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2. 0Online Training Algorithms and Applications

3. Pre-Trained Mixed Integer Linear Programming
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Algorithms?



Linear Programming and LP Giants won Nobel Prize...

IMax 2 T[ij




Online Linear Programming:
an Online Auction Example

There Is a fixed selling period or number of buyers; and there is a fixed
Inventory of goods

Customers come and require a bundle of goods and make a bid
Decision: To sell or not to sell to each individual customer on the fly?
Objective: Maximize the revenue.

Bid # $100 $30 Inventory
Decision x1 X2
Pants 1 0 100
Shoes 1 0 50
T-Shirts 0 1 500
Jackets 0 0 200
Hats 1 1 1000




Online Linear Programming Model and Theory

s OLP theory and practice (Agrawal et al. 2010,14, Li&Y 2022)

max z T[ij

m OLP:

0 Variables together with their data points arrive sequentially and
decision makers need decide x; on the fly, that Is, before knowing
the “future” data points

0 Learning-while-Doing vs Learning-First and Deciding-Second
(collect and learn all relevant data, then solve for all x)

0 Offline LP’s objective value is a upper bond for the online version
1 Is there an optimal online decision algorithm/mechanism




Price Mechanism for Online Auction

Learn and compute itemized optimal prices
Use the prices to price each bid internally
Accept if it is a over bid, and reject otherwise

There is an Optimal Online Algorithm to achieve the best you could do!
Massive episodes are transferred into Knowledges that can be stored/reused

Bid # $100 $30 Inventory Price?
Decision X1 X2
Pants 1 0 100 45
Shoes 1 0 50 45
T-Shirts 0 1 500 10
Jackets 0 0 200 55
Hats 1 1 1000 15




The Online Algorithm can be
Applied to Bandits with
Knapsack (BwK) Applications

* For the previous problem, the decision
maker first wait and observe the
customer order/arm and then decide
whether to accept/play it or not.

* An alternative setting is that the
decision maker first decides which AFFILIATE

order/arm (s)he may accept/play, and .y o A
then receive a random resource = b e c’;‘)"_“"
consumption vector a; and yield a de:fiDIgSfE 880_

random reward 1; of the pulled arm.
 Known as the Bandits with Knapsacks, A DV E RTl S I N G
and it is a tradeoff exploration v.s.
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* The decision variable x; represents the total-times of pulling the j-th arm.

e We have

developed a two-phase algorithm

* Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic
variables/arms with as fewer number of plays as possible

* Phase Il: Use the arms in the optimal face to exhaust the resource through an adaptive
procedure and achieve fairness

* The algorithm achieves a problem dependent regret that bears a logarithmic
dependence on the horizon T. Also, it identifies a number of LP-related
parameters as the bottleneck or condition-numbers for the problem

* Minim
* Minim

UM non-zero reduced cost

um singular-values of the optimal

basis matrix.

* First algorithm to achieve the O(log T) regret/gap bound [Li, Sun & Y 2021
ICML] (https://proceedings.mir.press/v139/li21s.html)
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M N
max E E U jXij 3.3 MCKP-Allocation

We adopt the primal-dual framework proposed by [2] to solve the
M N problem defined in Equation 5. Let @ and f§; be the associated dual

s.t. cixij = B - ~ - -
Z Z JXij , (5) variables respectively. After obtaining the dual variables, we can
solve the problem in an online fashion. Precisely, according to the

N | principle of the primal-dual framework, we have the following
Zl‘r j= 1 Vi allocation rule:
J

xij 20, Vi j N 1, where j = arg max;(v;; — ac;)
/ 0, otherwise

(9)




A key resource allocation model to achieve
efficient allocation is the Fisher Market

Agent 1 u;; : Preference of Agent ¢ for one unit of good 3
@

z;; : Quantity of good j purchased by person 7
p; : Price of Good ]

w; : Budget of Agent %
w Individual Optimization Problem:
' D i

IMnax
: X
, 3 y
% s.t. p'x; < w;
X, Z 0
Cq C) C3 Do Prices exist to CLEAR the market?
D1 D9 D3 (Prices are posted and known to all agents so

M = Total Number of Goods that they have freedom to choose)s



The prices can be derived from a centralized optimization
problem with a budget-weighted social objective
(Eisenberg-Gale)

Individual Optimization Problem: Social Optimization Problem:

. E w; lo E Wi i L
n}{axi :’“’%ﬂ:m x; ‘v’zE[N ! g( " ”)
II' -

S.t -
St pTX,i S W; B Zmﬁj < cj,‘v’y S [M]

T~
X, 2 0 Capacity Constraints

— p; : Price of Good 7 = Dual Variable of Constraint j

C; can be decision variables subject to other
resource constraints -



Online Market Pricing: How to update posted-prices to minimize
regret of the Eisenberg/Gale social welfare while achieving
market clearness

Agentt+1




We develop a revealed preference algorithm with sub-

linear regret and constraint violation guarantees
Algorithm 2: Revealed Preference Algorithm for Online Fisher Markets

Input Number of users n, Vector of good capacities per user d = ~
Initialize p* > 0 ;

fort=1,2,....,n do

Phase I: ;

User purchases an optimal bundle of goods x; given the price p* :
Phase II (Price Update): ;

pt+1 — p' — v (d — Xt) Difference between market share of
end / \each agent and goods purchased
Only requires knowledge of user consumption (and

(1
Step-size: 0 (\/_ﬁ) not their budgets or utilities) to update prices

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when
good capacities are O(n), Algorithm 2 achieves an expected regret of R, () < 0(y/n) and
expected constraint violation of V, () < 0(1/n), where n is the number of arriving users.
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MILPI: Unit Commitment Problem

* Electricity is generated from units (various
generators)

* Transmitted safely and stably through power
grids

* Consumed at minimum (reasonable) price

Optimization has its role to play

minimize Cost of electricity
subject to  Safety and Stability

Adaptivity to various units /- I \

Unit commitment problem dispatches the units
safely and stably at minimum cost




MILPII: Beljing-Shanghal
High-speed Railway Scheduling Optimization

COPT, Cardinal Operations 2022
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Risk-Pooling Cuts in MILP

* Given an MILP, the fraction solution tells us

y1(€) S50
(6 || 012
7.(8) 0.38

* Each y Is the likelihood a variable takes 1 or O Iin the optimal solution
* Each variable introduces some risk/variance of such rounding

so that dealing them separately results in extremely risk outcomes

Q: What should we do seeing a set of risky guesses? A: Put them in a pool!



Risk-Pooling Cuts via Moment Ambiguity of DRO

* Pooling the binary variables by adding “confidence” cardinality cuts

g yi (&) > || Yy <BIL]

ieU={j:y;(£)>0.9} i€ {j:9,(€)<0.1}
* Intuitively we know that the above two Inequalities are expectedly to hold for «
- 09and f - 0.1

* These two Inequalities are exactly cutting planes for MILP
* Choose «a, ff to Increase the confidence level:

Interpret y;k as some random variables with expectation Qj, then justify it

Massive data are transferred into Knowledges that can be
stored/reused



Statistical Confidence Cut Generation (Gao at al. SHUFE, 2023)

/ Optimum \
f \
Feasible Region
* Overall, the two cuts (and their complement) split the whole feasible region into four
regions

C L e

* Solving the most likelihood region of two cuts often gives a satisfying solution with
confidence

* Branching over all four regions independently will not miss the optimal solution



Numerical Test Results |

* The method Is tested on multi-knapsack, set-covering and unit-commitment
problems

Train from 500 instances and test on 20 instances

* Measure the speedup of finding a good solution on In the region formed by two
cuts

B Gurobi B COPT

Min
1.032

10, 250, L. 10, 250, M 10, 250, H 10, 500, L. 10, 500, M 10, 500, H 30, 250, L. 30, 250, M 30, 250, H 30, 500, L. 30,500, M 30, 500, H

Average speedup on knapsack instances



Numerical Test Results I

* Acceleration by two lines of
code

* Remarkable speedup on
primal solution finding for
both the state of art MIP
solvers Gurobi and COPT

* No loss of optimality

Speed Up
ek o w = un (=) ~1 - -}

Min
0.676

3000.5000.L. 3000, 5000, M  3000.5000.H 4000, 6000.L.  4000,6000.M 4000, 6000. H

Unit Commitment

B Gurobi B COPT

Min
3.924

1000, 10000. L. 1000, 10000.M 1000,10000.H 2000,10000.1. 2000,10000.M 2000,10000.H 2000,20000.1. 2000,20000.M 2000,20000, H

Set-Covering
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Accelerated Second-Order Methods for
Unconstrained Optimization and Applications
min f(x),x € X in R",
* where f Is nonconvex and twice-differentiable,
gr = Vf(xx), He = V2 (x)
* Goal: find x; such that:
| gk Il < € (primary, first-order condition)
Anin(Hp) = —/e  (secondary, second-order condition)
 First-order methods (FOM) typically need O(n?e%) arithmetic operations
« Second-order methods (SOM) typically need O(n3e ) arithmetic operations
* New? Yes, HSODM and DRSOM: a single-loop method with O(n%e1->) operations
(Zhang et al. https://arxiv.org/abs/2211.08212)



An Integrated Descent Direction Using the
Homogeneous Model (Zhang at al. SHUFE, 2022)

 The Newton-based trust-region method minimizes the Taylor quadratic model

2
where A, =¢'/? /M is the trust radius

* -g, isthe first-order steepest descent direction but ignores Hessian; the most-left
eigenvector of H -would be a descent direction for the second order term
* Could we construct a direction integrating both?

Answer: With a suitable 6, and use the most-left eigen vector as the direction to

go — a single loop algorithm to solve the original problem and replace the
Newton step.

|
min m(d) := g/d + szde

H
deR” & k gk
A INT)
st||d]| < A, . ac [ ]

Hk 8k

i

O(n%et"?) vs O(n3) operations



Krylov Iterations: K

150

100

o0

Advantage of the Homogeneous Direction over Newton’s

GHM (Lanczos
method)

[ 0 [

Newton (CG)

Newton (GMRES)

mnln

Newton (GMRES)
Restarted

i

IRy =2.2e+00
kg =2.2e+07
1K g =2.2e+09
Ry =2.2e+10

GHM-Lanczos

|
Newton-CG Newton-GMRES

Method

Newton-rGMRES

* Consider Hilbert matrix

 Computing a Newton step by
iterative methods versus
Homogeneous Direction

from H + 61

* 0 | Condition number k1



Dimension Reduced Second-Order Method (DRSOM)

* Motivation from Multi-Directional FOM and Subspace Method, such as CG and
ADAM, DRSOM applies the trust-region method Iin low dimensional subspace.
* This results in a low-dimensional quadratic sub-minimization problem:

* Typically, DRSOM adopts two directions d = —aVf(x;) + a*d,
where g, = Vf(xy), Hy = sz(xk); die = X — Xg-1
* Then we solve a 2-d gquadratic minimization problem to decide the two step-sizes:

min mf (o) = f(xi) + () o+ ;o Qe

o] |G, < Ag
| 9k9x 94k | 9kcHr9r  —9iHidi REIrAE
Gk — T T )Qk — T T ) O = Td
—grdy  dpdg —9grHedy  dpHypdyg i Ak



V=€

102 |

10—2 |

10—4 |

10—6 |

10-8 |

10—10 |

Preliminary Results: HSODM, DRSOM and DRSOM+HSODM

CUTEst model name := SPMSRTLS-1000

HSODM (0.15)

DRSOM-Homo (0.519)

Newton-TR (5s)

LBFGS (0.339)
CG (0.465)
DRSOM (0.675)

GD (0.665)

00000000

[teration

66666666

GD+ Wolfe
LBFGS+ Wolfe
Newton-TR
CG
DRSOM
DRSOMPIlus(homokrylov,1)
HSODM (warm)

CUTESt example
GD and LBFGS both use a Line-

search (Hager-Zhang)
« DRSOM uses 2-D subspace
« HSODM and DRSOM + HSODM
are much better!
« DRSOM can also benefit from the
homogenized system



Sensor Network Localization |

* Consider Sensor Network Location (SNL)

where 74 Is a fixed parameter known as 2
the radio range. The SNL problem considers TN
the following QCQP feasibility problem,

|lzi — z;||* = d};,V(4,§) € Na
|lzi — ax||? = d2,V(i,k) € N,

* We can solve SNL by the nonconvex
nonlinear least square (NLS) problem

A/ LAN
K\.Z)Loab'onme
2/ RF Controller
%) RF Reader

T

min > (lz— 32 —di)?+ D (lak —xll” — diy)*.

X
(i<j:j)€N£B (k,j)GNa



Sensor Network Location Il

* Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

* GD with Line-search
and Hager-Zhang CG
both timeout

®  Truth

4  Anchors
O DRSOM
O GD

O CG

« DRSOM can converge to
| 9| < 1e™ in 2,200s
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Zero-0rder Optimization: SOLNP+

* First proposed by Y in 1989.

* Originally implemented (SOLNP) in Matlab, 1989.

* R implementation (Rsolnp) by Alexios Ghalanos and Stefan Theussl,
2011.

* New and C implementation (SOLNP+) with improvements, 2022;
and addition of Randomized BCG and DRSOM for unconstrained
optimization by Tan et al., 2023

* Github link: https://github.com/COPT-Public/SOLNP_plus
* Use forward difference to evaluate the gradient.

£ —|—(58i — J\L
Viflz)]; = ft 6) ft ):

e; = [0, .1, - 0].



RMP: Multi-Point Random Perturbation

* Multipoint ZO Gradient Estimates

Vf(z) := 56 Z[ (z+0w;) — f(z)) ug
3[Vf(z)] = Vfa( )
f5(z) = Ey[f(z+ du)]

where u; 1s 1.1.d. random direction.

* Advantage: Fewer function queries to evaluate the gradient.



SOLNP+: Adopt Two Strategies

* With gradient estimates, SOLNP+ implements ZO version of

* /O-RMP (Ghadimiet al., 2013; Duchi et al., 2014), or

* /O-BCD, (recent research see Sun/Y 2020, Cal et al., 2021), that I1s, use e;
(vector with zero components except that dimension t is 1),
i israndomly chosen

* DRSOM (Zhang et al., 2022) with interpolation

S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic programming,”
SIAM J. Optimiz., vol. 23, no. 4, pp. 2341-2368, 2013. doi: 10.1137/120880811

J.C.Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal rates for zero-order convex optimization:
The power of two function evaluations,”|EEE Trans.Inf Theory, vol.61,n0.5,pp.2788-2806,2015.dol:
10.1109/T1T.2015.2409256.

R. Sun and Y. Y, “Worst-case complexity of cyclic coordinate descent: O(n?) gap with randomized version.”
Mathematical Programming, Volume 185, 487-520, 2021.

Cai, HanQin, et al. "A zeroth-order block coordinate descent algorithm for huge-scale black-box
optimization." International Conference on Machine Learning. PMLR, 2021.

Zhang, Chuwen, et al. "DRSOM: A Dimension Reduced Second-Order Method and Preliminary

Analyses." arXiv preprint arXiv:2208.00208 (2022)




Experiments in Large Problems: Rosenbrock |

* Rosenbrock function i1s a well-known nonconvex functions in the form of

n-—1
FO) = ) 1000 —x2)* + (x; — 1)7
1=1

e /O0-Adamm, ZO-SGD and ZO-DRSOM are tested in a 1200 dimensional

Rosenbrock problem.
* Batch size 50
* Each experiment is repeated for 10 times.

Chen, Xiangyi, et al. "Zo-adamm: Zeroth-order adaptive momentum method for black-box
optimization."” Advances In neural information processing systems 32 (2019).



Experiments In Large Problems: Rosenbrock ||

* /O-RMP-DRSOM, ZO-
RBCD-DRSOM and ZO-
SGD decrease most
smoothly. However,
iInappropriate parameters
lead to worse performance

of ZO-SGD and
/O-ADAMM.

Function Value

—a
-
P

—
=
-5

-
=
-

—
<
—

—a
<
P

—
S
Cad

1000 Dimensional Rosenbrock Problem, Batch Size 50

N Z0O-RMP-DRSOM
e Z0-RBCD-DRSOM

Z0Adamm:betal = 0.70,betaz2=0.80
Z0Adamm:betal = 0.80.beta2=0.90

Z0-5GD:Stepsize 1.00e-02
Z0-5GD:Stepsize 5.00e-02

0.5 1 1.5 2 2.5 3
Function Evaluation

3.5
% 10"



Experiments In Large-Sacle Problems: SNL |

300 Dimensional SNL Problem, 150 sensor, 50 anchor, Batch Size 60

« /ZO-Adam, ZO-SGD, 10° .
————— ZO-RMP-DRSOM
ZO - Q BC ) - D RSO I\/ a ﬂd . o s 1 ZO-RBCD-DRSOM
/O-RMP-DRSOM are 104 E \\ Z0Adamm:beta1 = 0.70,beta2=0.80 _
_ 5 o \\ Z0Adamm:betal = 0.80,betaZ=0.90 ]
tested In a 150-sensor BTN Z0-SGD:Stepsize 1.00e-02
SN or oblem , : \ Ny Z0-SGD:Stepsize 5.00e-02
— ' 10° F -\, ) E

* Batch size 60

* Each experiment is
repeated for 10
times. 02k

Function Value
o
-
1

,1[}_5. - | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.9 4 4.5

Function Evaluation 10"



Overall Takeaways

Know the Fros and cons of OR and Al models and use
them intelligently

Most OR optimization models/algorithms can be readily
adopted for online training

Pre-training greatly improves Mixed Integer LP solvers
that benefit real economy

Better to integrate ZOM, FOM and SOM for Nonlinear
and/or Black-Box Optimization!

* THANK YOU



