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Linear Programming and LP Giants won Nobel Prize…
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max  𝑟𝑗𝑥𝑗

s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 ,

0 ≤ 𝑥𝑗 ≤ 1 ∀ 𝑗 = 1, . . . , 𝑛



Online Resource Allocation &
Revenue Management via 
Combinatorial Auction

• m type of resources; T customers

• Decision maker needs to decide whether and 
how much resources are allocated to each 
customer/auctioner

• Resources are limited! 

• Online setting:

• Customers arrive sequentially and the 
decision needs to be made instantly upon 
the customer arrival: Sell or No-sell?
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Performance of online algorithm measured with respect to regret from the offline linear objective
[Agrawal et al. 2010, 2014], [Kesselheim et al 2014]

[Li/Ye, 2019], [Li et al. 2020], 



Online Auction Market: An Illustration Example

Bid # $100 $30 …. … … Inventory

Decision X1=? X2=?

Pants 1 0 …. … … 100

Shoes 1 0 50

T-Shirts 0 1 500

Jackets 0 0 200

Hats 1 1 … … … 1000



Regret-Ratio for Online Algorithm/Mechanism
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 We know the total number of customers, say n;

 Assume customers arrive in a random order or with i.i.d distributions.

 For a given online 
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Impossibility Result on Regret-Ratio

Theorem: There is no online algorithm/decision-

policy/mechanism such that

.min   , )/log(O i) ( ibBBmR 

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online Linear 

Programming,” 2010.

Corollary: If B ≤ log(m)/ε2, then it is impossible to 

have a decision policy/mechanism such that R ≤ 

O(ε).



Possibility Result on Regret-Ratio
Theorem: There is an online algorithm/decision-

policy/mechanism such that

.min   , )/log(O i) ( ibBBnmR 

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online 

Linear Programming,” 2010.

Corollary: If B > mlog(n)/ε2, then there is an online 

algorithm/decision-policy/mechanism such that    

R ≤ O(ε).

Theorem: If B > log(mn)/ε2, then there is an online 

algorithm/decision-policy/mechanism such that    

R ≤ O(ε).
Kesselheim et al. “Primal Beat the Dual…,” 2014, …



Online Algorithm and Price-Mechanism: Learning-while-Doing
• Learn “ideal” itemized-prices

• Use the prices to price each bid 

• Accept if it is an over bid, and reject otherwise

Bid # $100 $30 …. … … Inventory Price?

Decision x1 x2

Pants 1 0 …. … … 100 45

Shoes 1 0 50 45

T-Shirts 0 1 500 10

Jackets 0 0 200 55

Hats 1 1 … … … 1000 15

Such ideal prices exist and they are shadow/dual prices of the offline LP



How to Learn “Shadow Prices” Online
For a given ε, solve the sample LP at t=εn, 2εn, 4εn, …; and use the 
new shadow prices for the decision in the coming period.

Nkx

Sib
n

t
hxa

x

k

itk

t

k

ik

k

t

k

k











               10            

)1(s.t.  

max

1

1



εn 2εn 4εn



Dual Convergence and the SGD Method
(Li/Y OR 2022, LI/Sun NeurIPS 2020)
Primal LP Dual LP

• An equivalent form of the dual LP can be written as (by plugging s into the objective 
function above):

where at time t, we observe the t-th term in the above summation  

• Idea: Perform online (stochastic) gradient descent to optimize the above form

• Theorem: With a step size 1/ 𝑇, the algorithm achieves a regret bound of m 𝑇 (m 
being the number of constraints) 



Action-History-Dependent Analysis 
(Li/Y OR 2022)

• Instead of online gradient descent, we can learn the dual price more accurately and 
adaptively by solving the following problem at time t

• Compared to the previous problem, we replace 𝒃 by the average remaining resource 
𝒃𝑡 more adaptively , and solve the optimization problem (more accurately)

• Denoted the optimal solution by 𝒑𝑡
∗ − the adaptively learned dual price.

• The decision rule becomes



Action-History-Dependent Analysis II

• If { 𝒂𝑡, 𝜋𝑡 }𝑡=1
𝑇 follow a distribution that is independent and identically 

distributed (stationary), we have

Results

• 1) The estimation 𝒑𝑡
∗ converges to 𝒑∗. i.e.

• 2) The regret is of the order 𝑂 log 𝑇 . More specifically, if we denote Π our dual-
based decision rule, we have



Improved OLP analysis I (Chen et al OR 2022)
• Now let’s assume that { 𝒂𝑡, 𝜋𝑡 }𝑡=1

𝑇 come from a distribution that has finite (with a 

total of 𝐽) categories, and 𝑃 𝒂𝑡 , 𝜋𝑡 = 𝒄𝑗 , 𝜇𝑗 = 𝑝𝑗.

• For this case, we construct the fluid approximation LP 

• For the decision rule, if 𝒂𝑡 , 𝜋𝑡 = (𝒄𝑗 , 𝜇𝑗), the optimal decision is 𝑥𝑡 = 𝑦𝑗
∗

Primal LP Fluid approximation LP



• At time 𝑡, we replace 𝒃 and 𝑝𝑗 by 𝒃𝑡, the remaining resource, and  𝑝𝑗 , the 
sample estimation of 𝑝𝑗.

• Next, we solve the fluid approximation LP with updated parameters. 

• Our decision at 𝑡 will be based on the solution 𝒚𝑡
∗ = (𝑦1,𝑡

∗ , ⋯ , 𝑦𝐽,𝑡
∗ ).

Result

• The regret is of the order 𝑂 1 . More specifically, if we denote Π the 
decision rule above, we have

Improved OLP analysis II



Application: Online Matching for Display Advertising 



Revenues generated by different methods 

• Total Revenue for 
impressions in T2 
by Greedy and 
OLP with different 
allocation risk 
functions
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# of Out-of-Budget Advertisers 

• Greedy exhausts 
budget of many 
advertisers early. 

• Log penalty keeps 
advertisers in 
budget but it is 
very conservative. 

• Exponential 
penalty Keeps 
advertisers in 
budget until 
almost the end of 
the timeframe. 
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阿里巴巴在2019年云栖大会上提到在智能履行决策上使用OLP的算法



阿里巴巴团队在2020年CIKM会议论文Online Electronic Coupon 
Allocation based on Real-Time User Intent Detection上提到他们设计
的发红包的机制也使用了OLP的方法[2]
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Online learning algorithms can also be applied 
to more general programming 

• 𝑛 energy suppliers with privately known convex cost 
functions 𝑐𝑖

• Customer demand 𝑑 for energy

• How to find equilibrium prices to match supply and 
demand without information on cost functions? 

• [Jalota, Sun, Azizan, 2023] develop online learning 
algorithms with sub-linear regret:

• O(log log T) for static cost functions and demands

• O( T log log T) for static costs, varying demands

• O(T2/3) for varying costs and finite function class

Online Learning for Equilibrium Pricing in Electricity Markets under Incomplete Information
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The Online Algorithm can be 
Applied to Bandits with 
Knapsack (BwK) Applications

• For the previous problem, the decision 
maker first wait and observe the 
customer order/arm and then decide 
whether to accept/play it or not. 

• An alternative setting is that the 
decision maker first decides which 
order/arm (s)he may accept/play, and 
then receive a random resource 
consumption vector aj and yield a 
random reward 𝜋𝑗 of the pulled arm. 

• Known as the Bandits with Knapsacks, 
and it is a tradeoff exploration v.s. 
exploitation 23



• The decision variable 𝑥𝑗 represents the total-times of pulling the j-th arm.

• We have developed a two-phase algorithm
• Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic

variables/arms with as fewer number of plays as possible
• Phase II: Use the arms in the optimal face to exhaust the resource through an adaptive 

procedure and achieve fairness

• The algorithm achieves a problem dependent regret that bears a logarithmic 
dependence on the horizon T. Also, it identifies a number of LP-related 
parameters as the bottleneck or condition-numbers for the problem

• Minimum non-zero reduced cost 
• Minimum singular-values of the optimal

basis matrix.

• First algorithm to achieve the 𝑂(log 𝑇) regret bound [Li, Sun & Y 2021 ICML]
(https://proceedings.mlr.press/v139/li21s.html)

24

max  𝜋𝑗𝑥𝑗 s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 , 𝑥𝑗 ≥ 0 ∀ 𝑗 = 1, . . . , 𝐽



Fairness: there are many settings when we need to 
fairly allocate shared resources to users

Public Good Allocation Vaccine Allocation



A Motivation Example
• Consider an allocation problem: there exists three types of 

orders/customers, where the first two types have the reward/resource 

characteristics  that are considered equivalent from the system. 

• The following plots show the acceptance fraction/probability of the three types across time by 
two different online algorithms: the simplex and interior-point methods (Jasin 2015, Chen et al 
2021). 

26



Fairness Desiderata

• Technically, Non-Uniqueness/Degeneracy degrades the quality of online 
algorithm since the learning “targets” are ambiguous – no ground-truth.

• More importantly, Individual Fairness needs to be achieved: similar 
customers should be treated similarly. Since the optimal object value 
depends on the total resources spent, not on the resources spent on which 
groups, some individual or group may be ignored by a particular online 
algorithm/allocation-rule.

• Also, Time Fairness: The algorithm may tend to accept mainly the first half 
(or the second half of the orders), which is unfair or unideal…

27



Fair OLP Model and Algorithm

• We define 𝒚∗ the fair offline optimal solution of the LP problem as the analytical 
center of the optimal solution set, which represents an “average” of all the 
optimal corner solutions – their product is maximized.

• The fair solution 𝒚∗ will treat individuals fairly, based on their similar reward and 
resource consumption.

• An online interior-point learning algorithm would use the data points up to time t 
and solve the sample-based linear program to decide fair yt.

• We give provable time and individual fairness guarantees.

28



Fairness-Performance Measure
• Let 𝒚𝑡 be the allocation rule at time 𝑡 which encodes the accepting probabilities 

under the online algorithm 𝜋. Then we define the cumulative unfairness of the 
online algorithm 𝜋 as 

𝑈𝐹𝑇 𝜋 = 𝐸[∑𝑡=1
𝑇 𝒚𝑡 − 𝒚∗

2

2
]

• Intuition: If 𝑈𝐹𝑇 𝜋 is sub-linear, we know Time Fairness is satisfied since the 
deviation of the online solution cannot be large. Moreover, Individual Fairness is 
satisfied because we know 𝑈𝐹𝑇 𝜋 being sub-linear implies 𝒚𝑡 converging to 𝒚∗.

• Let 𝑗𝑡 denote the incoming customer type at time 𝑡, the Revenue Regret is 
defined as 

• 𝑅eg𝑇 𝜋 = 𝐸[∑𝑡=1
𝑇 𝑟𝑡(𝑦𝑗𝑡

∗ − 𝑦𝑡,𝑗𝑡)]

Regret measures the performance loss compared to the optimal policy.

29



Our Result
• We develop an algorithm [Chen, Li & Y (2021)] that achieve

𝑈𝐹𝑇 𝜋 = 𝑂 log 𝑇

𝑅eg𝑇 𝜋 Bounded independent of 𝑇

• Key ideas in algorithm design:
• At each time t, we use interior-point method to obtain the sample analytic-

center solution and randomly make decision based on sample solution yt. 
• We also adjust the right-hand-side resource of the LP to ensure the depletion 

of binding resources and non-binding resources does not affect the fairness.
• This state of the art result removes typical non-degeneracy or non-uniqueness

assumption in the OLP literature. 

(Chen et al. arXiv:2110.14621 2021)
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One of Price-Posting Markets to the Fisher Market

32

Prices are posted and known to all agents 
so that they have freedom to choose 

, C1 , C2 , C3

C j: Supply Amount,



Are there Prices to Clear Market?
Yes, and they can be derived from the Eisenberg-Gale 

optimization problem

33



However, the applicability of Fisher markets is restricted to 
the “Perfect and Static Information Setting”

34



We study an online and incomplete 
information variant of Fisher markets

Buyers arrive 
sequentially with utility 
and budget parameters 

drawn i.i.d. from a 
distribution

Establish performance 
limits of static pricing 

algorithms, including one 
that sets expected 
equilibrium prices

Develop an adaptive 
expected equilibrium 
pricing approach with 
strong performance 

guarantees

Develop a revealed 
preference algorithm 
with sub-linear regret 
and capacity violation



Prior work on online variants of Fisher markets have 
considered the setting of goods arriving sequentially

Prior Work: Goods Arrive Online
[Gorokh, Banerjee, Iyer, 2021]

This Work: Agents Arrive Online



Online for Geometric Objective: evaluate algorithms through 
the absolute regret of social welfare and capacity violation

Regret (Optimality Gap) Constraint Violation

Difference in the Optimal Social 

Objective of the online policy 𝝅 to that 

of the optimal offline social value

Norm of the violation of capacity 

constraints of the online policy 𝝅

Optimal Offline 
Objective

Objective of 
online policy

Violation of Capacity 
Constraint of good 𝑗

Norm of the expected 
constraint violation

Prior Work on concave objectives [Lu, Balserio, Mirrkoni, 
2020] assume non-negativity and boundedness of utilities, 

none of which are true for the log objective



Using the optimal expect prices, the capacity violation 
must be Ω( 𝑛), where 𝑛 is the number of total agents

Two agent types specified by
(Utility for Good 1, Utility for Good 2)

Type I: (1, 0) Type II: (0, 1)

Arrival Probability = 0.5 Arrival Probability = 0.5

2 goods, each with 
a capacity of 𝒏

Expected Optimal Objective ≈ 𝒏 𝒍𝒐𝒈 𝟐
Since Type I users receive two units of good one, while type 

two receive two units of good two

While 
𝑛

2
users of Type I arrive in expectation, the realized 

arrivals of type I users deviates by 𝑂( 𝑛)

Theorem: More generally, any static pricing algorithm achieves either a regret or capacity violation of 𝛀( 𝒏)



To set static expected equilibrium prices, we 
can solve the following deterministic problem

Assumption: The distribution 
from which the utility and 

budget parameters of users are 
drawn is discrete with finite 

support, where

for all 𝑘 ∈ [𝐾]

Dual variables of the capacity 
constraints are the static 
expected equilibrium prices

CE(𝒅)

Example: For two-good counterexample, 𝐾 = 2,  𝑤1,  𝒖1 = (1, (1, 0)),  𝑤2,  𝒖2 = (1, (0, 1)), 𝑞1 = 𝑞2 = 0.5

Static expected equilibrium price vector: (0.5, 0.5)

Average resource 
capacity per user



We overcome problem of static expected equilibrium 
pricing by increasing prices of over-consumed goods

100 units 100 units 98 units 100 units

Type I: (1, 0)

Solve CE(d) to set price of 0.5 for each good
For 100 users, 𝑑1 = 1, 𝑑2 = 1

User of Type I and 
consumes two units of 

good one 

1. Update Average remaining Resource 
Capacities

𝑑1
1 =

98

99
, 𝑑2

1 =
100

99

2. Solve CE(𝒅𝟏) to set price for next user



Our adaptive expected equilibrium pricing approach 
achieves constant constraint violation and log regret

Set price based on dual 
variable of capacity 
constraints of certainty 
equivalent problem

Users consume optimal 
bundle of goods

Update average remaining 
resource capacities

Theorem: Under i.i.d. budget and utility parameters with a discrete probability distribution 
and when good capacities are 𝑂(𝑛), Algorithm 1 achieves an expected regret of 𝑅𝑛(𝝅) ≤

𝑂(log(𝑛)) and expected constraint violation of 𝑉𝑛(𝝅) ≤ 𝑂(1)



Primal algorithms are often computationally 
expensive and do not preserve user privacy

User parameters (𝑤, 𝒖) are revealed
With parameters until user t arrives, we 
can solve the following primal problem

Prices can be set 
based on dual of 
capacity constraints

Such algorithms require information 
on user parameters, which may not 

be known in practice

At each time instance, we solve a larger 
convex program, which may become 

computationally expensive in real time



We design a dual based algorithm, wherein 
users see prices at each time they arrive

Agent 𝑡 Agent 𝑡 + 1

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

𝑤𝑡, 𝒖𝑡 ~𝑃 𝑤𝑡+1, 𝒖𝑡+1 ~𝑃

The price at time 𝑡 + 1 is updated based on 
observed consumption 𝒙𝑡 at time 𝑡

Agent purchases an 
optimal bundle 𝒙𝑡

given price 𝒑𝑡



Applying gradient descent to the dual of the social 
optimization problem motivates a natural algorithm

Dual of social optimization problem 
with Lagrange multiplier of the 

capacity constraints 𝑝𝑗

Equivalent Sample Average 
Approximation (SAA) of Dual Problem

(Sub)-gradient descent of dual problem 
for each agent: 𝑂(𝑚) complexity of 

price update

Difference between market share of 
each agent and goods purchased



We develop a revealed preference algorithm with sub-
linear regret and constraint violation guarantees 

Difference between market share of 
each agent and goods purchased

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when 
good capacities are 𝑂(𝑛), Algorithm 2 achieves an expected regret of 𝑅𝑛(𝝅) ≤ 𝑂( 𝑛) and 
expected constraint violation of 𝑉𝑛(𝝅) ≤ 𝑂( 𝑛), where 𝑛 is the number of arriving users.  

Only requires knowledge of user consumption 
(and not their budgets or utilities) to update pricesStep-size: 𝑂

1

𝑛



Again, the price of a good is increased if the arriving 
user purchase more than its market share of the good

Agent 𝑡 Agent 𝑡 + 1

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

𝑤𝑡, 𝒖𝑡 ~𝑃 𝑤𝑡+1, 𝒖𝑡+1 ~𝑃

Increase Prices: 𝑝𝑗
𝑡+1 > 𝑝𝑗

𝑡 if 𝑥𝑗
𝑡+1 >

𝑐𝑗

𝑛

Decrease Prices: 𝑝𝑗
𝑡+1 < 𝑝𝑗

𝑡 if 𝑥𝑗
𝑡+1 <

𝑐𝑗

𝑛

Agent purchase an 
optimal bundle 𝒙𝑡

given price 𝒑𝑡 𝑛 − regret of SW means:
SW optimal geometric mean

SW geometric mean of online algorithm
≤ 𝑒

1

𝑛



The regret and constraint violation guarantees follow 
from duality and a novel potential function argument

Use convex programming 
duality to establish the regret 

and constraint violation 
guarantees if the prices are 

strictly positive and bounded

Establish the positivity and 
boundedness of prices during 
the operation of Algorithm 2

1. Establish that the positivity of prices 
implies their boundedness

2. Use a potential function argument 
to show the positivity of prices

Potential Function 
𝑉𝑡 = (𝒑𝒕) ⋅ 𝒅

We show that this potential function is 
non-decreasing when the prices of all 

goods drops below a threshold, 
implying that the prices of some goods 

must increase in the subsequent 
iteration



Our numerical results verify the obtained 
theoretical guarantee

Slope = 0.5



Our numerical results demonstrate a tradeoff 
between regret and constraint violation
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We study LP and Fisher markets in the online and 
incomplete information setting and develop algorithms 
with sub-linear regret guarantees

The weighted 
geometric average 
objective has both 

efficiency and fairness 
properties

Static equilibrium 
pricing approaches 
have performance 

limitations

We develop an 
adaptive expected 
equilibrium pricing 

algorithm with much 
improved performance

We develop a revealed 
preference algorithm 
with sub-linear regret 
and capacity violation

Jalota, Ye (2023), arXiv link: https://arxiv.org/abs/2205.00825

https://arxiv.org/abs/2205.00825


Overall Takeaways

It is possible to maker online decisions for 
quantitative decision models with performance 
guarantees close to that of the offline decision-
making with complete information 

Many open questions in these areas: 
nonstationary data, OLP with predictions, 
Distributionally Robust OLP, strategic players, 
truthful mechanism, etc...

•THANK YOU


