular-values of the optimal
basis matrix.

* First algorithm to achieve the O(log T) regret/gap bound [Li, Sun & Y 2021

ICML] (https://proceedings.mlr.press/v139/li21s.html)
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* Online assignment problem
« Contrc! based method
* Online linear programming

Ref: Agrawal, Shipra, Zizhuo Wang, and Yinyu Ye.

“A dynamic near-optimal algorithm for online
linear programming.” Operations Research 62.4
(2014): 876-890.
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M N
max Z Z VjjXij 3.3 MCKP-Allocation
=1 j=1 We adopt the primal-dual framework proposed by [2] to solve the
M N problem defined in Equation 5. Let & and f§; be the associated dual
s.L. Z Z cjxij < B, (5) variables respectively. After obtaining the dual variables, we can
i=1 j=1 solve the problem in an online fashion. Precisely, according to the
N . principle of the primal-dual framework, we have the following
Z xij £1, Vi allocation rule:
J

(9)

1, where j = arg max;(v;; — acj)
Xij =

0, otherwise
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Online for Geometric Objective: evaluate algorithms through
the absolute regret of social welfare and capacity violation

Regret (Optimality Gap) Constraint Violation

Difference in the Optimal Social
Obijective of the online policy m to that
of the optimal offline social value

Norm of the violation of capacity
constraints of the online policy

R, (m) =

Z w; log (Z uija:,}fj) — Z w; log (Z Ui5 55 (TI'))
i j i j

Vi(m) = Z%’j(ﬂ') —¢j

Violation of Capacity
Constraint of good j

/ \

Optimal Offline Objective of
Objective online policy

Va(m) = [[E[V () 7]l

Norm of the expected
constraint violation




Using the optimal expect prices, the capacity violation
must be Q(y/n), where n is the number of total agents

2 goods, each with .'.I'wo agent types s.rfecified by
. (Utility for Good 1, Utility for Good 2)
a capacityofn
Type I: (1, 0) Type II: (0, 1)
[ 4 | 4
Arrival Probability = 0.5 Arrival Probability = 0.5

Theorem: more generally, any static pricing algorithm achieves either a regret or capacity violation of Q(1/n)
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Our adaptive expected equilibrium pricing approach
achieves constant constraint violation and log regret

Algorithm 1: Adaptive Expected Equilibrium Pricing

Input : Initial Good Capacities ¢, Number of Users n, Threshold Parameter Vector A, Support of

Probability Distribution {1, tix }2_,, Occurrence Probabilities {q;}_,

Initialize ¢; = c and the average remaining good capacity to d; = 7 ;

fort=1,2,...,ndo
Phase I: Set Price

if dp € [d — A,d + A] for all t' <t then Set price based on dual
Set price p* as the dual variables of the capacity constraints of the certainty equivalent variable of capacity
blem CE(d ith ity d; ; . .
else problem C£(d,) with capacity d, ; — constraints of certainty
Set price p’ using the dual variables of the capacity constraints of the certainty equivalent equivalent problem as
problem C'E(d) with capacity d = d; ; the same as the OLP
end _

Phase II: Observed User Consumption and Update Available Good Capacities
User purchases optimal bundle of goods x; given price p' ;

Update the available good capacities ¢;11 = ¢; — Xy ; Update average remaining

Compute the average remaining good capacities d;yq = S - ..
P 8 &8 P T o=t resource capacities

end

Theorem: Under i.i.d. budget and utility parameters with a discrete probability distribution
and when good capacities are O(n), Algorithm 1 achieves an expected regret of R,, (1) <
O (log(n)) and expected constraint violation of V,, (1) < 0(1)



The sample-based algorithms are often computationally
expensive and do not preserve user privacy

s.t. Zmi < —Cj Vi € [m] .
“Prices can be set

zi; >0, Vi€lt],je [m] based on dual of

capacity constraints




We design a dual based algorithm, wherein
users see prices at each time they arrive

1
Price pt ! P1
|

Agentt + 1

(Wt! ut)NP

. Agent purchases an
optimal bundle x given
price p¢




Applying gradient descent to the dual of the social
optimization problem motivates a natural algorithm

T T TrL T
min Z we log(wy) — Zwt log (min p__?) + ijﬂj - Z wy
P t=1 JE€Im] Ut j=1 t=1
: _ G o4 _ S I

i

=|—C — X}

c. . v
j€[m] 4

Difference between market share of
each agent and goods purchased

p=p*



We develop a revealed preference algorithm with sub-

linear regret and constraint violation guarantees
Algorithm 2: Revealed Preference Algorithm for Online Fisher Markets

Input : Number of users n, Vector of good capacities per user d = =

Initialize p! > O : "
fort=1,2,...,n do

Phase I: ;

User purchases an optimal bundle of goods x; given the price p® ;

Phase II (Price Update): ;

Pt+1 — ];73it — "Vt (d — xt) : Difference between market share of
end / <.\each agent and goods purchased

Only requires knowledge of user consumption
(and not their budgets or utilities) to update prices

Step—size:IO (\/%)

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when
good capacities are 0(n), Algorithm 2 achieves an expected regret of R,, (1) < 0(/n) and
expected constraint violation of I, (1r) < 0(y/n), where n is the number of arriving users.



Again, the price of a good is increased if the arriving
user purchase more than its market share of the good

. t+1
Price p} ! P1

Agentt + 1

Agent purchase an
optimal bundle x*t
given price pt




Organization

* Introduction

* Review Online Linear Programming

* Performance Metrics and Limitations of Static Pricing for Stochastic Markets
* Adaptive Sample-Based Pricing Algorithm and Privacy-Preserving Algorithm

* Conclusion/Takeaways



We study Fisher markets in the online and incomplete
information setting and develop algorithms with sub-
linear regret guarantees

We develop an
adaptive expected
equilibrium pricing

algorithm with much
improved performance

We develop a revealed
preference algorithm
with sub-linear regret
and capacity violation

Static equilibrium

pricing approaches

have performance
limitations

Static
[=ingle |

Pricing
rice Point)

Dynamic Pricing
iMultiple Price Paints)

Jalota, Ye (2023), arXiv link: https://arxiv.org/abs/2205.00825



https://arxiv.org/abs/2205.00825

Future Work

Extension of online Fisher
markets under general
concave utility functions

Extensions for Nonstationary
Agent Data in the Market

Loss in social objective under
integral allocations
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