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There are many settings when we need to fairly
allocate shared resources to users

Public Good Allocation Vaccine Allocation




One of the key resource allocation frameworks to
achieve a fair allocation is that of Fisher Markets

Agent 1
4 u;; : Preference of Agent 7 for one unit of good j
w z;; : Quantity of good j purchased by person %
p; : Price of Good ]

w; : Budget of Agent i

Individual Optimization Problem:
max E Ui T45

X -

J

S.t. pTXi < w;
X; > 0

M = Total Number of Goods 4



The prices can be derived from a centralized optimization
problem with a budget weighted geometric mean objective

(Eisenberg-Gale)

Individual Optimization Problem:
max E Ui g5
X :
J

s.t. plx;, <w;
X; 2 0

—

Social Optimization Problem:

x; ‘v’zE[N Zwi log (Zu”m”)

S.t.

R Zﬂ?z‘j < Cj,\?’j € [M]

\
Capacity Constraints

zi; = 0,V,]

p; : Price of Good j = Dual Variable of Constraint j



However, the applicability of Fisher markets is restricted to
the “Perfect and Static Information Setting”

Individual Optimization Problem:

max E Ui g5
X :
J

s.t. plx;, <w;
X; 2 0

—

Social Optimization Problem:

x; ‘v’zE[N Zwi log (Zu”m”)

S.t.

R Zﬂ?z‘j < Cj,\?’j € [M]

\
Capacity Constraints

zi; = 0,V,]

p; : Price of Good j = Dual Variable of Constraint j



We study an online and incomplete
information variant of Fisher markets

Static

Pricing
(Single Price Point)

rice Point)

————————————1——————————



Prior work on online variants of Fisher markets have
considered the setting of goods arriving sequentially




The setting of agents arriving online has been
studied in online linear programming (OLP)

)

Objective: Maximize Y1 X701 UgjXy;
Subject to resource constraints

Performance of online algorithm measured with respect to regret on offline linear objective
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Online Resource Allocation &
Revenue Management Booking

m type of resources; T customers

Decision maker needs to decide whether and
how much resources are allocated to each
customer

Resources are limited!

Online setting:

* Customers arrive sequentially and the
decision needs to be made instantly upon
the customer arrival: Sell or No-sell?

Performance of online algorithm measured with respect to regret from the offline linear objective

0<x <1 orxe{0,1}, t=1,...
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Online Seller’s Market: An lllustration Example

Bid # $100 $30 Inventory
Decision X1=? X2=?
Pants 1 0 100
Shoes 1 0 50
T-Shirts 0 1 500
Jackets 0 0 200
Hats 1 1 1000




Online Linear Programming

» Agents/Traders come one by one ;
sequentially, buy or sell, or combination, oy er
with a combinatorial order/bid (a,, ;) —

* The seller/market-maker has to make an T |
order-fill decision as soon as an order s.L. Zaffxf <bj, i=1..m
arrives t=1

0<x<1orxe{0l1} t=1,.,T
* The seller/market-maker faces:

e Sell or No-sell — this is an irrevocable Off-Line LP
decision

* Optimal Policy/Mechanism?

* The off-line problem can be an (0 1) linear
program



Regret-Ratio for Online Algorithm/Mechanism

OPT(Am)=max > mX
K

S.t. Zaikxk <b VieS$S
K

0<x<1 VkeN

= We know the total number of customers, say n;
= Assume customers arrive in a random order or with 1.1.d distributions.

= For a given online algorithm/decision-policy/mechanism
Z(A,)
OPT (A7)

Z(Ar)=E_[ Zn:nkxk ]| |[R(A)=1-

R=sup,,R(AT)




Impossibility Result on Regret-Ratio

Theorem: There is no online algorithm/decision-
policy/mechanism such that

R<0( {/log(m)/B ), B=minp,.

Corollary: If B < log(m)/e?, then it is impossible to
have a decision policy/mechanism such that R <
O(g).

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online Linear
Programming,” 2010.



Possibility Result on Regret-Ratio

Theorem: There is an online algorithm/decision-
policy/mechanism such that

R<0( {/mlog(n)/B ), B=minb,.

Corollary: If B > mlog(n)/e?, then there is an online
algorithm/decision-policy/mechanism such that
R < O(¢).

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online
Linear Programming,” 2010.

Theorem: If B > log(mn)/e?, then there is an online
algorithm/decision-policy/mechanism such that
R < O(¢).

Kesselheim et al. “Primal Beat the Dual...,” 2014, ...




Online Algorithm and Price-Mechanism: Learning-while-Doing

* Learn “ideal” itemized-prices
» Use the prices to price each bid
* Accept if it is an over bid, and reject otherwise

Bid # $100 $30 Inventory | Price?
Decision x1 X2
Pants 1 0 100 45
Shoes 1 0 50 45
T-Shirts 0 1 500 10
Jackets 0 0 200 55
Hats 1 1 1000 15

Such ideal prices exist and they are shadow/dual prices of the offline LP



How to Learn Shadow Prices Online

For a given g, solve the sample LP at t=en, 2¢n, 4¢n, ...; and use the
new shadow prices for the decision in the coming period.

en 2¢n 4en

- r _r __r

t
max Y m.X
k=1

t
st. Yax <A-h) b Vies
k=1 N

0<x,<1 VkeN




The Online Algorithm can be
Extended to Bandits with
Knapsack (BwK) Applications

* For the previous problem, the decision
maker first wait and observe the
customer order/arm and then decide
whether to accept/play it or not.

* An alternative setting is that the

decision maker first decides which AFFILIATE
order/arm (s)he may accept/play, and o o AR
then receive a random resource o b i '_‘>"_““ A T |
: : =3 USE w -‘9::;)% {
consumption vector a; and yield a WERTISES SQ 2 i*:: V\\{‘ERBSITE

-

random reward 7; of the pulled arm. ey
* Known as the Bandits with Knapsacks ADVERT' S I N G ff .
and it is a tradeoff exploration v.s. =

ADVERTISEM

exploitation ; '*U‘;Eﬁl’,“”f“‘ AD 19



max anxj S.t. Zajxjﬁb, Xj >0 vji=1,...,]
J

* The decision variable x; represents the total-times of pulling the j-th arm.

* We have developed a two-phase algorithm

* Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic
variables/arms with as fewer number of plays as possible

* Phase |l: Use the arms in the optimal face to exhaust the resource through an adaptive
procedure and achieve fairness

* The algorithm achieves a problem dependent regret that bears a logarithmic
dependence on the horizon T. Also, it identifies a number of LP-related
parameters as the bottleneck or condition-numbers for the problem

e Minimum non-zero reduced cost Takeaway.
« Minimum singular-values of the optimal Stochastic data are learnable and
basis matrix. partial social fairness is achievable

« First algorithm to achieve the O(log T) regref HoANINRLINGH RIS8RIITIng
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* Online assignment problem
« Contrc! based method
* Online linear programming

Ref: Agrawal, Shipra, Zizhuo Wang, and Yinyu Ye.

“A dynamic near-optimal algorithm for online
linear programming.” Operations Research 62.4
(2014): 876-890.
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Spending Money Wisely: Online Electronic Coupon Allocation
based on Real-Time User Intent Detection
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M N
max Z Z VjjXij 3.3 MCKP-Allocation
=1 j=1 We adopt the primal-dual framework proposed by [2] to solve the
M N problem defined in Equation 5. Let & and f§; be the associated dual
s.L. Z Z cjxij < B, (5) variables respectively. After obtaining the dual variables, we can
i=1 j=1 solve the problem in an online fashion. Precisely, according to the
N . principle of the primal-dual framework, we have the following
Z xij £1, Vi allocation rule:
J

(9)

1, where j = arg max;(v;; — acj)
Xij =

0, otherwise




Online learning algorithms can also be
developed for more general convex objectives

* n energy suppliers with privately known convex cost z =gy oo B
functions c; SN

* Customer demand d for energy

* How to find equilibrium prices to match supply and oo V? \’ k.. =
demand without information on cost functions? S i faiai aaEs AT TR

* [Jalota, Sun, Azizan, 2023] develop online learning .
algorithms with sub-linear regret: C* = min Zci(mi),

, _ z; > 0,Vie[n

* O(log log T) for static cost functions and demands P
 O(v/T log log T) for static costs, varying demands s.t. Zm,., =d,

* O(T?3) for varying costs and finite function class

Online Learning for Equilibrium Pricing in Electricity Markets under Incomplete Information
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Online for Geometric Objective: evaluate algorithms through
the absolute regret of social welfare and capacity violation

Regret (Optimality Gap) Constraint Violation

Difference in the Optimal Social
Obijective of the online policy m to that
of the optimal offline social value

Norm of the violation of capacity
constraints of the online policy

R, (m) =

Z w; log (Z uija:,}fj) — Z w; log (Z Ui5 55 (TI'))
i j i j

Vi(m) = Z%’j(ﬂ') —¢j

Violation of Capacity
Constraint of good j

/ \

Optimal Offline Objective of
Objective online policy

Va(m) = [[E[V () 7]l

Norm of the expected
constraint violation




Using the optimal expect prices, the capacity violation
must be Q(y/n), where n is the number of total agents

2 goods, each with .'.I'wo agent types s.rfecified by
. (Utility for Good 1, Utility for Good 2)
a capacityofn
Type I: (1, 0) Type II: (0, 1)
[ 4 | 4
Arrival Probability = 0.5 Arrival Probability = 0.5

Theorem: more generally, any static pricing algorithm achieves either a regret or capacity violation of Q(1/n)




Organization

* Adaptive Expected Equilibrium Pricing Algorithm



To set static expected equilibrium prices, we
can solve the following deterministic problem

K m
Assumption: The distribution R%a‘fk e U(zi,...,2K) = Z qr Wi log Z Ukj2kj | 5
from which the utility and Zr © ) € [ ] k=1 j=1

budget parameters of users are 174
drawn is discrete with finite st E :Zk an < d. Vi€ [m]
support, where | = Jeies e 1 Average resource

P((we, ug) = (Wi, Uk)) = g . capacity per user
forall k € [K] zk; >0, Vke|[K]|, je€[m],

Dual variables of the capacity
constraints are the static
expected equilibrium prices

Example: For two-good counterexample, K = 2, (W, %;) = (1, (1,0)), (W,, ;) = (1,(0,1)), g; = g, = 0.5
Static expected equilibrium price vector: (0.5, 0.5)



We overcome problem of static expected equilibrium
pricing by increasing prices of over-consumed goods

100 units 100 units

Solve CE(d) to set price of 0.5 for each good
For 100 users,d; = 1,d, =1

Type I: (1, 0)
o

User of Type | and
consumes two units of
good one

98 units 100 units

1. Update Average remaining Resource

Capacities
98 100

1 _ 7% g1 _
41 =559 = 5g

2. Solve CE(d1) to set price for next user



Our adaptive expected equilibrium pricing approach
achieves constant constraint violation and log regret

Algorithm 1: Adaptive Expected Equilibrium Pricing

Input : Initial Good Capacities ¢, Number of Users n, Threshold Parameter Vector A, Support of

Probability Distribution {1, tix }2_,, Occurrence Probabilities {q;}_,

Initialize ¢; = c and the average remaining good capacity to d; = 7 ;

fort=1,2,...,ndo

Phase I: Set Price

if dy € [d — A,d+ A] for allt/ <t then
Set price p* as the dual variables of the capacity constraints of the certainty equivalent Set price based on dual

problem C'E(d;) with capacity d; ; L variable of capacity

else . .
Set price p* using the dual variables of the capacity constraints of the certainty equivalent constraints of certainty
problem CE(d) with capacity d = d; ; equivalent problem
end

Phase II: Observed User Consumption and Update Available Good Capacities
User purchases optimal bundle of goods x; given price p' ;

Update the available good capacities ¢;11 = ¢; — Xy ; Update average remaining
Compute the average remaining good capacities d;y1 = f:jé ; -
end resource capacities

Theorem: Under i.i.d. budget and utility parameters with a discrete probability distribution
and when good capacities are O(n), Algorithm 1 achieves an expected regret of R,, (1) <
O (log(n)) and expected constraint violation of V,, (1) < 0(1)
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Primal algorithms are often computationally
expensive and do not preserve user privacy

@
’ﬁ‘ w E;q ey D (Z)

s.t. Za: < —Cj Vi € [m] .
“Prices can be set

zi; >0, Vi€lt],je [m] based on dual of

capacity constraints




We design a dual based algorithm, wherein
users see prices at each time they arrive

Price pt ! P1

Agentt + 1

(Wt, ut)"’P

Agent purchases an
optimal bundle x*t
given price pt

S




Applying gradient descent to the dual of the social
optimization problem motivates a natural algorithm

T T TrL T
min Z we log(wy) — Zwt log (min p__?) + ijﬂj - Z wy
P t=1 JE€Im] Ut j=1 t=1
: _ G o4 _ S I

i

=|—C — X}

c. . v
j€[m] 4

Difference between market share of
each agent and goods purchased

p=p*



We develop a revealed preference algorithm with sub-

linear regret and constraint violation guarantees
Algorithm 2: Revealed Preference Algorithm for Online Fisher Markets

Input : Number of users n, Vector of good capacities per user d = =

Initialize p! > O : "
fort=1,2,...,n do

Phase I: ;

User purchases an optimal bundle of goods x; given the price p® ;

Phase II (Price Update): ;

Pt+1 — ];73it — "Vt (d — xt) : Difference between market share of
end / <.\each agent and goods purchased

Only requires knowledge of user consumption
(and not their budgets or utilities) to update prices

Step—size:IO (\/%)

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when
good capacities are 0(n), Algorithm 2 achieves an expected regret of R,, (1) < 0(/n) and
expected constraint violation of I, (1r) < 0(y/n), where n is the number of arriving users.



Again, the price of a good is increased if the arriving
user purchase more than its market share of the good

1
. t+1
Price p} ! P1
|

Agentt + 1

(We, ug)~P

Agent purchase an
optimal bundle x*t
given price pt

S



The regret and constraint violation guarantees follow
from duality and a novel potential function argument

o4 Min Common | 7.4 Min Common 0.20 - - - - - =
i i\ N ' | "'“'!'3.' i 1. Establish that the positivity of prices
:L"--T'f'i,‘\f‘»,z_l’ : ‘L‘j : 015 || implies their boundedness
e N
| ? 'i E 0.10 2. Use a potential function argument
o 5 | I S 1 to show the positivity of prices
in Common, (R = 0os| ® o
i Cotzg._— | M Potential Function
i T - Ve=(p"-d
0 1,000 2,000 3,000 4,000 5,000
Number of Users We show that this potential function is
Uselconvex posmamming non-decreasing when the prices of all
duality to establish the regret Establish the positivity and , gqods drops bEIc,)W 2 dnresiofl
and constraint violation boundedness of prices during |mpIy|ng'that the !orlces of some goods
guarantees if the prices are the operation of Algorithm 2 L [TEEEEE [ L1 SLssea e

strictly positive and bounded Iteration



Our numerical results verify the obtained
theoretical guarantee

10

E
® Algorithm 2 i
- T'heoretical Bound 3

9l =05
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o
W% 80 =
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i —0.5
7 Slope =0.5 8=
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| "E' _1
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We also develop benchmarks that have access to more
information to compare our algorithm’s performance

 oown robasi Distbution et e reveaed
’H‘wm

Benchmark 2: Set prices based
on a sequence of dual problems
using revealed parameters

Benchmark 1: Set price based on
solution of Stochastic Program



Our numerical results demonstrate a tradeoff
between regret and constraint violation

0.3 0.4

- Stochastic Program -
Dynamic Learning SAA
—— Algorithm 2

E g
R g
8« 0.2 :-; '
g . 02
g 2 0.1 =10
z O E° 0 \\_‘\/\.
“ Z,
2 — | Z
= & () [90--tttpPpty ®
o=t 0@ v o ————~ ¢« 1 =
-0.1 '
0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000

Number of Users Number of Users
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We study Fisher markets in the online incomplete
information setting and develop algorithms with sub-
linear regret guarantees

We develop an
adaptive expected
equilibrium pricing

algorithm with much
improved performance

We develop a revealed
preference algorithm
with sub-linear regret
and capacity violation

Static equilibrium

pricing approaches

have performance
limitations

Static
[=ingle |

Pricing
rice Point)

Dynamic Pricing
iMultiple Price Paints)

Jalota, Ye (2023), arXiv link: https://arxiv.org/abs/2205.00825



https://arxiv.org/abs/2205.00825

Future Work

Extension of online Fisher
markets under general
concave utility functions

Extensions of geometric social
objective for online allocation
in bandit problems

Loss in social objective under
integral allocations
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