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Linear Programming and LP Giants won Nobel Prize...




Online Resource Allocation &
Revenue Management via
Combinatorial Auction

Booking

m type of resources; T customers

Decision maker needs to decide whether and
how much resources are allocated to each
customer/auctioner

Resources are limited!

Online setting:

* Customers arrive sequentially and the
decision needs to be made instantly upon
the customer arrival: Sell or No-sell?

Performance of online algorithm measured with respect to regret from the offline linear objective

0<x <1 orxe{0,1}, t=1,...




Online Auction Market: An Illlustration Example

Bid # $100 $30 Inventory
Decision X1="? X2="?
Pants 1 0 100
Shoes 1 0 50
T-Shirts 0 1 500
Jackets 0 0 200
Hats 1 1 1000




Regret-Ratio for Online Algorithm/Mechanism

OPT(Am)=max > mX
K

s.t. > a;x <b VieS
K

0<x<1 VkeN

= We know the total number of customers, say n;
= Assume customers arrive in a random order or with 1.1.d distributions.

= For a given online algorithm/decision-policy/mechanism
Z(A,)
OPT (A7)

Z(Ar)=E_[ Zn:nkxk ]| |[R(A)=1-

R=sup,,R(AT)




Impossibility Result on Regret-Ratio

Theorem: There is no online algorithm/decision-
policy/mechanism such that

R<0( {/log(m)/B ), B=minp,.

Corollary: If B < log(m)/e?, then it is impossible to
have a decision policy/mechanism such that R <
O(g).

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online Linear
Programming,” 2010.



Possibility Result on Regret-Ratio

Theorem: There is an online algorithm/decision-
policy/mechanism such that

R<0( {/mlog(n)/B ), B=minb,.

Corollary: If B > mlog(n)/e?, then there is an online
algorithm/decision-policy/mechanism such that
R < O(¢).

Agrawal, Wang and Y, “A Dynamic Near-Optimal Algorithm for Online
Linear Programming,” 2010.

Theorem: If B > log(mn)/e?, then there is an online
algorithm/decision-policy/mechanism such that
R < O(¢).

Kesselheim et al. “Primal Beat the Dual...,” 2014, ...




Online Algorithm and Price-Mechanism: Learning-while-Doing

* Learn “ideal” itemized-prices
* Use the prices to price each bid
* Accept if it is an over bid, and reject otherwise

Bid # $100 $30 Inventory Price?
Decision x1 X2
Pants 1 0 100 45
Shoes 1 0 50 45
T-Shirts 0 1 500 10
Jackets 0 0 200 55
Hats 1 1 1000 15

Such ideal prices exist and they are shadow/dual prices of the offline LP



How to Learn “Shadow Prices” Online

For a given g, solve the sample LP at t=en, 2¢n, 4¢n, ...; and use the
new shadow prices for the decision in the coming period.

en 2¢n 4en

- r _r __r

t
max Y m.X
k=1

t
st. Yax <A-h) b Vies
k=1 N

0<x,<1 VkeN




Dual Convergence and the SGD Method
(Li/Y OR 2022, LI/Sun NeurlPS 2020)

Primal LP Dual LP
max ' & min b'p+1's
s.t. Ax <b ﬁ st. A'pt+s>n

0<z<1 p>0,8>0

* An equivalent form of the dual LP can be written as (by plugging s into the objective

function above): T 4
. bT Al
g 5 S

where at time t, we observe the t-th term in the above summation

* |dea: Perform online (stochastic) gradient descent to optimize the above form

« Theorem: With a step size 1//T, the algorithm achieves a regret bound of mvT (m
being the number of constraints)



Action-History-Dependent Analysis
(Li/Y OR 2022)

* Instead of online gradient descent, we can learn the dual price more accurately and
adaptively by solving the following problem at time t

t
; S
min b p+ jE_l (7 — a; p)

 Compared to the previous problem, we replace b by the average remaining resource
b; (more adaptively), and solve the optimization problem (more accurately)

* Denoted the optimal solution by p; — the adaptively learned dual price.

,
N 1, m>ap
* The decision rule becomes  z; = <
07 T < a;l_p;:k

\




Action-History-Dependent Analysis I

e If {(a,, m;)};_4 follow a distribution that is independent and identically
distributed (stationary), we have

Results

* 1) The estimation p; converges to p*.i.e. E = O (logT)

T
> lpi — 3

t=1

* 2) The regret is of the order O(log T). More specifically, if we denote I our dual-
based decision rule, we have

T
E Tt Xt

t=1

E [OPT(A, )] — E! = 0O (logT)




Improved OLP analysis | (Chen et al OR 2022)

* Now let’s assume that {(a,, ;)}!_; come from a distribution that has finite (with a
total of J) categories, and P ((at, M) = (cj,,uj)) =pj.

* For this case, we construct the fluid approximation LP

Primal LP Fluid approximation LP

T J
max m & max ijujyj

s.t. Ax < b =) 7=l

B s.t. p.ciy; < b/T
0<z<1 iCiY; /
0<y; <1 forallj

* For the decision rule, if (a;, ;) = (cj, i), the optimal decision is x; = y;



Improved OLP analysis I

* Attime t, we replace b and p; by b, the remaining resource, and p; , the
sample estimation of p;.

* Next, we solve the fluid approximation LP with updated parameters.

* Our decision at t will be based on the solution y; = (y1¢ -, Yy ¢)-

Result

* The regret is of the order O(1). More specifically, if we denote I1 the
decision rule above, we have

E[OPT(A,r)] — E! [Z T T




Application: Online Matching for Display Advertising

Jon Stewart Is Retiring, an: X e

(& www.huffingtonpost.com/mark-lashley/jon-stewarts-retiring-and_b_6670338.htmI?utm_hp_ref=celebrity&ir=Celebrity &l =
Mark Lashley Become a fan vy B
Assistant Professor, La Salle University

Jon Stewart Is Retiring, and it's Going to Be (Kind of)
Okay

Posted: 02/13/2015 3:21 pm EST | Updated: 02/13/2015 3:59 pm EST

ADVERTISEMENT

Whatever your lifestyle,
discover banking solutions
built around it.

Visit the Citi Benefits Hub

ASSOCIATED PRESS
‘|ﬁ195‘ 12 5 0 14 weao
e
When the news broke Tuesday night that longtime Daily Show host Jon Stewart SUGGEST ED FOR YOU

would be leaving his post in the coming months, the level of trauma on the internet
was palpable. Some expected topics arose, within hours -- minutes, even -- of the
announcement trickling out. Why would Stewart leave now? What's his plan? Who
should replace him? Could the next Daily Show host be a woman? (Of course). Is this
an elaborate ruse for Stewart to take over the NBC Nightly News? (Of course not).

The public conversation over the past two days has been so Stewart-centric that the
retirement news effectively pushed NBC anchor Brian Williams's suspension off of
social media's front pages. Part of that is the shock; we knew the other shoe was about
to drop with (on?) Williams, but Stewart's departure was known only to Comedy
Central brass before it was revealed to his studio audience. Part of it is how meme-
worthy the parallels between the two hosts truly are ("fake newsman speaks truth, real
newsman spins lies," some post on your Twitter timeline probably read). Breaking at

Caught On Camera




Revenues generated by different methods
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# of Out-of-Budget Advertisers

* Greedy exhausts

budget of many = ety -

advertisers early. [ T
* Log penalty keeps a2 v =T L

advertisers in 2 g | 7 L

budget but it is s 7 / L

very conservative. % g1 7 L
 Exponential 5 ST

penalty Keeps g8 /. /

advertisers in = e o~

budget until s B ——— |

almost the end of 0e+00  2e+05  4e+05  6e+05  8e+05

the timeframe. Served impressions
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* Online assignment problem
« Contrc! based method
* Online linear programming

Ref: Agrawal, Shipra, Zizhuo Wang, and Yinyu Ye.

“A dynamic near-optimal algorithm for online
linear programming.” Operations Research 62.4
(2014): 876-890.
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T 2 & & F FAE20205CIKM& 33 X 0nl ine Electronic Coupon
Al location based on Real-Time User Intent Detection_E#% ®|4ufi1i%
A R @ ey L] H4E A T OLP&Y 7 i [2]

Spending Money Wisely: Online Electronic Coupon Allocation
based on Real-Time User Intent Detection

Liangwei Li* Chenwei Weng
Liucheng Sun® wengchenwei.pt@alibaba-inc.com
Alibaba Group

leon.llw@alibaba-inc.com
Hangzhou, Zhejiang

liucheng.slc@alibaba-inc.com
Alibaba Group
Hangzhou, Zhejiang

Chengfu Huo Weijun Ren
chengfu huocf@alibaba-inc.com afei@alibaba-inc.com
Alibaba Group Alibaba Group
Hangzhou, Zhejiang Hangzhou, Zhejiang
M N
max Z Z VjjXij 3.3 MCKP-Allocation
=1 j=1 We adopt the primal-dual framework proposed by [2] to solve the
M N problem defined in Equation 5. Let & and f§; be the associated dual
s.L. Z Z cjxij < B, (5) variables respectively. After obtaining the dual variables, we can
i=1 j=1 solve the problem in an online fashion. Precisely, according to the
N . principle of the primal-dual framework, we have the following
Z xij £1, Vi allocation rule:
J

(9)

1, where j = arg max;(v;; — acj)
Xij =

0, otherwise




Online learning algorithms can also be applied
to more general programming

* n energy suppliers with privately known convex cost
functions c¢;

NN

* Customer demand d for energy
* How to find equilibrium prices to match supply and

demand without information on cost functions? ”ﬁﬂ
* [Jalota, Sun, Azizan, 2023] develop online learning .
algorithms with sub-linear regret: C* = min Zci(m?;),
. . L 2 O,VE = [ﬂ’] g=—1
* O(log log T) for static cost functions and demands

 O(v/T log log T) for static costs, varying demands s.t. Zm,., =d,
* O(T?3) for varying costs and finite function class

Online Learning for Equilibrium Pricing in Electricity Markets under Incomplete Information
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The Online Algorithm can be
Applied to Bandits with
Knapsack (BwK) Applications

* For the previous problem, the decision
maker first wait and observe the
customer order/arm and then decide
whether to accept/play it or not.

* An alternative setting is that the

decision maker first decides which AFFILIATE

order/arm (s)he may accept/play, and o W
then receive a random resource o D ot c‘;”‘““ DFR
consumption vector a; and yield a JVF?I%SFE 880' I

== WEBSITE

random reward 7; of the pulled arm. el
* Known as the Bandits with Knapsacks, ADVERTI S I N G § -
and it is a tradeoff exploration v.s. =

ADVERTISEM

exploitation ; “U‘;Eﬁ‘,'ﬁf”“” AD 23



max Zijj S.t. Zajxjﬁb, Xj >0 vji=1,...,]
J

* The decision variable x; represents the total-times of pulling the j-th arm.

* We have developed a two-phase algorithm

* Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic
variables/arms with as fewer number of plays as possible

* Phase Il: Use the arms in the optimal face to exhaust the resource through an adaptive
procedure and achieve fairness

* The algorithm achieves a problem dependent regret that bears a logarithmic
dependence on the horizon T. Also, it identifies a number of LP-related
parameters as the bottleneck or condition-numbers for the problem

* Minimum non-zero reduced cost
* Minimum singular-values of the optimal
basis matrix.

* First algorithm to achieve the O(log T) regret bound [Li, Sun & Y 2021 ICML]
(https://proceedings.mir.press/v139/li21s.html)



Fairness: there are many settings when we need to
fairly allocate shared resources to users

Public Good Allocation Vaccine Allocation




A Motivation Example

e Consider an allocation problem: there exists three types of
orders/customers, where the first two types have the reward/resource
characteristics that are considered equivalent from the system.

* The following plots show the acceptance fraction/probability of the three types across time by
two different online algorithms: the simplex and interior-point methods (Jasin 2015, Chen et al
2021).

Acceptance Probability across Time

Order 1 simplex Order 2 simplex Order 3 simplex
10 P 10 P 10 P
Tary Far F
2 05 - ~ | 2 05 205 -
8 E 8
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Fairness Desiderata

* Technically, Non-Uniqueness/Degeneracy degrades the quality of online
algorithm since the learning “targets” are ambiguous — no ground-truth.

* More importantly, Individual Fairness needs to be achieved: similar
customers should be treated similarly. Since the optimal object value
depends on the total resources spent, not on the resources spent on which
groups, some individual or group may be ignored by a particular online
algorithm/allocation-rule.

* Also, Time Fairness: The algorithm may tend to accept mainly the first half
(or the second half of the orders), which is unfair or unideal...

27



Fair OLP Model and Algorithm

J J
max Z piLLjyi s.t. Z pjciyi < b/ T, y;€|0,1]
j=1 j=1

* We define y* the fair offline optimal solution of the LP problem as the analytical
center of the optimal solution set, which represents an “average” of all the
optimal corner solutions — their product is maximized.

* The fair solution y* will treat individuals fairly, based on their similar reward and
resource consumption.

* An online interior-point learning algorithm would use the data points up to time t
and solve the sample-based linear program to decide fair y..

* We give provable time and individual fairness guarantees.

28



Fairness-Performance Measure

* Let y; be the allocation rule at time ¢t which encodes the accepting probabilities
under the online algorithm m. Then we define the cumulative unfairness of the
online algorithm m as

UFr (1) = E[ST=|lye — 1)

* Intuition: If UF; (1) is sub-linear, we know Time Fairness is satisfied since the
deviation of the online solution cannot be large. Moreover, Individual Fairness is
satisfied because we know UF; (1) being sub-linear implies y; converging to y”.

* Let j; denote the incoming customer type at time t, the Revenue Regret is
defined as

* Regr(m) = E[ZLNI&()’E — Yj)l
Regret measures the performance loss compared to the optimal policy.

29



Our Result

* We develop an algorithm [Chen, Li & Y (2021)] that achieve
UFr(m) = O(log T)

Reg () Bounded independent of T

* Key ideas in algorithm design:

* At each time t, we use interior-point method to obtain the sample analytic-
center solution and randomly make decision based on sample solution y..

* We also adjust the right-hand-side resource of the LP to ensure the depletion
of binding resources and non-binding resources does not affect the fairness.

* This state of the art result removes typical non-degeneracy or non-uniqueness
assumption in the OLP literature.

(Chen et al. arXiv:2110.14621 2021)

30



Organization

*Online Linear Programming for Auction Markets

*Online Linear Programming for Bandit Markets
and More

*Online Mechanism for Price-Posting Markets
*Conclusion/Takeaway



One of Price-Posting Markets to the Fisher Market

Agent 1
® u;; : Preference of Agent ¢ for one unit of good j
w z;; : Quantity of good j purchased by person %
C;: Supply Amount, Pj : Price of Good j

Ui1Ti1 Ui3 T3 w; : Budget of Agent 7
Ui2Zi2 Individual Optimization Problem:

X; Z 0
P2 ,c, p3 ,c, Prices are posted and known to all agents
M = Total Number of Goods so that they have freedom to choose




Are there Prices to Clear Market?
Yes, and they can be derived from the Eisenberg-Gale
optimization problem

Individual Optimization Problem: Social Optimization Problem:

x; ‘v’zE[N Zwi log (Zu”m”)

\
Capacity Constraints

zi; = 0,V,]

—

p; : Price of Good j = Dual Variable of Constraint j




However, the applicability of Fisher markets is restricted to
the “Perfect and Static Information Setting”

Individual Optimization Problem:

max E Ui g5
X :
J

s.t. plx;, <w;
X; 2 0

—

Social Optimization Problem:

x; ‘v’zE[N Zwi log (Zu”m”)

S.t.

R Zﬂ?z‘j < Cj,\?’j € [M]

\
Capacity Constraints

zi; = 0,V,]

p; : Price of Good j = Dual Variable of Constraint j



We study an online and incomplete
information variant of Fisher markets

Static

Pricing
(Single Price Point)

rice Point)

————————————1——————————



Prior work on online variants of Fisher markets have
considered the setting of goods arriving sequentially




Online for Geometric Objective: evaluate algorithms through
the absolute regret of social welfare and capacity violation

Regret (Optimality Gap) Constraint Violation

Difference in the Optimal Social
Obijective of the online policy m to that
of the optimal offline social value

Norm of the violation of capacity
constraints of the online policy

R, (m) =

Z w; log (Z uija:,}fj) — Z w; log (Z Ui5 55 (TI'))
i j i j

Vi(m) = Z%’j(ﬂ') —¢j

Violation of Capacity
Constraint of good j

/ \

Optimal Offline Objective of
Objective online policy

Va(m) = [[E[V () 7]l

Norm of the expected
constraint violation




Using the optimal expect prices, the capacity violation
must be Q(y/n), where n is the number of total agents

2 goods, each with .'.I'wo agent types s.rfecified by
. (Utility for Good 1, Utility for Good 2)
a capacityofn
Type I: (1, 0) Type II: (0, 1)
[ 4 | 4
Arrival Probability = 0.5 Arrival Probability = 0.5

Theorem: more generally, any static pricing algorithm achieves either a regret or capacity violation of Q(1/n)




To set static expected equilibrium prices, we
can solve the following deterministic problem

K m
Assumption: The distribution R%a‘fk e U(zi,...,2K) = Z qr Wi log Z Ukj2kj | 5
from which the utility and Zr © ) € [ ] k=1 j=1

budget parameters of users are 174
drawn is discrete with finite st E :Zk an < d. Vi€ [m]
support, where | = Jeies e 1 Average resource

P((we, ug) = (Wi, Uk)) = g . capacity per user
forall k € [K] zk; >0, Vke|[K]|, je€[m],

Dual variables of the capacity
constraints are the static
expected equilibrium prices

Example: For two-good counterexample, K = 2, (W, %;) = (1, (1,0)), (W,, ;) = (1,(0,1)), g; = g, = 0.5
Static expected equilibrium price vector: (0.5, 0.5)



We overcome problem of static expected equilibrium
pricing by increasing prices of over-consumed goods

100 units 100 units

Solve CE(d) to set price of 0.5 for each good
For 100 users,d; = 1,d, =1

Type I: (1, 0)
o

User of Type | and
consumes two units of
good one

98 units 100 units

1. Update Average remaining Resource

Capacities
98 100

1 _ 7% g1 _
41 =559 = 5g

2. Solve CE(d1) to set price for next user



Our adaptive expected equilibrium pricing approach
achieves constant constraint violation and log regret

Algorithm 1: Adaptive Expected Equilibrium Pricing

Input : Initial Good Capacities ¢, Number of Users n, Threshold Parameter Vector A, Support of

Probability Distribution {1, tix }2_,, Occurrence Probabilities {q;}_,

Initialize ¢; = c and the average remaining good capacity to d; = 7 ;

fort=1,2,...,ndo

Phase I: Set Price

if dy € [d — A,d+ A] for allt/ <t then
Set price p* as the dual variables of the capacity constraints of the certainty equivalent Set price based on dual

problem C'E(d;) with capacity d; ; L variable of capacity

else . .
Set price p* using the dual variables of the capacity constraints of the certainty equivalent constraints of certainty
problem CE(d) with capacity d = d; ; equivalent problem
end

Phase II: Observed User Consumption and Update Available Good Capacities
User purchases optimal bundle of goods x; given price p' ;

Update the available good capacities ¢;11 = ¢; — Xy ; Update average remaining
Compute the average remaining good capacities d;y1 = f:jé ; -
end resource capacities

Theorem: Under i.i.d. budget and utility parameters with a discrete probability distribution
and when good capacities are O(n), Algorithm 1 achieves an expected regret of R,, (1) <
O (log(n)) and expected constraint violation of V,, (1) < 0(1)



Primal algorithms are often computationally
expensive and do not preserve user privacy

@
’ﬁ‘ w E;q ey D (Z)

s.t. Za: < —Cj Vi € [m] .
“Prices can be set

zi; >0, Vi€lt],je [m] based on dual of

capacity constraints




We design a dual based algorithm, wherein
users see prices at each time they arrive

Price pt ! P1

Agentt + 1

(Wt, ut)"’P

Agent purchases an
optimal bundle x*t
given price pt

S




Applying gradient descent to the dual of the social
optimization problem motivates a natural algorithm

T T TrL T
min Z we log(wy) — Zwt log (min p__?) + ijﬂj - Z wy
P t=1 JE€Im] Ut j=1 t=1
: _ G o4 _ S I

i

=|—C — X}

c. . v
j€[m] 4

Difference between market share of
each agent and goods purchased

p=p*



We develop a revealed preference algorithm with sub-

linear regret and constraint violation guarantees
Algorithm 2: Revealed Preference Algorithm for Online Fisher Markets

Input : Number of users n, Vector of good capacities per user d = =

Initialize p! > O : "
fort=1,2,...,n do

Phase I: ;

User purchases an optimal bundle of goods x; given the price p® ;

Phase II (Price Update): ;

Pt+1 — ];73it — "Vt (d — xt) : Difference between market share of
end / <.\each agent and goods purchased

Only requires knowledge of user consumption
(and not their budgets or utilities) to update prices

Step—size:IO (\/%)

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when
good capacities are 0(n), Algorithm 2 achieves an expected regret of R,, (1) < 0(/n) and
expected constraint violation of I, (1r) < 0(y/n), where n is the number of arriving users.



Again, the price of a good is increased if the arriving
user purchase more than its market share of the good

. t+1
Price p} ! P1

Agentt + 1

Agent purchase an
optimal bundle x*t
given price pt




The regret and constraint violation guarantees follow
from duality and a novel potential function argument

o4 Min Common | 7.4 Min Common 0.20 - - - - - =
i i\ N ' | "'“'!'3.' i 1. Establish that the positivity of prices
:L"--T'f'i,‘\f‘»,z_l’ : ‘L‘j : 015 || implies their boundedness
e N
| ? 'i E 0.10 2. Use a potential function argument
o 5 | I S 1 to show the positivity of prices
in Common, (R = 0os| ® o
i Cotzg._— | M Potential Function
i T - Ve=(p"-d
0 1,000 2,000 3,000 4,000 5,000
Number of Users We show that this potential function is
Uselconvex posmamming non-decreasing when the prices of all
duality to establish the regret Establish the positivity and , gqods drops bEIc,)W 2 dnresiofl
and constraint violation boundedness of prices during |mpIy|ng'that the !orlces of some goods
guarantees if the prices are the operation of Algorithm 2 L [TEEEEE [ L1 SLssea e

strictly positive and bounded Iteration



Our numerical results verify the obtained
theoretical guarantee

10

E
® Algorithm 2 i
- T'heoretical Bound 3

9l =05
> &
: :
Y] =

5‘5 - ecoeoeoee o o o ®

o
W% 80 =
LS =
o

i —0.5
7 Slope =0.5 8=
=

| "E' _1

5 6 7 8 9 0 1,000 2,000 3,000 4,000 5,000

log(Number of Users) Number of Users



Our numerical results demonstrate a tradeoff
between regret and constraint violation

0.3 0.4

- Stochastic Program -
Dynamic Learning SAA
—— Algorithm 2

E g
R g
8« 0.2 :-; '
g . 02
g 2 0.1 =10
z O E° 0 \\_‘\/\.
“ Z,
2 — | Z
= & () [90--tttpPpty ®
o=t 0@ v o ————~ ¢« 1 =
-0.1 '
0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000

Number of Users Number of Users
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We study LP and Fisher markets in the online and
incomplete information setting and develop algorithms
with sub-linear regret guarantees

We develop an
adaptive expected
equilibrium pricing

algorithm with much
improved performance

We develop a revealed
preference algorithm
with sub-linear regret
and capacity violation

Static equilibrium

pricing approaches

have performance
limitations

Static
[Single |

Pricing

rice Foint)
Dynamic Pricing
iMultiple Price Points)

Jalota, Ye (2023), arXiv link: https://arxiv.org/abs/2205.00825



https://arxiv.org/abs/2205.00825

Overall Takeaways

It I1s possible to maker online decisions for
guantitative decision models with performance
guarantees close to that of the offline decision-
making with complete information

Many open questions Iin these areas:
honstationary data, OLP with predictions,
Distributionally Robust OLP, strategic players,
truthful mechanism, etc...

*THANK YOU



