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ChatGPT的能力边界 | 求解数学优化问题？

物品 1 2 3 4 5

重量 (kg) 2 1 2.5 3.5 1.5

价值 (元) 18 10 20 28 15

假设有一个最多能承重5kg的背包和5个重量不同的物品，每个物品都具有一

定的价值。将哪些物品装入背包，可以使得背包内的物品总价值最大？

物品的重量和价值如下表所示：

一个简单的数学规划问题

优化问题根据变量、约束和目标函数的特性，

可以分为不同种类，如线性规划、非线性规划和整数规划等

≤5KG
#5

1.5KG

￥15

#4

3.5KG

￥28

#1

2KG

￥18

#3

2.5KG

￥20

#2

1KG

￥10

小规模整数优化问题，可以通过穷举法求解

大规模整数规划问题一般由专业的整数规划软件求解（Gurobi, COPT）



使用ChatGPT求解科学决策问题

将上述背包问题向ChatGPT提问：

ChatGPT 会尝试性给出解

答，但是不能保证答案的

正确性。

ChatGPT会建议调用求解

器求解优化问题: 全科vs专

科

ChatGPT 并不是万能的，

它是一个语言处理模型，

回答复杂的计算问题还需

要调用专业化的软件。

向ChatGPT提问：

上述问答产生于2023年3月12日
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Differences of OR and AI Models

• Based on Science/Logic

• Physical/Economical Principles

• Objective

• Definitive

• Explainable Insights

• Online Training&Decision-Making

• Based on Cases/Experience

• Observation/Behaviour

• Subjective

• Probabilistic

• Black-box

• Offline Training
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Linear Programming and LP Giants won Nobel Prize…

8

max  𝜋𝑗𝑥𝑗

s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 ,

0 ≤ 𝑥𝑗 ≤ 1 ∀ 𝑗 = 1, . . . , 𝑛

min bTp +  max{0, 𝜋𝑗 − 𝒂𝑗
𝑇p }

s.t. 𝒑 ≥ 𝟎



Online Linear Programming：
an Online Auction Example

• There is a fixed selling period or number of buyers; and there is a fixed 

inventory of goods

• Customers come and require a bundle of goods and make a bid

• Decision: To sell or not to sell to each individual customer on the fly?

• Objective: Maximize the revenue.

Bid # $100 $30 …. … … Inventory

Decision x1 x2

Pants 1 0 …. … … 100

Shoes 1 0 50

T-Shirts 0 1 500

Jackets 0 0 200

Hats 1 1 … … … 1000



Online Linear Programming Model and Theory

 OLP theory and practice (Agrawal et al. 2010,14, Li&Y 2022)

 OLP:

 Variables together with their data points arrive sequentially and 

decision makers need decide xj on the fly, that is, before knowing 

the “future” data points

 Learning-while-Doing vs Learning-First and Deciding-Second 

(collect and learn all relevant data, then solve for all x)

 Offline LP’s objective value is a upper bond for the online version

 Is there an optimal online decision algorithm/mechanism
10

max  𝜋𝑗𝑥𝑗

s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 ,

0 ≤ 𝑥𝑗 ≤ 1 ∀ 𝑗 = 1, . . . , 𝑛



Price Mechanism for Online Auction
• Learn and compute itemized optimal prices

• Use the prices to price each bid internally

• Accept if it is a over bid, and reject otherwise

• There is an Optimal Online Algorithm to achieve the best you could do!

Massive episodes are transferred into Knowledges that can be stored/reused 

Bid # $100 $30 …. … … Inventory Price?

Decision x1 x2

Pants 1 0 …. … … 100 45

Shoes 1 0 50 45

T-Shirts 0 1 500 10

Jackets 0 0 200 55

Hats 1 1 … … … 1000 15



The Online Algorithm can be 
Applied to Bandits with 
Knapsack (BwK) Applications

• For the previous problem, the decision 
maker first wait and observe the 
customer order/arm and then decide 
whether to accept/play it or not. 

• An alternative setting is that the 
decision maker first decides which 
order/arm (s)he may accept/play, and 
then receive a random resource 
consumption vector aj and yield a 
random reward 𝜋𝑗 of the pulled arm. 

• Known as the Bandits with Knapsacks, 
and it is a tradeoff exploration v.s. 
exploitation 12



• The decision variable 𝑥𝑗 represents the total-times of pulling the j-th arm.

• We have developed a two-phase algorithm
• Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic

variables/arms with as fewer number of plays as possible
• Phase II: Use the arms in the optimal face to exhaust the resource through an adaptive 

procedure and achieve fairness

• The algorithm achieves a problem dependent regret that bears a logarithmic 
dependence on the horizon T. Also, it identifies a number of LP-related 
parameters as the bottleneck or condition-numbers for the problem

• Minimum non-zero reduced cost 
• Minimum singular-values of the optimal

basis matrix.

• First algorithm to achieve the 𝑂(log 𝑇) regret/gap bound [Li, Sun & Y 2021 
ICML] (https://proceedings.mlr.press/v139/li21s.html)

13

max  𝜋𝑗𝑥𝑗 s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 , 𝑥𝑗 ≥ 0 ∀ 𝑗 = 1, . . . , 𝐽



14

阿里巴巴在2019年云栖大会上提到在智能履行决策上使用OLP的算法



阿里巴巴团队在2020年CIKM会议论文Online Electronic Coupon Allocation 
based on Real-Time User Intent Detection上提到他们设计的发红包的机
制也使用了OLP的方法[2]

15



A key resource allocation model to achieve 
efficient allocation is the Fisher Market

16

Do Prices exist to CLEAR the market?
(Prices are posted and known to all agents so 

that they have freedom to choose)

c2c1 c3



The prices can be derived from a centralized optimization 
problem with a budget-weighted  social objective

(Eisenberg-Gale)

17

Cj can be decision variables subject to other 

resource constraints



Online Market Pricing: How to update posted-prices to minimize 
regret of the Eisenberg/Gale social welfare while achieving 

market clearness

Static Fisher Market Price Equilibrium 
Theory and Limit

Now Agents Arrive Online

Agent 𝑡 + 1

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

The price at time 𝑡 + 1 is updated and reposted 
based on observed consumption 𝒙𝑡 at time 𝑡

Jalota and Y
https://arxiv.org/abs/2205.00825



We develop a revealed preference algorithm with sub-
linear regret and constraint violation guarantees 

Difference between market share of 
each agent and goods purchased

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when 
good capacities are 𝑂(𝑛), Algorithm 2 achieves an expected regret of 𝑅𝑛(𝝅) ≤ 𝑂( 𝑛) and 
expected constraint violation of 𝑉𝑛(𝝅) ≤ 𝑂( 𝑛), where 𝑛 is the number of arriving users.  

Only requires knowledge of user consumption (and 
not their budgets or utilities) to update pricesStep-size: 𝑂

1

𝑛
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MILPI: Unit Commitment Problem

• Electricity is generated from units (various

generators) 

• Transmitted safely and stably through power 

grids

• Consumed at minimum (reasonable) price

Optimization has its role to play

Unit commitment problem dispatches the units 

safely and stably at minimum cost



MILPII: Beijing-Shanghai 

High-speed Railway Scheduling Optimization

COPT, Cardinal Operations 2022



Risk-Pooling Cuts in MILP

• Each  𝑦 is the likelihood a variable takes 1 or 0 in the optimal solution

• Each variable introduces some risk/variance of such rounding

so that dealing them separately results in extremely risk outcomes

• Given an MILP, the fraction solution tells us

Q: What should we do seeing a set of risky guesses? A: Put them in a pool!



Risk-Pooling Cuts via Moment Ambiguity of DRO

• Pooling the binary variables by adding “confidence” cardinality cuts

• Intuitively we know that the above two inequalities are expectedly to hold for 𝛼
→ 0.9 and 𝛽 → 0.1

• These two inequalities are exactly cutting planes for MILP

• Choose 𝛼, 𝛽 to increase the confidence level:

Interpret  as some random variables with expectation      , then justify it

Massive data are transferred into Knowledges that can be 

stored/reused 



Statistical Confidence Cut Generation (Gao at al. SHUFE, 2023)

• Overall, the two cuts (and their complement) split the whole feasible region into four 

regions

• Solving the most likelihood region of two cuts often gives a satisfying solution with 

confidence

• Branching over all four regions independently will not miss the optimal solution



Numerical Test Results I

• The method is tested on multi-knapsack, set-covering and unit-commitment 

problems

Train from 500 instances and test on 20 instances

• Measure the speedup of finding a good solution on in the region formed by two 

cuts

Average speedup on knapsack instances



Numerical Test Results II

Unit Commitment

Set-Covering

• Acceleration by two lines of 

code

• Remarkable speedup on 

primal solution finding for 

both the state of art MIP 

solvers Gurobi and COPT

• No loss of optimality
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min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

• where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝑔𝑘 ∥ ≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (secondary, second-order condition) 

• First-order methods (FOM) typically need O(𝐧𝟐𝝐-2) arithmetic operations

• Second-order methods (SOM) typically need O(𝐧𝟑𝝐-1.5) arithmetic operations

• New? Yes, HSODM and DRSOM: a single-loop method with O(𝐧𝟐𝝐-1.75) operations 

(Zhang et al. https://arxiv.org/abs/2211.08212)

Accelerated Second-Order Methods for 

Unconstrained Optimization and Applications



(Zhang at al. SHUFE, 2022)

•

•

with a suitable 𝜹k and use the most-left eigen vector as the direction to 

go – a single loop algorithm to solve the original problem and replace the 

Newton step.

•

where Δ𝑘 =𝜖1/2/𝑀 is the trust radius

𝐧𝟐𝝐



Advantage of the Homogeneous Direction over Newton’s

•

• Newton

Homogeneous Direction 

from 𝑯 + δ𝑰

• 𝛿 ↓ 𝜅𝐻↑



• Motivation from Multi-Directional FOM and Subspace Method, such as CG and 

ADAM, DRSOM applies the trust-region method in low dimensional subspace.

• This results in a low-dimensional quadratic sub-minimization problem:

• Typically, DRSOM adopts two directions 𝑑 = −𝛼1𝛻𝑓 𝑥𝑘 + 𝛼2𝑑𝑘

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Then we solve a 2-d quadratic minimization problem to decide the two step-sizes:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘
≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘

𝑇𝑔𝑘 −𝑔𝑘
𝑇𝑑𝑘

−𝑔𝑘
𝑇𝑑𝑘 𝑑𝑘

𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘

𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘
𝑇𝐻𝑘𝑑𝑘

−𝑔𝑘
𝑇𝐻𝑘𝑑𝑘 𝑑𝑘

𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

Dimension Reduced Second-Order Method (DRSOM)



20.000000 23.321928 26.643856 27.643856 28.965784 29.965784

10− 10

10− 8

10− 6

10− 4

10− 2

102

Iterat ion

=

CUTEst model name := SPMSRTLS-1000

GD+ Wolfe

LBFGS+ Wolfe

Newton-T R

CG

DRSOM

DRSOMPlus(homokrylov,1)

HSODM (warm)

Newton-TR (5s)

LBFGS (0.33s)

CG (0.46s)

DRSOM (0.67s)HSODM (0.15s)

DRSOM-Homo (0.51s)

GD (0.66s)

CUTEst example

• GD and LBFGS both use a Line-

search (Hager-Zhang)

• DRSOM uses 2-D subspace

• HSODM and DRSOM + HSODM 

are much better!

• DRSOM can also benefit from the 

homogenized system



Sensor Network Localization I

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as 

the radio range. The SNL problem considers 

the following QCQP feasibility problem,

• We can solve SNL by the nonconvex 

nonlinear least square (NLS) problem



Sensor Network Location II

• Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

• GD with Line-search 

and Hager-Zhang CG 

both timeout

• DRSOM can converge to 

| 𝒈𝒌| ≤ 𝟏𝒆−𝟓 in 2,200s



Zero-Order Optimization: SOLNP+ 
• First proposed by Y in 1989.

• Originally implemented (SOLNP) in Matlab, 1989.

• R implementation (Rsolnp) by Alexios Ghalanos and Stefan Theussl, 
2011.

• New and C implementation (SOLNP+) with improvements, 2022; 
and addition of Randomized BCG and DRSOM for unconstrained 
optimization by Tan et al., 2023

• Github link: https://github.com/COPT-Public/SOLNP_plus

• Use forward difference to evaluate the gradient.



RMP: Multi-Point Random Perturbation 

• Multipoint ZO Gradient Estimates

where 𝑢𝑖 is i.i.d. random direction.

• Advantage: Fewer function queries to evaluate the gradient.



SOLNP+: Adopt Two Strategies 
• With gradient estimates, SOLNP+ implements ZO version of

• ZO-RMP (Ghadimiet al., 2013; Duchi et al., 2014), or
• ZO-BCD, (recent research see Sun/Y 2020, Cai et al., 2021), that is, use 𝑒𝑖

(vector with zero components except that dimension 𝑖 is 1), 
𝑖 is randomly chosen

• DRSOM (Zhang et al., 2022) with interpolation
S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic programming,” 

SIAM J. Optimiz., vol. 23, no. 4, pp. 2341–2368, 2013. doi: 10.1137/120880811
J.C.Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal rates for zero-order convex optimization: 

The power of two function evaluations,”IEEE Trans.Inf Theory, vol.61,no.5,pp.2788-2806,2015.doi: 

10.1109/TIT.2015.2409256.

R. Sun and Y. Y, “Worst-case complexity of cyclic coordinate descent:  O(n2) gap with randomized version.” 

Mathematical Programming, Volume 185, 487-520, 2021.

Cai, HanQin, et al. "A zeroth-order block coordinate descent algorithm for huge-scale black-box 

optimization." International Conference on Machine Learning. PMLR, 2021.

Zhang, Chuwen, et al. "DRSOM: A Dimension Reduced Second-Order Method and Preliminary 

Analyses." arXiv preprint arXiv:2208.00208 (2022)



Experiments in Large Problems: Rosenbrock I
• Rosenbrock function is a well-known nonconvex functions in the form of

𝑓(𝒙) =  

𝑖=1

𝑛−1

100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2

• ZO-Adamm, ZO-SGD and ZO-DRSOM are tested in a 1200 dimensional 
Rosenbrock problem.
• Batch size 50
• Each experiment is repeated for 10 times.

Chen, Xiangyi, et al. "Zo-adamm: Zeroth-order adaptive momentum method for black-box 
optimization." Advances in neural information processing systems 32 (2019).



Experiments in Large Problems: Rosenbrock II

• ZO-RMP-DRSOM, ZO-
RBCD-DRSOM and ZO-
SGD decrease most 
smoothly. However, 
inappropriate parameters 
lead to worse performance 
of ZO-SGD and 

ZO-ADAMM.



Experiments in Large-Sacle Problems: SNL I

• ZO-Adam, ZO-SGD,
ZO-RBCD-DRSOM and 
ZO-RMP-DRSOM are 
tested in a 150-sensor 
SNL problem.
• Batch size 60
• Each experiment is 

repeated for 10 
times.



Overall Takeaways

Know the pros and cons of OR and AI models and use 
them intelligently

Most OR optimization models/algorithms can be readily 
adopted for online training

Pre-training greatly improves Mixed Integer LP solvers 
that benefit real economy

Better to integrate ZOM, FOM and SOM for Nonlinear 
and/or Black-Box Optimization!

• THANK YOU


