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Linear Programming and LP Giants won Nobel Prize...




Today’s Sharing

1. Online Linear Programming Algorithms and
Applications

2. Accelerated Second-Order Methods for
Nonlinear Optimization and Applications

3. Zero-Order Optimization Algorithms and
Applications

4. Pre-Trained Mixed Integer Linear Programming
Solvers and Applications



Topic 1. Online Linear Programming
an Online Auction Example

There Is a fixed selling period or number of buyers; and there is a fixed
Inventory of goods

Customers come and require a bundle of goods and make a bid
Decision: To sell or not to sell to each individual customer on the fly?
Objective: Maximize the revenue.

Bid # $100 $30 Inventory
Decision x1 X2
Pants 1 0 100
Shoes 1 0 50
T-Shirts 0 1 500
Jackets 0 0 200
Hats 1 1 1000




Online Linear Programming Model and Theory

s OLP theory and practice (Agrawal et al. 2010,14, Li&Y 2022)

max z T[ij

m OLP:

0 Variables together with their data points arrive sequentially and
decision makers need decide x; on the fly, that Is, before knowing
the “future” data points

0 Learning-while-Doing vs Learning-First and Deciding-Second
(collect and learn all relevant data, then solve for all x)

0 Offline LP’s objective value is a upper bond for the online version
1 Is there an optimal online decision algorithm/mechanism




Price Mechanism for Online Auction

Learn and compute itemized optimal prices
Use the prices to price each bid internally
Accept if it Is a over bid, and reject otherwise

There i1s an Optimal Online Algorithm to achieve the best you could do!

Bid # $100 $30 Inventory Price?
Decision X1 X2
Pants 1 0 100 45
Shoes 1 0 50 45
T-Shirts 0 1 500 10
Jackets 0 0 200 55
Hats 1 1 1000 15




The Online Algorithm can be
Applied to Bandits with
Knapsack (BwK) Applications

* For the previous problem, the decision
maker first wait and observe the
customer order/arm and then decide
whether to accept/play it or not.

* An alternative setting is that the
decision maker first decides which AFFILIATE

order/arm (s)he may accept/play, and .y o A
then receive a random resource = b e c’;‘)"_“"
consumption vector a; and yield a de:fiDIgSfE 880_

random reward 1; of the pulled arm.
 Known as the Bandits with Knapsacks, A DV E RTl S I N G
and it is a tradeoff exploration v.s.
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* The decision variable x; represents the total-times of pulling the j-th arm.

e We have

developed a two-phase algorithm

* Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic
variables/arms with as fewer number of plays as possible

* Phase Il: Use the arms in the optimal face to exhaust the resource through an adaptive
procedure and achieve fairness

* The algorithm achieves a problem dependent regret that bears a logarithmic
dependence on the horizon T. Also, it identifies a number of LP-related
parameters as the bottleneck or condition-numbers for the problem

* Minim
* Minim

UM non-zero reduced cost

um singular-values of the optimal

basis matrix.

* First algorithm to achieve the O(log T) regret/gap bound [Li, Sun & Y 2021
ICML] (https://proceedings.mir.press/v139/li21s.html)



ApPpP. |I: Online Matching for Display Advertising

[H]Jon Stewart Is Retiring, an- x §

C www. huffingtonpost.com/mark-lashley/jon-stewarts-retiring-and_b_6670338.html?utm_hp_ref=celebrity&ir=Celebrity & o =
Mark Lashley Become a fan W &
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Jon Stewart Is Retiring, and it's Going to Be (Kind of)
Okay

Posted: 02/13/2015 3:21 pm EST | Updated: 02/13/2015 3:59 pm EST
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When the news broke Tuesday night that longtime Daily Show host Jon Stewart SU GGEST ED FOR YOU

would be leaving his post in the coming months, the level of trauma on the internet
was palpable. Some expected topics arose, within hours -- minutes, even -- of the
announcement trickling out. Why would Stewart leave now? What's his plan? Who
should replace him? Could the next Daily Show host be a woman? (Of course). Is this
an elaborate ruse for Stewart to take over the NBC Nightly News? (Of course not).

The public conversation over the past two days has been so Stewart-centric that the
retirement news effectively pushed NBC anchor Brian Williams's suspension off of
social media's front pages. Part of that is the shock; we knew the other shoe was about
to drop with (on?) Williams, but Stewart's departure was known only to Comedy
Central brass before it was revealed to his studio audience. Part of it is how meme-

worthy the parallels between the two hosts truly are ("fake newsman speaks truth, real
newsman spins lies," some post on your Twitter timeline probably read). Breaking at

Caught On Camera
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M N
max E E U jXij 3.3 MCKP-Allocation

We adopt the primal-dual framework proposed by [2] to solve the
M N problem defined in Equation 5. Let @ and f§; be the associated dual

s.t. cixij = B - ~ - -
Z Z JXij , (5) variables respectively. After obtaining the dual variables, we can
solve the problem in an online fashion. Precisely, according to the

N | principle of the primal-dual framework, we have the following
Zl‘r j= 1 Vi allocation rule:
J

xij 20, Vi j N 1, where j = arg max;(v;; — ac;)
/ 0, otherwise

(9)




APP Il: A key resource allocation model to achieve
efficient allocation is the Fisher Market

Agent 1 u;; : Preference of Agent ¢ for one unit of good 3
@

z;; : Quantity of good j purchased by person 7
p; : Price of Good ]

w; : Budget of Agent ¢

Individual Optimization Problem:

| 7
s.t. p'x; < wy
X, Z 0
Cq C) C3 Do Prices exist to clear the market?
D1 D9 D3 (Prices are posted and known to all agents so

M = Total Number of Goods that they have freedom to choose):



The prices can be derived from a centralized optimization
problem with a budget-weighted social objective
(Eisenberg-Gale)

Individual Optimization Problem: Social Optimization Problem:

. E w; lo E Wi i L
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T~
X, 2 0 Capacity Constraints

— p; : Price of Good 7 = Dual Variable of Constraint j

C; can be decision variables subject to other
resource constraints »



Online Market Pricing: how to update posted-prices to minimize
regret of the Eisenberg/Gale social welfare while achieving
market clearness

Agentt+1




We develop a revealed preference algorithm with sub-

linear regret and constraint violation guarantees
Algorithm 2: Revealed Preference Algorithm for Online Fisher Markets

Input Number of users n, Vector of good capacities per user d = ~
Initialize p* > 0 ;

fort=1,2,....,n do

Phase I: ;

User purchases an optimal bundle of goods x; given the price p* :
Phase II (Price Update): ;

pt+1 — p' — v (d — Xt) Difference between market share of
end / \each agent and goods purchased
Only requires knowledge of user consumption (and

(1
Step-size: 0 (\/_ﬁ) not their budgets or utilities) to update prices

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when
good capacities are O(n), Algorithm 2 achieves an expected regret of R, () < 0(y/n) and
expected constraint violation of V, () < 0(1/n), where n is the number of arriving users.
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Topic 2. Accelerated Second-Order Methods for
Unconstrained Optimization and Applications
min f(x),x € X in R",
* where f Is nonconvex and twice-differentiable,
gr = Vf(xx), He = V2 (x)
* Goal: find x; such that:
| gk Il < € (primary, first-order condition)
Anin(Hp) = —/e  (secondary, second-order condition)
 First-order methods (FOM) typically need O(n?e%) arithmetic operations
« Second-order methods (SOM) typically need O(n3e1-°) arithmetic operations
* New? Yes, HSODM and DRSOM: a single-loop method with O(n%e1->) operations
(Zhang et al. https://arxiv.org/abs/2211.08212)



An Integrated Descent Direction Using the
SDP Homogeneous Model | (Zhang at al. SHUFE, 2022)

Recall the fixed-radius trust-region method minimizes the Taylor quadratic model

5 -0 L

* -0, IS the first-order steepest descent direction but ignores Hessian; the most-left

H, g

1
— T
min mk(d) = 8% d + — ) —d' H kd [ 6()] Hk g

der’ ) Y 50J 5

i

st|ld]| < A,.

where A, =¢'/? /M is the trust radius

eigenvector of H -would be a descent direction for the second order term

* Could we construct a direction integrating both?

Answer: wWith a suitable 8, and use it as the direction to go — a single loop
algorithm to solve the original problem and replace the Newton step.

O(n?%e1°) vs O(n3) operations



Krylov Iterations: K

150

100

o0

Advantage of the Homogeneous Direction over Newton’s

GHM (Lanczos
method)

[ 0 [

Newton (CG)

Newton (GMRES)

mnln

Newton (GMRES)
Restarted

i

GHM-Lanczos

|
Newton-CG Newton-GMRES

Method

Newton-rGMRES

IRy =2.2e+00
kg =2.2e+07
1K g =2.2e+09
Ry =2.2e+10

 Consider Hilbert matrix

 Computing a Newton step by
iterative methods versus
Homogeneous Direction

from H + 61

* 0 | Condition number kyT



ApPpP. lIl: HSODM for Policy Optimization in RL |

Consider policy optimization of linearized objective In reinforcement learning

max L(0) := L(my),
OcR?

Or+1 = O + o - MpVn(6r),
M, 1s usually a preconditioning matrix.

The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information
matrix where M, Is the inverse of

Fr(0) = Ep, m 'V log 7y, (s,a)V logmy, (s,a)" |

Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence In the constraint:

mgmeLgk(Hk)T(O — Or) Homogeneous NPG:
ﬂ ‘ Apply HSODM!
.t. Egmp, [Dicr (7o, (- | 8);7ma(- | 5))] < 6. PP




HSODM for Policy Optimization in RL I

* A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015)
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Homogeneous model provides significant improvements over TRPO (public open-source solver)



App. IV: HSODM for Sensor Network Localization |

* Consider Sensor Network Location (SNL)

Nz = {(4,]) : ||zs — x|l = dij < ra}, No = {(4, k) :

where 74 Is a fixed parameter known as 2
the radio range. The SNL problem considers TN
the following QCQP feasibility problem,

|lzi — z;||* = d};,V(4,§) € Na
|lzi — ax||? = d2,V(i,k) € N,

* We can solve SNL by the nonconvex
nonlinear least square (NLS) problem

A/ LAN
K\.Z)Loab'onme
2/ RF Controller
%) RF Reader

T

min > (lz— 32 —di)?+ D (lak —xll” — diy)*.

X
(i<j:j)€N£B (k,j)GNa



IV £l

ONL, n :=200, m :=20

HSODM for Sensor Network Localization ||

* Compare HSODM (with HVP), and
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DAY Newton-TR Method.
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eigenvalue procedure
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Dimension Reduced Second-Order Method (DRSOM)

* Motivation from Multi-Directional FOM and Subspace Method, such as CG and
ADAM, DRSOM applies the trust-region method Iin low dimensional subspace.
* This results in a low-dimensional quadratic sub-minimization problem:

* Typically, DRSOM adopts two directions d = —aVf(x;) + a*d,
where g, = Vf(xy), Hy = sz(xk); die = X — Xg-1
* Then we solve a 2-d gquadratic minimization problem to decide the two step-sizes:

min mf (o) = f(xi) + () o+ ;o Qe

o] |G, < Ag
| 9k9x 94k | 9kcHr9r  —9iHidi REIrAE
Gk — T T )Qk — T T ) O = Td
—grdy  dpdg —9grHedy  dpHypdyg i Ak



Constructing the two-dimensional qguadratic model is the Key

How to cheaply obtain Q,, that Is, compute
Hkgkand dek ?
* Use Hessian if readily available !

* Finite difference;:

1
H v~ - [g(x + € v) — gil,
* Analytic approach to fit modern automatic

differentiation,

1
Higr = V(G gk 9r), Hidy = V(di g,

e Zero-Order: Three(-or more)-Point Interpolation
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Preliminary Results: HSODM, DRSOM and DRSOM+HSODM

CUTEst model name := SPMSRTLS-1000

HSODM (0.15)

DRSOM-Homo (0.519)

Newton-TR (5s)

LBFGS (0.339)
CG (0.465)
DRSOM (0.675)

GD (0.665)

00000000

[teration

66666666

GD+ Wolfe
LBFGS+ Wolfe
Newton-TR
CG
DRSOM
DRSOMPIlus(homokrylov,1)
HSODM (warm)

CUTESt example
GD and LBFGS both use a Line-

search (Hager-Zhang)
« DRSOM uses 2-D subspace
« HSODM and DRSOM + HSODM
are much better!
« DRSOM can also benefit from the
homogenized system



Sensor Network Location again, Large-Scale Instances

* Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

* GD with Line-search
and Hager-Zhang CG
both timeout

®  Truth

4  Anchors
O DRSOM
O GD

O CG

« DRSOM can converge to
| gr| < 1e 2 in 2,200s
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App. V: Neural Networks and Deep Learning
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Training and test results for ResNetl8 with DRSOM and Adam
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Training and test results for ResNet34 with DRSOM and Adam

Pros

* DRSOM has rapid convergence (30
epochs)

* DRSOM needs little tuning
cons
* DRSOM may over-fit the models

* Running time can benefit from
Interpolation

* Single direction DRSOM is also
good

Good potential to be a standard
optimizer for deep learning!
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SOLNP+: History

* First proposed by Y in 1989.

* Originally implemented (SOLNP) in Matlab, 1989.

* R implementation (Rsolnp) by Alexios Ghalanos and Stefan Theussl,
2011.

* New and C implementation (SOLNP+) with improvements, 2022;
and addition of Randomized BCG and DRSOM for unconstrained
optimization by Tan et al., 2023

* Github link: https://github.com/COPT-Public/SOLNP_plus
* Use forward difference to calculate the approximated gradient.

£ —|—(58i — J\L
Viflz)]; = ft 6) ft ):

e; = [0, .1, - 0].



Shortcoming of Finite-Difference

* For finite-difference methods and other traditional zero-order
methods, the number of function query increases linearly with the
problem dimension.

* Traditional methods may not perform well for solving high
dimensional problems.

* The dimension In machine learning problems can be extremely
high.



RMP: Multi-Point Random Perturbation

* Multipoint ZO Gradient Estimates

Vf(z) := 56 Z[ (z+0w;) — f(z)) ug
3[Vf(z)] = Vfa( )
f5(z) = Ey[f(z+ du)]

where u; 1s 1.1.d. random direction.

* Advantage: Fewer function queries to evaluate the gradient.



SOLNP+: Adopt Two Strategies

* With gradient estimates, SOLNP+ implements ZO version of

* /O-RMP (Ghadimiet al., 2013; Duchi et al., 2014), or
* /ZO-BCD, more recent research see (Cal et al., 2021)

* DRSOM (Zhang et al., 2022) with interpolation

)

S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic programming,’
SIAM J. Optimiz., vol. 23, no. 4, pp. 2341-2368, 2013. doi: 10.1137/120880811

J.C.Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal rates for zero-order convex
optimization: The power of two function evaluations,”|EEE Trans.Inf Theory, vol.61,n0.5,pp.2788-
2806,2015.dol: 10.1109/T1T.2015.2409256.

Cal, HanQin, et al. "A zeroth-order block coordinate descent algorithm for huge-scale black-box
optimization.”" International Conference on Machine Learning. PMLR, 2021.

Zhang, Chuwen, et al. "DRSOM: A Dimension Reduced Second-Order Method and Preliminary

Analyses." arXiv preprint arXiv:2208.00208 (2022).




SOLNP+: Apply RMP or RBCD plus DRSOM

* Randomized Multiple Point Estimator:
» u;~N(0,R%)
* u; Rademacher Random Variable(each element € {—1, +1})

* Randomized Block Coordinate Descent Estimator:
* Randomly select some block

* Use e; (vector with zero components except that dimension t1s 1), 1 €
Block to estimate gradient

» Update rule: xps1 = x5 — nVfF(xg)

R. Sun and Y. Y, “Worst-case complexity of cyclic coordinate descent: O(n”"2) gap with randomized
version.” Mathematical Programming, Volume 185, 487-520, 2021.



Experiments in Large Problems: Rosenbrock |

* Rosenbrock function i1s a well-known nonconvex functions in the form of

n-—1
FO) = ) 1000 —x2)* + (x; — 1)7
1=1

e /O0-Adamm, ZO-SGD and ZO-DRSOM are tested in a 1200 dimensional

Rosenbrock problem.
* Batch size 50
* Each experiment Is repeated for 10 times.

Chen, Xiangyi, et al. "Zo-adamm: Zeroth-order adaptive momentum method for black-box
optimization."” Advances In neural information processing systems 32 (2019).



Experiments In Large Problems: Rosenbrock ||

* /O-RMP-DRSOM, ZO-
RBCD-DRSOM and ZO-
SGD decrease most
smoothly. However,
iInappropriate parameters
lead to worse performance

of ZO-SGD and
/O-ADAMM.

Function Value

—a
-
P

—
=
-5

-
=
-

—
<
—

—a
<
P

—
S
Cad

1000 Dimensional Rosenbrock Problem, Batch Size 50

N Z0O-RMP-DRSOM
e Z0-RBCD-DRSOM

Z0Adamm:betal = 0.70,betaz2=0.80
Z0Adamm:betal = 0.80.beta2=0.90

Z0-5GD:Stepsize 1.00e-02
Z0-5GD:Stepsize 5.00e-02
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Experiments In Large-Sacle Problems: SNL |

300 Dimensional SNL Problem, 150 sensor, 50 anchor, Batch Size 60

« /ZO-Adam, ZO-SGD, 10° .
————— ZO-RMP-DRSOM
ZO - Q BC ) - D RSO I\/ a ﬂd . o s 1 ZO-RBCD-DRSOM
/O-RMP-DRSOM are 104 E \\ Z0Adamm:beta1 = 0.70,beta2=0.80 _
_ 5 o \\ Z0Adamm:betal = 0.80,betaZ=0.90 ]
tested In a 150-sensor BTN Z0-SGD:Stepsize 1.00e-02
SN or oblem , : \ Ny Z0-SGD:Stepsize 5.00e-02
— ' 10° F -\, ) E

* Batch size 60

* Each experiment is
repeated for 10
times. 02k

Function Value
o
-
1

,1[}_5. - | | | | | | | |
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Function Evaluation 10"
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App. VI: Unit Commitment Problem
* Electricity is generated from units (various
generators)

* Transmitted safely and stably through power
grids

* Consumed at minimum (reasonable) price

Optimization has its role to play

minimize Cost of electricity
subject to  Safety and Stability

Adaptivity to various units

Unit commitment problem dispatches the units
safely and stably at minimum cost




App. VII: Beijing Public Transport

Intelligent Urban Bus Operations
Management with Mixed Fleet Types
and Charging Schedule
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App. VIlI: Beljing-Shanghali
High-speed Railway Scheduling Optimization

COPT, Cardinal Operations 2022
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Numerical Results: TTP for Beijing-Shanghai & COPT

Space (km)

We solve the TTP for Beljing-Shanghai high-speed railway using Cardinal Optimizer (COPT).

COPT 1s the first fully independently developed mathematical programming solver in China with strong
solving ability of MIP problem. It also has excellent performance in solving this problem.

The result i1s presented in the following figure. We only need about 1000 seconds to schedule 584 train In
two directions.
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Risk-Pooling Cuts in MILP

* Given an MILP, the interior point solution of the LP relaxation tells us

y1(€) S50
(6 || 012
7.(8) 0.38

* Each y Is the likelihood a variable takes 1 or O Iin the optimal solution
* Each variable introduces some risk/variance of such rounding

so that dealing them separately results in extremely risk outcomes

Q: What should we do seeing a set of risky guesses? A: Put them in a pool!



Risk-Pooling Cuts via Moment Ambiguity of DRO

* Pooling the binary variables by adding “confidence” cardinality cuts

g yi (&) > || Yy <BIL]

ieU={j:yj(§)=>0.9} ie{/:y;(£)<0.1}
* Intuitively we know that the above two inequalities are expectedly to hold
fora—-09and g — 0.1
* These two Inequalities are exactly cutting planes for MILP
* The last Issue Is how to choose «a, f to Increase the confidence level:
Interpret y;k as some random variables with expectation j&j ,

then justify by concentration inequalities



Statistical Confidence Cut Generation (Gao at al. SHUFE, 2023)

Theorem 2. Given independent random variables {y{'(£),..., ya(&)} such that E[y*(&)|&] = yi(&), letting
U:=1i:yi(&)>71} and L:={i:yi(§)<1—71} for 0.5 <7 <1. Then w.p. 1—14, each of the inequalities

below holds.
C )> — [ Hliog(1/5) \
U- Z yf Z yf Og /

reu IeuU l/
Feasible Region

Co: Y v (&) <) (¢ \/wloglﬁ \ / \
€L IEL

* Overall, the two cuts (and their complement) split the whole feasible region into four
regions

C L T

* Solving the most likelihood region of two cuts often gives a satisfying solution with
confidence

* Branching over all four regions independently will not miss the optimal solution



Data-Driven Approaches to Mixed Integer Optimization in Practice
Learn from the past and predict the future such as the unit commitment

problem in Electrical Power Generation

* Many real-life MIO applications are solved on a min 6 y:¢)

- subject to h(x, y, &) <0 N
regular basis Fre e 0t |
0501

Unit commitment; portfolio; scheduling...

* Large amount of data and solutions collected
from the past

Future instances are similar to the past

* A natural idea: use machine learning to learn
from history

A Pre-trained Data-driven Approaches




Numerical Test Results |

* The method Is tested on multi-knapsack, set-covering and unit-commitment
problems

Train from 500 instances and test on 20 instances

* Measure the speedup of finding a good solution on In the region formed by two
cuts

B Gurobi B COPT

Min
1.032

10, 250, L. 10, 250, M 10, 250, H 10, 500, L. 10, 500, M 10, 500, H 30, 250, L. 30, 250, M 30, 250, H 30, 500, L. 30,500, M 30, 500, H

Average speedup on knapsack instances



Numerical Test Results I

* Acceleration by two lines of
code

* Remarkable speedup on
primal solution finding for
both the state of art MIP
solvers Gurobi and COPT

* No loss of optimality

Speed Up
ek o w = un (=) ~1 - -}

Min
0.676

3000.5000.L. 3000, 5000, M  3000.5000.H 4000, 6000.L.  4000,6000.M 4000, 6000. H

Unit Commitment

B Gurobi B COPT

Min
3.924

1000, 10000. L. 1000, 10000.M 1000,10000.H 2000,10000.1. 2000,10000.M 2000,10000.H 2000,20000.1. 2000,20000.M 2000,20000, H

Set-Covering
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Cardinal Operations JCardInaI Optimizer
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NEQOS Server: State-of-the-Art Solvers for Numerical Optlmlzatlon l_'lﬁ ' ﬁﬁj‘]r EJ:%—A szEg

The NEOS Server is a free intemet-based service for solving numerical optimization problems. Hasted by the Wisconsin Iinstitute for Discovery al the University of Wisconsin »

Madison, the NEOS Server provides access 1o more than 60 state-of-the-art soivers in more than a dozen cptimization categones, Solvers hosted by the University of Wisconsin in A“E_MAHI“B$AMEG¢ E*ﬁg
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RESELLER AGREEMENT
AMPL Selling (COPT ~ AMPL)

THIS RESELLER AGREEMENT (“Agreement’) is entered into as of (December 1, 2021)
(“Effective Date”), by and between Shanghai Cardinal Operations Network Technology Co., Ltd., a
Chinese Company with its principal offices at (Room 109, Building 5, No.8, Jinian Road, Yangpu
District, Shanghai, China) (“Cardinal Operations”), and AMPL Optimization Inc., a California
corporation, with its principal offices at 211 Hope Street #339, Mountain View, CA 94041 USA
(‘Reseller”).

WHEREAS, Cardinal Operations owns and markets the COPT mathematical optimization
software with accompanying documentation, demonstration programs and examples (“COPT");
and

WHEREAS, Reseller owns and markets the AMPL modeling language and system with
accompanying documentation, demonstration programs and examples (‘AMPL"); and

WHEREAS, Cardinal Operations has built, in collaboration with Reseller, a version of
(COPT) specifically designed to be used with the AMPL system (“COPT - AMPL"); and

WHEREAS, Reseller wishes to market and distribute COPT - AMPL in conjunction with its
marketing and distribution of AMPL;

NOW THEREFORE, in consideration of the premises and mutual obligations herein, the
parties agree as follows:

Gertjan de Lange
AIMMS, www.aimms.com

i

EFZ QA

© 2021 Cardinal Operations PowerPoint Business Theme. All Rights Reserved.

GAMS-COPT-Final-Signed-with-price-lists.pdf - . ) 3
bagatul 15 ®O aam £ O 60

£ Bill Wells October 19, 2021 at 03:39
w Re: AMPL COPT Cooperation
To: Huangfu Qi

Hide

Cc: 4er@ampl.com, Dongdong Ge, 1% {&§%, Christian Valente,
Martin Laskowski, Filipe Brandao

Dear Qi,

Thank you for the note. It comes at a very good time for us as | was just preparing to send you a note
on the same topic.

Since we last spoke there have been several discussions and a great deal of product testing here at
AMPL, all focused on COPT. Needless to say, we have a high level of interest in your product and we
believe that there might already be a market for it within AMPL's prospective customers.

Regarding the testing of COPT, we put it through a fairly extensive set of performance tests. We are
very pleased with the results of these tests. They speak well to your own development efforts and how
far you have already come with the product even before version 3.0. The high level summary of these
results is:

¢ COPT's performance on LP models is outstanding. It is on par, or perhaps even exceeding, the
performance of the very best commercial solvers on the market.

¢ COPT's performance on MIP models is good. It lags that of the top commercial MIP solvers but
is substantially better than the best free solvers and actually closer to the top commercial solvers
than the best free solvers.

| would be prepared to share some level of detail regarding our testing process and results if that would
be of interest to you. In order to move in that direction we would need to put an NDA in place as this
type of information can be very sensitive (as | am sure you understand).

We would be very happy to redo our testing using version 3.0 of COPT to see how great the
performance gain is on our own test suites.

Given the results that we have seen so far, we believe that COPT could be a successful product within
the AMPL customer base right now. This is something that we would like to talk about in greater detail
with you.

Looking in the other direction, (Cardinal selling AMPL), | have gone through our current agreements with
our reseller in China. | am happy to let you know that there does not seem to be any impediment to
your organization acting as a distributor of AMPLwithin China, either to academic or commercial
customers or both.

There is much to talk about. Perhaps we could set up a discussion later this week involving myself,
Martin Laskowski (Director of AMPL marketing), and your team at Cardinal. If that is of interest to you,
could you suggest a few times that might work for you? | am looking forward to moving our relationship
forward.

King Regards,

Bill Wells

CEO

AMPL Optimization, Inc..
Ph: +1 (773) 336-2675

Cardinal Operations
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Overall Takeaways

It I1s possible to maker online decision/learning for quantitative
models with performance guarantees close to that of the offline

decision-making with perfect/complete information

Second-Order Derivative information matters and better to
Integrate FOM and SOM for nonlinear optimization!

Zero-0Order Methods are competitive, especially for “Black-Box’
optimization

Pre-training greatly improves Mixed Integer LP solvers that
benefit real economy

* THANK YOU



