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Today’s Talk

|. Accelerated Second-Order Methods and
Applications

ll. Pre-Trained Statistical Cut Generation for
Mixed-Integer Linear Programming Solvers



|. Early Complexity Analyses for Nonconvex Optimization

min f(x),x € X in R",
* where f Is nonconvex and twice-differentiable,
g = Vf(xe), He = V2 f (i)
* Goal: find x; such that:
| V(x,) IS € (primary, first-order condition)
Amin(Hy) = —+/€ (In active subspace, secondary, second-order condition)
» For the ball-constrained nonconvex QP: min c¢’x + 0.5x"Qx s.t. I x || , <1
O(loglog(e)); see Y (1989,93), Vavasis&Zippel (1990)
* For nonconvex QP with polyhedral constraints: O(e!); see Y (1998), Vavasis
(2001)



Classic Methods for General Convex/Nonconvex Optimization
First-order Method (FOM): Gradient-Type Methods

* Assume f has L-Lipschitz cont. gradient

* Global convergence by, e.g., linear-search (LS)

* No guarantee for the second-order condition

* Worst-case complexity, 0(e~%); see the textbook by Nesterov (2004)

Each iteration requires O(n?) operations

Second-order Method (SOM): Hesslan-Type Methods

* Assume f has M-Lipschitz cont. Hesslan

* Trust-region (More 70, Sorenson 80) with a fixed-radius strategy, 0(e~3/2) ,see the lecture notes by Y since

2005
* Cubic regularization, 0(e~3/?) ,see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)

* An adaptive trust-region framework, 0(e~3/?) ,Curtis, Robinson, and Samadi (2017)

Each iteration requires O(n3) operations: How to reduce it?



An Integrated Descent Direction Using the Homogenized Quadratic
Model | (Zhang at al. SHUFE, 2022)

 Recall the fixed-radius trust-region method minimizes the Taylor quadratic model

1
min my(d) := g, d + —d' Hd
deR” 2

s.t.||d|| £ A,.

* where A, :el/z/M IS the trust-ball radius.

* -0, IS the first-order steepest descent direction but ignores Hessian;

* the most-left eigenvector of H -would be a descent direction for the second order
term but such direction may not exist if it becomes nearly convex...

 Could we construct a direction integrating both?

Answer: Use the homogenized quadratic model of SDP relaxation



An Integrated Descent Direction Using the Homogenized Quadratic
Model Il

* Using the homogenization trick by lifting with extra scalar t:

-2 -2 2 4]

 The homogeneous model is equivalent to m,; up to scaling:

(o, t;8) = t% - (M (§o/t) — 6)
 FInd a good direction & =¢&,/t (ift =0 then set t=1) by the leftmost

eigenvector:

8
‘[gom]r‘lq Yi (&0, t;6)

with & set to be O(Ve) !

» Accessible at the cost of 0(n%2¢~1/*) via the randomized Lanczos



Theoretical Guarantees of HSODM

 Consider use the second-order homogenized direction, and the length of each

step [[né]] is fixed: |[né]|| < Ay = %E where f(x) has L-Lipschitz gradient and M-

Lipschitz Hessian.

 Theorem 1 (Global convergence rate) : If f(x) satisfies the Lipchitz Assumption
and § = Ve, the iterate moves along homogeneous vector &: x;.1= X + Ni<,
then, if we choose n;, = A, /||€]|, and terminate at ||¢]|| < A, then algorithm has
0(e~3/?) iteration complexity. Furthermore, x,., satisfies approximate first-
order and second-order conditions.

 Theorem 2 (Local convergence rate): If the iterate x;, of HSODM converges to a
strict local optimum x* such that H(x™) > 0 ,and then n;,, = 1 If k Is sufficiently
large. If we do not terminate HSODM and set § = 0, then HSODM has a local
superlinear (quadratic) speed of convergence, namely: || x,+1 — x* [I= O(ll xg



HSODM for Convex Optimization

f(x)1s aconvex function with M-Lipschitz Hessian.
At every iteration, choosg, — O(Hngl/z) and solve

in _fo_T_Hk 9 | &
lGstll<t |t | g —0k] Lt

Update x,,1=x, +¢&, € =&/t (t = 0won’t happen when f(x) IS convex)
Theorem 3 (Global convergence rate) : suppose the sublevel set {x: f(x) <
f(x9)}1s bounded, then the sequence {x,} satisfies

fzx) = f(=*) < O(k™)

Ongoing: improved bounds of accelerated HSODM, gradient-dominance, etc.
Practical remarks: homogenized direction can be used with any Line-search
(e.g., Hager-Zhang)



Application |: HSODM for Policy Optimization in Reinforcement Learning

* Consider policy optimization of linearized objective in reinforcement learning

max L(0) := L(my),
OcR?

Or+1 = O + o - MpVn(6r),
* M, Is usually a preconditioning matrix.

* The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information
matrix where M, Is the inverse of

Fr(0) = Ep, m 'V log 7y, (s,a)V logmy, (s,a)" |

* Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence In the constraint:

maXVLgk(Qk)T(O — Or) Homogeneous NPG:
- Apply the homogenized model!

0
S-t. Esvpy, [Drcr (o, (- | 8);me(- | 8))] < 0.




HSODM for Policy Optimization in RL |

* Consider Homogeneous NPG In reinforcement learning
[ [Fr gr][v

1111

Iwdi<1 [t] lgg —0] It

* [, Is an estimation of Fisher matrix, see, Schulman et al. 2015, 2017

Fy(0) = g, 0, [V log g, (s,a)V log my, (s, a,)T]

* We set a proper § to work with “gradient dominance condition”.
* After solving a direction d,,, similarly, apply a line-search In practice

* Ongoing: convergence analysis for HSODM in RL.



HSODM for Policy Optimization in RL I

* A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015)
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 Homogeneous model provides significant improvements over TRPO
* Ongoing: second-order information?

* Further reduce the computation cost per step



Dimension Reduced Second-Order Method (DRSOM) |
* Motivation from Multi-Directional FOM and Subspace Method, DRSOM In general

uses reduced m-independent directions d(a):= D,a,D, e R"™, ae R™

* Plug the expression into the full-dimension Trust-Region quadratic minimization
model, we minimize a m-dimension trust-region subproblem to decide "m
stepsizes™:

min m§ () = (cp) o + %aTQka

o] |G, < A
Gy = D/ZDk: Qx = DZHka» Cr = (gk)TDk

How to choose D,? Provable complexity result?



DRSOM I

* |In following, as an example, DRSOM adopts two FOM directions
d =—a'Vf(x,) + a?d;, := d(a)
where g, = Vf(xy), He = V2f(x%), dy = x — xx_1
* Then we minimize a 2-D trust-region problem to decide “two step-sizes”:

min m§ (o) == f(x;) + (c)" a + %aTQka

o], < A
| gkgr  —9rkdr | 9kHrgx  —9xHidi R
Gy = T T , U = T T y Ok = T
—grdr  didg —9grHedy  djHpdyg Jr g



DRSOM I

DRSOM can be seen as:
* "Adaptive” Accelerated Gradient Method (Polyak’'s momentum 60)

* A second-order method minimizing quadratic model in the reduced 2-D subspace

my(d) = f () + V() d +dTV2f (x)d, d € span{—gy, di}
compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method
d € span{gy, [H(xx)] *gx} (e.g., Powell 70, Byrd 88)
* A conjugate direction method for convex optimization exploring the Krylov Subspace

(e.qg., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)

* For convex quadratic programming with no radius limit, terminates in n steps



Computing the two-dimensional quadratic model Is the Key

In the DRSOM with two directions:

| gkHrgr  —9iHedi|]  [—1lgkll?
Qk — ,Ck —

— g Hedx  diHydy, i dx
How to cheaply obtain Q? Compute H, g, H,d; first.

* Finite difference:

1
Hy v zg[g(xk +€-v) — gil,
* Analytic approach to fit modern automatic differentiation,
1T T
Higk = V(5 9k 9k), Hrdx = V(dj gi),

* Use Hessian If readily avallable !

* Three(-or more)-Point Interpolation: it Is almost as fast as Polyak and CG!



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE,
2022)

Assumption. (a) f has Lipschitz continuous Hessian. (b) If the Lagrangian multiplier 4,
< +/€e,assume | (Hy — Hp)d).1 I< C |l d.4 II* (Cartis et al.), where H,, is the projected
Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n
steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let A,

=2e1/2 /M, then DRSOM terminates in 0(e~3/2) iterations. Furthermore, the iterate x;,

satisfies the first-order condition, and the Hessian Is positive semi-definite in the subspace
spanned by the gradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x; converges to a strict local optimum

x* such that H(x™) > 0, and if Assumption (c) Is satisfled as soonas A;, < Cy Il dy4+1 |,
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: || x4
—x* II=0(ll x — x* 1I%)
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Preliminary Results: HSODM and DRSOM + HSODM

CUTEst model name := SPMSRTLS-1000

HSODM (0.15)

DRSOM-Homo (0.519)

Newton-TR (5s)

LBFGS (0.339)
CG (0.465)
DRSOM (0.675)

GD (0.665)

[teration

66666666

GD+ Wolfe
LBFGS+ Wolfe
Newton-TR
CG
DRSOM
DRSOMPIlus(homokrylov,1)
HSODM (warm)

CUTESt example
GD and LBFGS both use a Line-

search (Hager-Zhang)
« DRSOM uses 2-D subspace
« HSODM and DRSOM + HSODM
are much better!
« DRSOM can also benefit from the
homogenized system



Application |l: Sensor Network Location (SNL)

e | ocalization

—Glven partial pair-
wise measured
distance values

—Glven some
anchors’ positions

—Find locations of all
other sensors that
fit the measured
distance values

This Is also called
graph realization on
a fixed dimension
Euclidean space




Mathematical Formulation of Sensor Network Location (SNL)

* Consider Sensor Network Location (SNL)
No = {(i,5) : |z — 2l = dij < ra}, Na = {(i, k) : [|zi — ax]| = dix < ra}

where rq Is a fixed parameter known as the radio range. The SNL problem considers
the following QCQP feasibility problem,

2
|zi — 2 = di;,V(i,§) € No

|lzi — ax||* = d2,,¥(i, k) € N,

* We can solve SNL by the nonconvex nonlinear least square (NLS) problem

min Y (lzi -zl — )+ Y (lak —zll* — diy)*

X
(@(j,])EN:I: (k:J)ENa



Sensor Network Location (SNL)

* Graphical results using SDP relaxation (Biswas&Y 2004, SO&Y 2007) to initialize the NLS

n =80, m =5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

x Truth
o SDR
mANnchors
o GD

®
* Both Gradient Descent and DRSOM can find good solutions !
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Sensor Network Location (SNL)

* Graphical results without SDP relaxation

* DRSOM can still converge to optimal solutions
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Sensor Network Location, Large-scale instances

* Test large SNL instances (terminate at 3,000s and | g, | < 1e™>)

* Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch)

t
CG DRSOM GD

500 50  2.2e+04 | 1.7e+01 1.1e4+01 2.3e+01
1000 80 4.6e+04 | 7.3e+01 3.9e+01 1.8e+02
2000 120 9.4e+04 | 2.5e+02 1.4e+02 1.1e+03
3000 150 1.4e+05 | 6.5e+02 1.4e+02 -
4000 400 1.8e+05 | 1.3e4+03 5.0e+02 -
6000 600 2.7e+05 | 2.0e+03 1.1e+03 -

10000 1000 4.5e+05 - 2.2e+03 -

n m | E|

Table 2: Running time of CG, DRSOM, and GD on SNL instances of different problem size, |E|

W

denotes the number of QCQP constraints. means the algorithm exceeds 3,000s.

* DRSOM has the best running time (benefits of 2" order info and interpolation!)



Sensor Network Location, Large-scale instances

* Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

* GD with Line-search
and Hager-Zhang CG
both timeout

®  Truth

4  Anchors
O DRSOM
O GD

O CG

« DRSOM can converge to
| gr| < 1e 2 in 2,200s

® Truth

A Anchors

O DRSOM




Sensor Network Online Tracking, 2D and 3D
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Application Ill: Neural Networks and Deep Learning

To use DRSOM In machine learning problems

We apply the mini-batch strategy to a vanilla DRSOM
Use Automatic Differentiation to compute gradients

Train ResNetl8/Resnet34 Model with CIFAR 10

Set Adam with initial learning rate 1e-3
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Neural Networks and Deep Learning
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Training and test results for ResNet34 with DRSOM and Adam

Pros

* DRSOM has rapid convergence (30
epochs)

* DRSOM needs little tuning
cons
* DRSOM may over-fit the models

* Running time can benefit from
Interpolation

* Single direction DRSOM is also
good

Good potential to be a standard
optimizer for deep learning!



Overall Takeaways

Second-Order Derivative information matters and
better to integrate FOM and SOM for nonlinear
optimization!

It Is possible to train Mixed-Integer Linear
Programming Solvers and add Statistical Confidence
Cuts to signiticantly accelerate the solution process.

* THANK YOU



