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Stochastic programming can effectively describe manysitatimaking problems in uncertain environments. Unfortu-
nately, such programs are often computationally demandisglve. In addition, their solution can be misleading when
there is ambiguity in the choice of a distribution for the dam parameters. In this paper, we propose a model that
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ance matrix). We demonstrate that for a wide range of cogttioms the associated distributionally robust (or min-jnax
stochastic program can be solved efficiently. Furthermioyegleriving a new confidence region for the mean and the
covariance matrix of a random vector, we provide probafilarguments for using our model in problems that rely heav-
ily on historical data. These arguments are confirmed in etioed example of portfolio selection, where our framework
leads to better performing policies on the “true” distribntunderlying the daily return of assets.
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1. Introduction

Stochastic programming can effectively describe manysi@timaking problems in uncertain environ-
ments. For instance, given that one is interested in solviognvex optimization problem of the type

minimize h(x,&) ,
whereX is a convex set of feasible solutions ah(k, £) is a convex cost function is that depends on
some parameters it is often the case that at the time of optimizing, the partars have not yet been fully
resolved. For examples, an investment manager cannot Kreexact return for any available securities;
or in a different context, a manufacturing producer canmotkthe exact size of future demand.
If one chooses to represent his uncertainty algotlirough a distributionf,, one can instead resort to
minimizing the expected cost. This leads to solving a stettb@rogram:

(SP) miilier)r(lize E¢[h(x,8)] ,

where the expectation is taken with respect to the randoemnpeterst € R™. Thus, based on a well for-
mulated stochastic model, our investment banker can nowsgha portfolio of stocks which maximize
long-term expected return, or similarly our company caretalrly manufacturing decisions which lead
to highest expected profits. Unfortunately, even when thésSPconvex optimization problem, in order
to solve it one must often resort to Monte Carlo approximejavhich can be computationally challeng-
ing (see Shapiro (2000)). A more challenging difficulty taases in practice is the need to commit to a
distribution f, given only limited information about the stochastic partere
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In an effort to address these issues, a robust formulatiorstfichastic programming was proposed
in Scarf (1958). In this model, after defining a $&bf possible probability distributions that is assumed to
include the truef,, the objective function is reformulated with respect towuwest case expected cost over
the choice of a distribution in this set. Hence, this leadsdiving the Distributionally Robust Stochastic
Program:

(DRSP) minimize (rf?gz})( E¢[h(x, §)]>
Since its introduction, this model has gain a lot of inteiashe context of computing upper bounds on
the moment of a random vectarg, the moment problem as reviewed in Landau (1987)), comguipper
bounds on the optimal value of a stochastic program (e.girgeBand Wets (1987) and in Kall (1988)), or
providing robust decisions in contexts where distribufimiormation is limited (e.g. in Dupacova (1987)
and in Shapiro and Kleywegt (2002)).

Depending on the context, authors have considered a widge rainforms for the distributional sé®.
Interestingly, if one chooses the distributional set to he that contains distributions that put all of their
weight at a single point anywhere in the parameter suppois sthen the DRSP reduces to a so-called
robust optimization problem with respect to the worst mlon ofé in S (e.g, in Ben-Tal and Nemirovski
(1998) and in Bertsimas et al. (2007)). Otherwise, in Lagaé Barmish (2002) and in Shapiro (2006),
the authors consider a set that contains unimodal disiitsithat satisfy some given support constraints;
under some conditions dnz, £), they characterize the worst distribution as being a umifdrstribution.
The most popular type of distributional sBtimposes linear constraints on moments of the distribution
as is discussed in Scarf (1958), in Dupacova (1987), ikdpr@ (1995) and in Bertsimas and Popescu
(2005). While many more forms of distributional set can beni in the literature (see Dupacova (2001)
and reference therein), our work falls in the category ofrapphes that consider constraints on the first and
second moments of the distribution.

In order to make the DRSP model tractable, approaches thatdgr moment constraints have typically
assumed that these moments are known exactly and that Huetolénear equality or inequality constraints.
For example, in his original model, Scarf considered a ongedsional decision variable representing
how much inventory one should hold, and a single parangatepresenting a random demand with known
mean and variance. The return function had the féXm, £) = — min{r¢ — cx , r{ — cz}. To solve this
model, Scarf exploited the fact that the worst case digiobuwf demand could be chosen to be one with
all its weight on two points. This idea was reused in Yue ef2006), in Zhu et al. (2006) and in Popescu
(2007) where, although the objective functions take mamrasting forms, they all assume known first and
second moments of the stochastic demand and their solutinoals all rely on characterizing the worst
case distribution as a point distribution.

The computational difficulties related to dealing wittof a larger dimension and with richer objective
functions have limited the practical application of the DR®odel. More specifically, although in some
cases the worst case moment expression can be simplifiegtiaally, like in the linear chance constraint
problem considered in Calafiore and El Ghaoui (2006), it jécs that the model becomes intractable (or
NP-Hard to solve) and that only global optimization methods be employed to get an optimal solution
(e.g, in Ermoliev et al. (1985) and in Gaivoronski (1991)). fertmore, the current approaches can lead to
a false sense of security since they often falsely assunw knawledge of mean and covariance statistics
for the stochastic parameters. For instance, in many datardoroblems, one must estimate these moments
based on limited historical data assumed to be generated/ffroAs the experiment presented in Section 4
will demonstrate, disregarding the uncertainty (or noisé)ese estimates can lead to taking poor decisions.

The main contribution of this paper is two-fold. First, wegent a new sdb of distributions that takes
into account knowledge about the distribution’s suppod @aconfidence regiofor its mean and its covari-
ance matrix. In Section 2, we show that under this distrdnél set the DRSP can be solved in polynomial
time for a large range of objective functions. In fact, theisture of our distribution set allows us to solve
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instances of the DRSP that are known to be intractable umgecurrent exact-moment approaches (see
Example 1 of Section 2.3 for more details). As a second daurticn, in Section 3, after deriving a new
confidence region for covariance matrices, we show how oepgsed distributional set is well justified
for addressing data-driven problenig( problems where the knowledge ois solely derived from his-
torical data). Finally, our model is applied to a portfolielection problem in Section 4. In the context of
this application, our experiments demonstrate that, lesstdmputational advantages, our model performs
better in practice on the distribution that drives the dedlyirn of popular stocks compared to other DRSP
formulations.

2. Robust Stochastic Programming with Moment uncertainty

As we mentioned earlier, it is often the case in practice tmet has limited information about the dis-
tribution f. driving the uncertain parameters which are involved in theislon-making process. In such
situations, it might instead be safer to rely on estimatethefmeary,, and covariance matriX, of the
distribution:e.g, empirical estimates. However we believe that in suchlpruob, it is also rarely the case
that one is entirely confident in these moments. For thisogase propose representing this uncertainty
with the following set parameterized by > 0 and~, > 1:

(B[] = 110) ™35 (B[€] = o) <m (1)
E[(§ —po)(€—po)T] =m0 . (1b)

While Constraint (1a) assumes that the meag la#s in an ellipsoid of size, centered at the estimatg,
Constraint (1b) forces the covariance maffiX¢ — ) (€ — o) '] to lie in a positive semi-definite cone
bounded by a matrix inequality. In other words, it describew likely ¢ is close top, in terms of the
correlations expressed . Note that the parametefs and~, provide natural means of quantifying the
size of one’s confidence im, andX, respectively.

In what follows, we will study the DRSP model under the disitional set

PeS)=1
D1(S, o, X0, 711,72) = 4 fe € M| (B[] — 110) "S5 (B[E] — o) <1 ¢
E[(& — po) (& — MO)T] =220

where M is the set of all probability measures on the measurablees@&¢, B), with B the Borel
o-algebra onR™, andS C R™ is any closed convex set known to contain the supporf.0fThe set
D1 (S, o, X0, 71,72), Which will also be referred to in short-hand notationZas can be seen as a gen-
eralization of many previously proposed sets. For exanIésS, 1,1,0,00) imposes exact mean and
support constraints as is studied in Dupacova (1987) arBeitisimas and Popescu (2005). Similarly,
D1 (R™, 1o, 30,0, 1) relates closely to the exact mean and covariance matrixreonts considered in Scarf
(1958), in Yue et al. (2006) and in Popescu (2007). We wilkvskimat there is a lot to be gained, both on a
theoretical and practical point of view, by formulating tA&SP model using the s&, (S, 10, X0, V1,72)
which constrains all three types of statistics: supporamend covariance matrix.

REMARK 1. While our proposed uncertainty model cannot be used teesgprbitrarily large confidence
in the second order statistics 6f in Section 3 we will show how in practice there are naturaysvaf
assigningug, X, 71 and~y, based on historical data. Of course, in some situationsghntie interesting to
add the following constraint:

Y350 SE[(§ — po) (€ — o) 7] (2)

where0 < 3 < v,. Unfortunately, this leads to important computationafidifities for the DRSP model.
Furthermore, in most applications of our model, we expeettbrst case distribution to actually achieve
maximum variance, thus making Constraint (2) unnecessatyexample, an instance of the portfolio
optimization problem presented in Section 4 will have tiiaracteristic.
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2.1. The Inner Moment Problem with Moment Uncertainty

We start by considering the difficulty in solving the innerximaization problem of a DRSP that uses the
setD;.

DEFINITION 1. Given a fixedr, let U(x;~,,7.) be the optimal value of the moment problem:

maximize E¢[h(x,§)] . (3)

fe € D1

Sincef is a probability measure aiiR™, 5), Problem (3) can be described as a semi-infinite conic linear
problem:

max}gmize /5 h(x,&)df(§) (4a)
subject to / dfe(€) =1 (4b)
S(f — t10) (€ — o) "dfe(€) < 7230 (4c)

e S € arer =0 (4c)

foeM . (4e)

As itis often done with moment problems, since we are syriatierested in the optimal value of this prob-
lem, we can shortcut the difficulties in solving this probleymmaking use of duality theory (see Rockafeller
(1970) and Rockafeller (1974) for a detailed theory of dyaii infinite dimensional convex problems and
both Isii (1963) and Shapiro (2001) for the case of generahera problems).

LEMMA 1. For a fixedx € R", given thaty; >0, v, > 1, ¥, > 0, andh(x, {) being f¢-integrable for all
fe € D1, ¥(x;71,72) is finite and equal to the value of the following dual problem:

mglimitze r+t (5a)

.,

subject to r>h(x,£) —£TQE—ETq VEES (5b)
t> (1220 + oty ) @ Q+ pga+ /A1 155 (@ +2Quo) | (5¢)
Q=0, (5d)

where( A e B) refers to the Frobenius inner product between matri€@s R™*™ is a symmetric matrix,
the vectorq € R™ and r,t € R. In addition, there exists a set of real-valued assignmént$Q, q, r,t)
that achieves optimality for Proble(B).

We defer the proof of this Lemma to the appendix since it tedtubm the application of well established
concepts in duality theory.

To show that there exists a tractable solution method fovisglProblem (5), we employ a famous
equivalence between convex optimization and convex setragpn.

LEMMA 2. (Grotschel et al. (1981)) Consider a convex optimization pgobbf the form

minimize ¢’z
z2€EZ

with linear objective and convex feasible st Given that the the set of optimal solutions is non-empty,
the problem can be solved to any precisian time polynomial inog(1/¢) and the size of the problem by
using the ellipsoid method if and only4f satisfies the following two conditions :

1. foranyz, z € Z can be verified in time polynomial in the dimension pf

2. for any infeasiblez, a hyperplane that separatesfrom the feasible sef can be generated in time
polynomial in the dimension of
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A first application of this lemma leads to quantifying thefidiflty of solving the feasibility problem
associated with Constraint (5b).

AssumMPTION1. The supportsef C R™ is convex and compact (closed and bounded), and it is eqdippe
with an oracle that can for ang € R™ either confirm that € S or provide a hyperplane that separates
from S in time polynomial inm.

LEMMA 3. Let functionh(x, &) be concave i and be such that one can provide a super-gradiertiof
time polynomial inm. Then, under Assumption 1, for any fixed assignme >~ 0, andq, one can find
an assignmert. that is e-optimal with respect to the problem

mayiignize t (6a)
subject to < h(x,£) —£'Q¢ —€q (6b)
£es (6¢)

in time polynomial inog(1/¢) and the size of the problem.

Proof: First, the feasible set of the problem is convex s@ce 0 so thath(x, ) — £TQE —ETqis a concave
function in¢. Because is compact, the set of optimal solutions for Problem (6) eséffiore non-empty. By
Assumption 1, Condition (1) and (2) in Lemma 2 are met for @amst (6¢). On the other hand, feasibility
of Constraint (6b) can be verified directly after the evahrabf 1 (x,); and for an infeasible assignment
(€,1), the following separating hyperplane can be generatedlimpmial time:

t— (th(x> g_) - 2Qg_ q)TE < h(X7 g) - th(xv E)Tg+ E_FQE 5

whereV h(x, ) is a super-gradient df(x, -). It follows from the application of Lemma 2 that the ellipdoi
method will converge to asroptimal solution in polynomial time. [J

We are now able to derive an important result about the caxitpleroblem (4) and Problem (5) under a
more general form ok(x, £).

ASSUMPTION2. The functiom(x, £) has the fornmh(x, ) = maxcqi,.. .k} hi(x,€) such that for each,
hi.(x,€) is concave ir€. In addition, given a pai(x, &), it is assumed that one can in polynomial time:
1. evaluate the value dfy(x,§)
2. find a super-gradient o (x, ) in &.
Furthermore, for any € R™, g € R™, and positive semi-defini® € R™*™, the sefy e R | 3¢ € S, y <
h(x,&) —q'¢ —£7Q¢} is closed.

PROPOSITIONL1. Given thatS satisfies Assumption 1 and thatx, £) satisfies Assumption 2, Problgs)
is a convex optimization problem and can be solved toegorgcision in time polynomial itog(1/¢) and
the size of the problem.

Proof: First, the feasible set of the problem is convex@ q, r,¢) since(y2Xo + pouy) ® Q + pjq +

N 1262 (q + 2Quue) || is @ convex function iNQ,q). By Lemma 1, we are assured that the optimal
solution set of Problem (5) is non-empty. In order to applynioea 2, we verify the two conditions for each
constraint of Problem (5). In the case of Constraint (5dsiieility can be verified irO(m?) arithmetic
operations. Moreover, a separating hyperplane can be afederif necessary, based on the eigenvector
corresponding to the lowest eigenvalue. The feasibilit¢ofnstraint (5c¢) is also easily verified. Otherwise,
based on an infeasible assignmé@, q,7,%), a separating hyperplane can be constructed in polynomial
time:

(7220 + poty +Vag(Q, @) e Q+ (10 +V4e9(Q,a)'a—t < Vq9(Q,a)'a+Vqy(Q,q)eQ-9(Q,a) ,
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whereg(Q,q) = 71 |20 (a+2Quo)|| andVqg(Q, q) andV.g(Q, q) are its associated gradientsin
andq respectively. Finally, given the assumed structurg(of, £ ), Constraint (5b) can be decomposed into
K sub-constraints

r>hp(x,6)—€ETQE—ETq VEES Ve {l1,2,....K}
When considering the-th sub-constraint, it was already shown in Lemma 3haf s hx(x,§) — £TQE —
£Tq can be solved to an precisierin polynomial time. Given that the optimal value is found ®dbove

r + ¢, one can conclude infeasibility of the constraint and geteean associated separating hyperplane
using any optimal solutiog, as follows:

(& eQ)+&q+ T >Ry (x,E) -

SinceK is finite, the conditions derived from Grotschel et al. (1P8re necessarily met by Problem (5).
We therefore conclude that(x;~,,v,) can be computed up to any precisiom polynomial time using
the ellipsoid method. [J

2.2. The Distributionally Robust Stochastic Program with Moment Uncertainty

Based on our result with the inner moment problem, we can muress the existence of a tractable solution
method for a DRSP model under the distributionalBet

minimize ( max Eg[h(x,f)]> (7a)
X f§ € Dy
subjectto xe€ X . (7b)

AssuUMPTION3. The sett’ C R" is convex and compact (closed and bounded), and it is eqdipfib an
oracle that can for ank € R™ either confirm thakk € X" or provide a hyperplane that separategrom X’
in time polynomial im.

ASSUMPTION4. The functiom(x, ) is convex ink and satisfies Assumption 2. In addition, it is assumed
that one can find in polynomial time a sub-gradient@k, &) in x.

PROPOSITION2. Given that Assumption 1, 2, 3 and 4 hold, then the DRSP moesépted in Probler{y)
can be solved to any precisierin time polynomial inog(1/¢) and the sizes of and¢.

Proof: The proof of this theorem follows similar lines as fireof for Proposition 1. We first reformulate
the inner moment problem in its dual form and use the factttiatmin operations can be performed jointly
and that the constraint involvinig x, {) decomposes. This leads to an equivalent convex optimizédion
for Problem (7):

migimizte r+t (8a)

x,&,q,7,

subject to 7> hy(x,6) —€'Q¢—€'q , VEES, ke{l,..,K} (8b)
t> (1250 + popg) ¢ Q+pia+ A1 126 (a+2Quo) | (8c)
Q=0 (8d)
rekX . (8e)

As in the proof of Proposition 1, we need to show that the gtlig method can be successfully applied.
BecauseY is compact and because of Lemma 1, we are assured that theabptilution set is non-empty.
The arguments that were presented in the proof of Propoditistill apply for Constraint (8c) and (8d).
However, the argument for Constraint (8b) needs to be tedsincex is now considered as an optimiza-
tion variable. Feasibility of an assignmeist, Q, q, 7) can still be verified in polynomial time because of
Lemma 3 and of the fact thd{ is finite. However, in the case that one of the indexed coimitrasay the
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k*-th one, is found to be infeasible, one now needs to genesdparating hyperplane using the worst case
& andVyh(x,&,), a sub-gradient o« (-, &) atx:

(f*g*—r o Q) + S*Tq—i_ r— vxhk* (i7 g*)TX > hk* ()_(a f*) - vwhk* ()_(a 5*)1—)_( .

Since by Assumption 4, a sub-gradieVith,(%,&,.) can be obtained in polynomial time and since, by
Assumption 3, the conditions are met for Constraint (8e)cam conclude that Lemma 2 can be applied.
Problem (8) can therefore be solved to any precision in potyial time. [

We believe this result should be of high significance for libdoreticians and practitioners as it indicates
that, if min, max, h(x, &) is a tractable robust optimization problenf.( Ben-Tal and Nemirovski (1998)
and Bertsimas et al. (2007)), then the less-conservativBfRin, max;.cp, E[h(x,£)] is also tractable.

In some cases, the inner moment problem might even be rddwagiblytically (see Section 4 for an exam-
ple). Moreover, one still has access to the wide spectrumeaihats that have been proposed for robust
optimization problems: ranging from methods that use egftilanes more efficiently such as in Goffin and
Vial (1993), in Ye (1997) and in Bertsimas and Vempala (20@Hmnethods that approximate the feasible
set with a finite number of sampled constraints such as in Dieg~and Van Roy (2001) and in Calafiore
and Campi (2005).

REMARK 2. The constrain@ > 0 plays an important role in making Problem (7) solvable inypolmial
time. This constraint corresponds to the covariance mateiguality in our distribution sé®, construction.

If the inequality is replaced by an equality, thénis “free” and Problem (6) is no longer a convex opti-
mization problem. This explains why many DRSP problems utiteeexact-covariance knowledge actually
become intractable.

REMARK 3. We also remark that the bounded condition&®in Assumption 1 is imposed in order to
simplify the exposition of our results. In the case tRas unbounded, Proposition 1 and 2 will hold as long
as that feasibility with respect to Constraint (5b) can béfieel in polynomial time. And given an infeasible
assignmentx, Q, g, 7), one can interrupt the solution process for Problem (6) vthermchieved maximum
is good enoughe., ¢t > 7, which is guaranteed to occur in polynomial time since eithe problem is
unbounded above or the set of optintals non-empty due to the technical condition in Assumption 2.

2.3. Examples

Because our framework only imposes weak condition& @ &) through Assumption 2 and 4, it is pos-
sible to revisit many well-known cases of stochastic progrand reformulate them taking into account
distribution and moment uncertainty.

ExaMPLE 1. Optimal Inequalities in Probability Theory.

Consider the problem of finding a tight upper boundR{g € C) for a random vectog¢ with known
mean, and covariance matrix and some closed sBy formulating this problem as a semi-infinite linear
program:

magimize | e eCL(6) | ©)

many have proposed methods to provide useful extensiometpdpular Chebyshev inequality (see Mar-
shall and Olkin (1960) and Bertsimas and Popescu (2005)yeier, these methods fail when dealing with
support constraints. More specifically(iiis a finite union of disjoint convex sets, it is known that foob-
lem (9) with unconstrained suppoit., S = R™, the worst case value can be found in polynomial time.
But if the support is constrained, such&s= R*, then the problem is known to be NP-hard. In fact, the
hardness of this last problem arises already in finding ailoigion that is feasible.
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Our framework recommends relaxing the restrictions on theadance of¢ and instead consider the
distributional seD, (S, 10, X0, 71,72)- Such a distributional set constrains all three types ¢ifsitzs: mean,
covariance matrix and supportdfis a finite union of disjoint convex sefs (equipped with their respective
feasibility oracle), and if for each, C, NS # (), then our framework leads to a new Chebyshev inequality
that can be evaluated in polynomial time. First, in our fraumiek the problem of finding & € D, is already
resolved using the Dirac measuig.' We can also construct dr(x, £) that satisfies Assumption 2 and 4

by choosingh,(x,£) =0 andh(x,&) = { 1_00 ’ gtﬁeer\(/:v?se' Then, clearly by the fact that

Ec[h(x,6)] = Ee[max hy(x, )] =E[l{{ € C} =P(( €C) < juax Ee[h(x,€)]

it follows that for distributions irD,, a tight Chebyshev bound can be found in polynomial time eNloat
by using the fornD, (R, 4,3,0,1) one can also provide useful upper bounds to the mentionedadx-
versions of the problem with the exact covariance infororati

ExXAMPLE 2. Distributionally Robust Optimization with piecewise-linear convex costs.

Assume that one is interested in solving the following DRSflehfor a general piece-wise linear convex

cost function ofk
miilier)r(lize (glgp}(l E, [mgx f,Ix]) ,

where eaclt, € R" is a random vector. This is quite applicable since any comast function can be
approximated by a piecewise linear function. By considgtito be a random matrix whogeth column is
the random vectaf;, and takingh, (x, &) = £]x, which is linear (hence concave)§nthe results presented
earlier allows one to conclude that the DRSP can be solvedesftly. In fact, due td,(x, &) — £TQE —
£Tq being a concave quadratic function fthe DRSP can be solved more efficiently then suggested by
Proposition 2. For instance,& can be formulated as an ellipsoid then the DRSP reduces toiadsdinite
program of finite size. Section 4 will exploit this propentya case of portfolio optimization.

ExampLE 3. Distributionally robust conditional value-at-risk.

Conditional value-at-risk, also called mean excess loas,imtroduced in the mathematical finance com-
munity as a new risk measure in decision-making. It is clpselated to the more common value-at-risk
measure, which for a risk tolerance levelbg (0, 1) evaluates the lowest amounsuch that with probabil-
ity 1 — 49, the loss does not exceedInstead, CVaR evaluates the conditional expectationss é&dbove the
value-at-risk. In order to keep the focus of our discussiothe topic of DRSP models, we refer the reader
to Rockafellar and Uryasev (2000) for technical detailshos subject. CVaR has gained a lot of interest in
the community because of its attractive numerical proggrtror instance, Rockafellar and Uryasev (2000)
demonstrated that one can evaluatedh@VaR: [c(x, £)] of a cost (or loss) function(x, &) with random
parameters distributed accordingftoby solving a minimization problem of convex form:

9-CVaR [e(x,€)] = min A+ 5B [(c(x, )~ N)']

where(y)* =max{y , 0}. While CVaR is arich risk measure, it still requires the demi maker to commit

to a distributionf,. This is a step that can be difficult to take in practice; thustifying the introduction

of a distributionally robust version of the criterion suchiaCerbakova (2005) and in Zhu and Fukushima
(2005). Using the results presented earlier in this segcti@can derive new conclusions for the general
form of robust conditional value at risk. Given that the dl®ttion is known to lie in a distributional s&;,

let the Distributionally Robust#-CVaR Problem be expressed as:

(DR ¥-CVaR) minimize <mag< vﬂ—CVaRf[c(x,f)])

xeX ng 1
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By the equivalence statement presented above, this prablequivalent to the form

o . 1 "
minimize (}?eaz)}i (Iglelﬂgl A+ EEf [(e(x,8) = N) ]))
Given thatc(x, £) meets the conditions of Assumption 2 and 4, since the functie SE [(c(x,£) — \) ]

is real valued, convex in and concave (actually linear) ifa, and sinceD, is weakly compact (see Shapiro
(2001)), the minimax theorem holds true. Thus, interchaggiemax;, andmin, operators leads to an
equivalent formulation of the (DR-CVaR) Problem.

minimize (max Eg[h(X7A>£)]> )

xEX ,\ER f&'EDl

whereh(x, X, &) = A+ 5 (c(x,£) — A) . Because of the argument that

h(x,\,§) = )\+$max{ 0, cx,)=—\} = max{ A, max <1—l>)\+%ck(x,f) } ,

0
it is clear thath(x, A, £) meets Assumption 2 and 4. Hence, Proposition 2 allows usrtolede that finding
an optimalx (and its associatet) with respect to the worst case conditional value-at-ristamed over the
set of distribution®; can be done in polynomial time.

3. Moment Uncertainty in Data-driven Problems

The computational results presented in the previous seotly heavily on the structure of the described
distributional seD; . This set was built to take into account moment uncertamtiye stochastic parameters.
We now turn ourselves to showing that such a structure caraheaily justified in the context of data-
driven optimization problems. To be more specific, we nowufoon problems where the knowledge of
the stochastic parameters is restricted to a set of sam{glgs’,, generated independently and randomly
according to an unknown distributiofa. Under such conditions, a common approach is to assumehthat t
true moments lie in a neighborhood of their respective eiggdiestimates. In what follows, we will show
how one can define a confidence region for the mean and the@ovamatrix such that it is assured with
high probability to contain the mean and covariance matfrtk@distribution of. This result will in turn be
used to derive a distributional set of the fofpa and will provide probabilistic guarantees that the solutio
found using our proposed DRSP model is robust with respetietdrue distribution of the random vector
€.

In order to simplify the derivations, we start by reformirgtthe random vectain terms of a mixture of
uncorrelated componett More specifically, given the random vectoe R™ with meanu and covariance
matrix ¥ = 0, let us defing € R™ to be the normalized random vectps= X~/2(¢ — i) such thatE[¢] =0
andE[¢("] =1. Also, let us make the following assumption abgut

ASSUMPTIONS. There exists a ball of radiuB that contains the entire support of the unknown distributio
of (. More specifically, there exigt > 0 such that

P((-p)'S (E-p)<R)=1.

In practice, even when one does not have information ghand:, we believe that one can often still make
an educated and conservative guess about the magnitutie/éé will also revisit this issue in Section 3.3
where we derivek based on the bounded supportoin this work, a confidence region farand: will

be derived based on Assumption 5 and on an inequality knowhea$ndependent bounded differences
inequality”, which was popularized by McDiarmfdin fact, this inequality can be seen as a generalized
version of Hoeffding’s inequality.
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THEOREM 1. (McDiarmid (1998)) Lef&; 1M, be a set of independent random vectgrgaking values in
a setS; for eachi. Suppose that the real-valued functigft,, ., ..., £y ) defined onS; x Sy X ... X Syy
satisfies

‘9(617527'“751\4)_9(617§é7“"§§\/[)’Scj (10)

whenever the vector sef§; }/, and{¢/}, differ only in thej-th vector. Then for any> 0,

P (9(61, 621 ) ~ Elg (61,61 )] < 1) S ( o )
=16

3.1. Uncertainty Cone Centered at Empirical Mean

A first use of the McDiarmid’s theorem leads to defining anpstiidal constraint relating the empirical
estimatgi = M ' Y7 &, to the true mean and true covariance of the random véctor
The following result was demonstrated from McDiarmid’sdlem.

LEMMA 4. (Shawe-Taylor and Cristianini (2003)) L¢t;}, be a set of\/ samples generated indepen-
dently at random according to the distribution@flf ¢ satisfies Assumption 5 then with probability at least
(1—0) over the choice of setg; } ., we have

2§RM2<2+\/W)2.

1 M
i Z G

This result can in turn be used to derive a similar statemeodiethe random vectar.

COROLLARY 1. Let{¢;}M, be a set of\ samples generated independently at random according to the
distribution ofé¢. If ¢ satisfies Assumption 5, then with probability greater thand, we have:

(i —m)"S" (o —p) <) (11)
whereji = L S°M ¢ and8(6) = (R?/M)(2+ /2In(1/5))>.

Proof: This generalization for @with arbitrary mean and covariance matrix is quite strdmtaard:

P((p—p)'S (- p) <BO) =P 21/2@_2@—#) <ﬂ(5))

<ﬂ(5)>

- <ﬂ(6))>15. 0

=P M Z 2_1/2(& — 1)

SinceX is non-singular, the inequality of Equation (11) constsaime vectoy: and matrixX to a convex
set. This set can be represented by the following linearimiequality after applying the principles of
Schur’s complement:

M—w 5(6) ]EO'
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3.2. Uncertainty Cone Centered at Empirical Covariance

In order for Constraint (11) to describe a bounded set, onst ivel able to contain the uncertainty3h
While confidence regions for the covariance matrix are @ipicdefined on a term by term basis (see
for example Shawe-Taylor and Cristianini (2003)), we fatler structure imposed by two linear matrix
inequalities boundind around its empirical estimate = 1/ ~* Zij\il(gi — )& —n)":

P <Cmini] <X = Cmaxi]) >1-96 . (12)

Note that the difficulty of this task relies heavily on thetfétat one needs to derive a confidence interval
for the eigenvalues of the stochastic maffix!/233 /2, which is an important field of study in statistics.
For the case that interests us, whéie>> m with M finite andm fixed, prior work usually assumes

is a normally distributed random vector (see Anderson (1984l Edelman (1989)). Under the Gaussian
assumption, the sample covariance matrix follows the Wististribution, thus one can formulate the
distribution of eigenvalues in a closed form expressionderile such percentile bounds. In the case where
¢ takes a non-normal form, the asymptotic distribution ofeeigalues was studied by Waternaux (1976)
and Fujikoshi (1980) among others. However, to the bestokeowledge, our work is the first to formulate
an uncertainty sets with the characteristics presentedjiratton (12) for a sample set of finite size. In
what follows, we start by demonstrating how a confidenceoregif the form presented in Equation (12)
can be defined arounbl= M ! >, ¢/l for the mean and covariance matrix @fNext, we will assume
that the mean of is exactly known and will formulate the confidence region ¥bin terms ofi(u) =
M1 Zf\il(@ —u)(& —p)T. We conclude this section with our main result about a confideegion fon
andX which relies solely o/ and on support information about the random vegtor

LEMMA 5. Let{¢;}M, be a set of\/ samples generated independently at random according tdigie-
bution of¢. If ¢ satisfies Assumption 5, then with probability greater thand, we have

1 f<1< 1

[+ a(3)2) LR (13)

wherea(5/2) = (R?//M) (ﬂ “m/R+ \/ln(2/5)), provided that

2
M > R* (\/1—m/R4+ \/ln(2/5)) . (14)
Proof: The proof of this theorem relies on applying Theoretwite to show that botWI <TIand
I= WI occur with probability greater thah— ¢/2. Our statement then simply follows by the union

bound. However, for the sake of conciseness, this prooffagilis on deriving the upper bound since the
steps that we follow can easily be adjusted for the derinaticthe lower bound.
When applying Theorem 1 to show thBt @/2)1 occurs with probabilityl — /2, the main step

consists of defining (i, ¢, ..., () = miny,—; z'Iz and finding a lower bound faE[g (¢, ¢z, ..., ()]
One can start by showing that Constraint (10) is met whea R? /M for all 5.

1901, Gy Car) = 9(G1 s Ci)| = | min 2Tz — min 2Tz
wherel' = L S ¢/¢T =1+ M(C’C’T —¢;¢]) since{¢;}, and{¢/}}2, only differ in the j-th vector.
Now assume thathin,, -, z Iz>m1n|| =1 Z T1'z. Then, for anyz* € argmin,—, z Tz

|g(C1><27><1\1)_g(C{7<é7a<§\4))| = min ZTIZ Z*Tilz*

l[z]|=1

< Z*T(I I/)Z*
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1
=7 (GG — Gz
1
— M ((C;TZ*)Q _( ;TZ*)Q)
Pl _ro
M M

Otherwise, in the case thatin,—; z'Iz < minj,—; z'I'z the same argument applies usiagc
argmin,—; z'lz.
As for boundingE[g(¢1, Ca, -+, Car)], the task is a bit harder. We can instead try to find an uppendon
the maximum eigenvalue ¢I — I) since
E [m”mi z'(I— i)z] =1-E {rrﬁml zTiz] . (15)

Using Jensen’s inequality and basic linear algebra, onelcaw that

(Ei [m”a_)i z' (I i)Z}> < E; (ﬁnaji z' (I i)z)
LM 2
=E trace((Mz;IQQT> )

M
= trace (% ZE [T—-2¢:¢] + (Cz(Dﬂ)

1 T2 — E
=37 (trace (E [(Cifi ) ]) —trace (I)) =

m

< By | o?(I-1T)

i=1

= E; [trace <(I —i)Qﬂ

JGl =m _ Rt =m

M - M
where we used the fact thgt are sampled independently thus makiBYI — ¢;¢1)(I — (;¢f)] =
E[I — G¢TE[T — ¢;¢/] = 0. By replacing this lower bound in Equation (15), we can noeatestthat

E[g(¢r,Cos ey Car)] > 1 — (R?/V/ M) /1 —m/R*. More importantly, Theorem 1 allows us to confirm the
proposed upper bound using the following argument. Sinestatement

A~ N _2 2
P (min z'1z —E; [min zTIz} < —e> <exp M—e ,
jzli=1 lzli=1 S (RY/M2)

. . 2/In(2
P [ min z'1z —E;[ min zTIz]z—M >1-46/2,
llz]|=1 llzll=1 vM

and since relaxin@; [min,—, z'Iz] to its lower bound can only include more random events, wesiec
sarily have that

implies that

P<min zTiz21—% <\/1—m/R4+\/ln(2/5)>> >1-6/2 .

llzll=1

Thus, given thai\/ is large enough to ensure thiat- «(§/2) > 0, we conclude that

P(Ijﬁ(é/z)i) >1-6/2 .

The task of showing that/(1 + «(5/2))I < T also occurs with probability — 6/2 is very similar.
One needs to apply Theorem 1, now definiig:, ¢z, ..., (ar) = — miny,—; z'Iz, and to demonstrate that
Elg(¢1yCayeery Car)] = —1 — a(6/2). The rest follows easily. O
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REMARK 4. Considering for simplicity the single dimension case rehene is interested in a confidence
region based ol = Zi]\il ¢?, one can easily verify that(d) is asymptotically of the right order in terms
of M andR. SinceE[¢*] is bounded byk*, the central limit theorem guarantees that/ (I - E[¢?]) con-
verges in distribution toV'(0,[E[¢*] — 1). Thus, it follows that A//(E[¢*] — 1))|]I — E[¢?]||* converges in
distribution to ay?-distribution with degree 1. For any> 0, one can find:(4) such that with probabil-

ity greater thanl — 4, ||I — E[¢?]|| < COVEET-L *%4]_1 Hence, asymptotically speaking the confidence region
_71+C<16)R2 I <ICK< 71_41@32 Lis tight.

VM VM

We are now interested in extending Lemma 5 to a random vedtbrgeneral mean and covariance

matrix. Given the random event that Constraint (13) is Batsthen:

—_

;A 1/2yyl/2 o L y1/2§v1/2
Ijl—a(é/Z)IjE Ix jl— (5/2)2 Ix
~ov< 1((5/2 Zzl/QCZCTZI/Q
1 1 o .
= Y= WH;@ — ) (& —p)
1 .
= 3= 7(5/2)2( )
and similarly,
_ L g — 1 _spy=<s
1+a(6/2) =  1+a(/2) ="

Since Constraint (13) is satisfied with probability greatean1 — §, the following corollary follows
easily.

COROLLARY 2. Let{¢;}M, be a set of\ samples generated independently at random according to the
distribution ofé. If ¢ satisfies Assumption 5 ardd satisfies Equation 14, then with probability greater then
1 -4, we have that ) )

L ospy<x<— 1 5

a2 W22y )
whereS (1) = L S (& — ) (& — )T anda(5/2) is defined as in Lemma 5.

This statement leads to the description of a convex set whictnstructed using empirical estimates of

the mean and covariance matrix and yet is guaranteed toiocdh&atrue mean and covariance matrixcof
with high probability.

THEOREM 2. Let {¢;}M, be a set ofM samples generated independently at random according to the
distribution ofé¢. If £ satisfies Assumption 5 and satisfies Equation 14, then with probability greater than
1 — 6 over the choice of¢; } 2, the following set of constraints are met:

(ﬂ—u)E’l(ﬂIu) <B(6/2) (16a)

TG —

yr—>
“1+a(/4)" "

where = L 32 (& — i)(& — &), a(8/4) = (B2/VM) (VT=m/Ri+/In(4/5)), 5(6/2) =
(R2/M)(2+ \/21n(2/0))>.

(16c)
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Proof: By applying Corollary 1, 2 and Lemma 5, the union bogndrantees us with probability greater
than1 — ¢ that the following constraints are met:

(o= )X — Ml) 5(5/2)

X T al/A) T=a(5/4) S
B S

Note that our result is not proven yet since, although the éosistraint is exactly Constraint (16a), the
second and third constraints actually refer to covariana&imestimates that uses the true mean of the
distribution instead of its empirical estimate. The follog/ steps will convince us that these conditions are
sufficient for Constraint (16b) and (16c) to hold.

(1= a3/ = £(n) = 12 (&~ n)&—p)T

Al

where the last semi-definite inequality of the derivation lba explained using the fact that for any R™,

x'(fi—p)(p—p)'x = (x" (i—p)*= (x> S72 (0 — /;))

< xTEVPIS T2 (- )P < B(6/2)xTEx

Thus we can conclude that Constraint (16b) is met. The saeps stn be used to show that Constraint (16c)
also holds.

(1+a(8/4)8 = (i) = 57 Z(éi — ) (& —p)T

O

3.3. Bounding the Support of ¢ using Empirical Data

The above derivations assumed that one is able to descriéléa@htaining the support of the rather fictive
random vector. In fact, this assumption can be replaced by an assumptidheosupport of the more
tangible random vectqr as is presented in the following corollary.

COROLLARY 3. Let{¢;}M, be a set of\/ samples generated independently at random according to the
distribution of¢. Given that the support of the distribution®fs known to be contained i, let

R=sup [S72(6 ~ )]
£ESe
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be a stochastic approximation & and for anys > 0, let

R— <1_<R2+2>Lwlw_n<4@>mz:z ,

whered =1—+/1-29. If

M > max<{ (R*+2)? <2+ \/ 2111(4/5)>2 , (8(+ ;fin(z;)) , (17)

then with probability greater tharl — §, Constraint(16a) (16b) and (16c) are satisfied witha(d/4)
and 3(6/2) replaced witha(6/4) = (R?/v/M) (\/1 —m/R4+ \/ln(4/5)> and 3(6/2) = (R?/M)(2 +
21n(2/0))? respectively.

Proof: Since we assumed thatwas non-singular, the support 6fbeing bounded by a ball of radius
R¢ implies that( is also bounded. Thus, there exists rsuch thatP(||¢|| < R) = 1. Given that( has
a bounded support and the size/df, Theorem 4 guarantees us that with probability greater thar,
Constraint (16a), (16b) and (16c) are met. Thus

R = sup [[([la = sup [Z72(€ = p) |2 = sup [|S7V2(€ — p+ o — 1)
CGS( 5655 5655

< sup [|[S7V2(E = @)l + 1572 (i — w2

€ese

< sup 14+ a(8/4)|27Y2(& - @)2 + \/ B(6/2)
€S

< \1+a/9R+/56/2)

< RvV1+cR?*+cR ,

wherec = (2 ++/21n(4/6))/V/M.

A careful analysis of the function( R, R) = R\/1 + cR2 4 cR leads to the observation thatif satisfies
Constraint (17) then the fact th& < ¢ (R, R) necessarily implies thak < R. We can therefore conclude
thatP(R< R) > 1.

Given the event thak < R occurs, since

a(6/4) = (R*/VM) ( /1 —m/R+/21In(4/0)
< (R*/VA) (\/1—m/Ri +/2In(4/3) ) = a(5/4)

and since

B(3/2) = (R2/M)(2+/21n(2/3))? < (R2/M)(2+ \/21n(2/3))* = 3(5/2)

we can conclude with a second application of Theorem 2 thidit probability greater thaih — ¢ the fol-
lowing statements are satisfied:

(ﬂ—u)E*(ﬂIu) <B(6/2) < B(5/2) 3
= e <5/2>f GG - 5072

N /) = 1= a(/4)

M>
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It follows that Theorem 2 applies with(5/4) and3(6/4) because the probability that the evefitthat
Constraint (16a), (16b) and (16c) equipped witfy/4) and 5(0/4) are met is necessarily greater than
1-4:

PE)>PEIR<RP(R<R)>(1-6)(1-6)=1-6 . O

3.4. Data-driven DRSP Optimization

In most practical situations where one needs to deal witledainty in the parameters, it might not be clear
how to define an uncertainty set for the mean and covariant@moéthe random vector of parametefs
It is more likely that one only has in hand a set of independantples{¢;},, drawn according to the
distribution of¢ and wishes to solve a form of the DRSP model for which it is gotged that with high
probability the solution is robust with respect to the unkngandom vectot.

We will first use our last result to define, based on the sam@gs’,, a set of distributions which is
known to contain the distribution gfwith high probability, given thad/ is sufficiently large.

DEFINITION 2. Given a se{¢; }, of M samples, for any > 0 let /i, 3, 4; and¥, be defined as

Z& 7 S= Z )’
5= _@ﬁ[_ = _{ o2
1—a(d/4)—p(6/2) —a(0/4) — B(6/2)

wherea(§/4) = O(1/v/M) and3(5/2) = O(1/M) are constants defined in Corollary 3; hengg;— 0
and¥, — 1 asM goes to infinity.

COROLLARY 4. Let {&}M, be a set ofM samples generated independently at random according to
the distribution ofé. If M satisfies Constrainf17) and ¢ has a support contained in a bounded set
then with probability greater than — & over the choice of ¢}, the distribution of¢ lies in the set

Di(S, 1, 2,71, 92)-

Proof: This result can be derived from Corollary 3. One camnsthat given any estimatgsandy. that
satisfy both Constraint (16a) and (16b) equipped wit/4) and 3(0/2), these estimates should also
satisfy Constraint (1a) and (1b). First, Constraint (1ajdsessarily met since for sughand,

(1—a(5/4) = B(6/2))(h— S (p—p) < (o — ) S (—p) < B(3/2),

where we used the fact that Constraint (16a) impliesxfat 'x > (1 —a(6/4) — 5(5/2))x" %" x for any
x € R™. Similarly, the sameg and>: can be shown to satisfy Constraint (1b):

5% = Elee] -
Bl (€~ 1) - TS

x T = (T (0= o)) = (x(p = @)* +2x" (p = WaTx+ (xT)?
= trace(x TVPE T (u — ) (- ) T2 1/22”2 ) + 2xT ' x — (x )
< (n—p)'e" %/25) xTEx +2x"pji x — (x" fi
< (5 d(é_/(%)/Q)ﬂ(é/Z)E+W i >X
" (i S Bl - Bl -6 - 7)) x
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By Corollary 3, the random variablgsand: are guaranteed to satisfy Constraint (16a) and (16b) with
probability greater than — ¢, therefore they must also satisfy Constraint (1a) and (1) probability
greaterthan —o. 0O

We can now extend the results presented in sections 2 to eddetm framework where moments of
the distribution are estimated using independent sampkesed on the computational argument of Propo-
sition 2 and the probabilistic guarantees provided by Qanpl, we present an important result for data-
driven problems.

THEOREM 3. Let {¢}M, be a set ofM samples generated independently at random according to the
distribution f. which supportis contained in the s¢tFor anys > 0, if Assumption 1, 2, 3 and 4 are satisfied
then, given the s, },, one can solve in polynomial time Probl€i) under the seD; (S, i, 2,71,%)
wherej, 3, 4, and 4, are assigned as in Definition 2. Furthermore )if satisfies Constraintl7), then

with probability greater than — ¢ over the choice of¢; }2,, we have that any optimal solutio«t of the
DRSP formed using these samples will satisfy the constraint

E¢[h(x", )] < W (X"3791,72) -

Since we believe the moment problem to be interesting invitls ight, we wish to mention a simple
consequence of the above result for moment problems in addigen framework.

COROLLARY 5. Leté > 0 and let{¢;}M, be a set ofM samples generated independently at random
according to the distributiorf, which support is contained in the s&t For anyd > 0 and functiong(¢) , if

S satisfies Assumption 1 and the functigix, £) = g(&) satisfies Assumption 2 then, given the{ge},,
one can solve in polynomial time the moment problem

maximize  E¢[g(§)] ,
fe € DS 57 .72)

where/i, 3, 9, and 5, are assigned as in Definition 2. Furthermore )if satisfies Constrainf17), then
with probability greater thari — & over the choice of¢; } |, we have that

Ee[g(§)] < W(0;%1,7%2) -

4. Application to Portfolio Optimization

We now turn ourselves to applying our framework to an instasfgportfolio optimization. In such a prob-
lem, one is interested in maximizing his expected utility thoe potential one step return of an investment
portfolio. Given that: investment options are available, expected utility candfndd ast[u(¢"x)], where
u(+) is a non-decreasing function agd R" is a random vector of returns for the different options. la th
robust approach to this problem, one defines a distributsetdD that is known to contain the distribution
fe and choose the portfolio which is optimal according to théowing Distributionally Robust Portfolio
Optimization model:

(DRPO) maximize fminD Ee[u(€Tx)] (18a)
x ¢ €
subject to in =1, x>0. (18b)

=1

In Popescu (2007), the author addresses the case of Prob&mvlereE[¢] andE[¢£T] are known
exactly and one considef3 to be the set of all distribution with such first and second reots. Based
on these assumptions, the author presents a parametricatjopgatogramming algorithm that is efficient
for a large family of utility functionu(-). This approach is interesting as it provides a mean of takitwg
account uncertainty in the form of the distribution of retsirUnfortunately, our experiments will show that
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in practice it is highly sensitive to the noise in the emgiliestimation of these moments. Secondly, the
proposed algorithm also relies on solving a one dimensiooalconvex mathematical program. Thus, it is
not guaranteed to converge to an optimal solution in polyiabtime. Although the approach that we are
about to propose addresses a smaller family of utility fiems, it will take into account moment uncertainty
and will lead to the formulation of a semi-definite progranhieth can be solved efficiently using interior
point methods.

In Goldfarb and lyengar (2003), the authors propose acaoyifdr moment uncertainty in Markowitz
models. Their motivation is closely aligned with ours andnaf the proposed techniques can be applied
in our contexte.g, the use of factor models to reduce the dimensionality. @imilarly, the results pre-
sented in Section 3 for the data-driven framework shouldrekeasily to the context of Markowitz models.
Because Problem (18) reduces to a Markowitz model when tfitg fiinction is quadratic and concave, we
consider our model to be richer than the one considered idf@&tl and lyengar (2003). On the other hand,
the robust Markowitz model typically gives rise to probletinat are easier to solve.

4.1. Portfolio Optimization with Moment Uncertainty

In order to apply our framework we need to assume that thigyutilnction is piecewise linear concave,
such thatu(y) = mingeq1 2. k3 ary + by. This is not too constraining since in portfolio optimizati
the interesting utility functions are usually concave aodhsfunctions always have good piecewise lin-
ear approximation with finitd<. We use historical knowledge of investment retu{lzj@ &y &ar ) tO
define a distributional uncertainty set f@is. This can be done using the sBt(S, /i, 5 Y15 Y2) where i
andE are assigned as the empirical estimates of the mean\/ ! ZZ . & and covariance matrix. =
-1 ZZZI(& Q) (& — )T of € respectively We consider two options for the choice®f eitherS = R",

or an ellipsoidal sef = {£|(£ — &) O (£ — &) <1}, with © = 0.

Building on the results presented in Section 2, one can niek®tlowing statement about the tractability
of the DRPO model.

THEOREM4. Given thatu(-) is piecewise linear concave and that satisfies Assumption 3, finding
an optimgl solutionx € R™ to the DRPO model, Problerfl8), equipped with the set of distributions
Dy (S, 1,3, v1,72) can be done i (n®?).

Proof: We first reformulate the objective of Problem (18)tgrhinimization form :

minimize max. E¢[max —a,&"x — by]
xeX fe € D1(S,,5,71,72) k

After confirming thatS satisfies the weaker version of Assumption 1 (see Remark®}teath(x, &) =
max, —ap&'x — by, satisfies Assumption 2 and 4, a straightforward applicatibRroposition 2 already
confirms that Problem (18) can be solved in polynomial timeorider to get a more precise computational
bound, one needs to take a closer look at the dual formulatiesented in Lemma 1 and exploit the special
structure ofh(x, &) in Problem (18):

minimize 72(Xoe Q) — 110 Qo + 7+ (Lo o P) — 2115 p + 18 (19a)
subject to LIE)T Is)} >0, p=—q/2—-Qi, Q=0 (19b)
ETQE+ETq+r> —apt™x—by, VE€S, ke {l,2,.... K} (19¢)

doxi=1,x20,Vi. (19d)
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Given thatS = R", one can use Schur's complement to replace Constraint tOah equivalent linear
matrix inequality.

minimize (L0 Q) —A'Qi+r+ (LeP) =20 p+ s

x,Q,q,m,P,p,s
. P .
subject to pTS]EO , P=—-9/2—-Qpu

Q q/2+apx/2
qQ'/24+ax"/2  r+b =0, vk

inzl , x>0, Vi .
i=1

While if S is an ellipsoid, the S-Lemmaf(, Polik and Terlaky (2007)) can be used to replace Con-
straint (19c)

(] o qa )]0 ] Lo S22 1]
1 —O e -1 1] = 1 qQ'/2+ax"/2  r+by 1=
with an equivalent constraint:

{ Q q/2+akx/2]t_m[ o e

qQ'/2+ax" /2 r+b £ 53950—1] » =0,

wherer,, k € {1,..., K}, are extra slack variables. The problem can therefore @se@formulated as a
semi-definite program:

minimize 72(2 eQ)—'Qp+r+ (2 eP)—-2i"p+s

x,Q,q,7,P,p,s,T

subject to ;E}EO, P=-9/2-Qi, Q=0

Q qa/2+ apx/2 N (S} —-0¢, "
Q' /2+ax"/2  r4b, [T =40 g -1

inzl , x>0, Vi .
i=1

In both cases, the optimization problem that needs to beeddbsa semi-definite program. It is well
known that an interior point algorithm can be used to solvEBPR of the form

minimize c¢'x
x€cR™ _

subject to A;(x) =0 Vi=1,2,...,. K

o 0.5 ~ .
in O (ZK rhz) (ﬁz SEmZ s rhf’)) wherem; stands for the dimension of the positive semi-

K2

definite conei(e., A;(x) € R™i*™) (see Nesterov and Nemirovski (1994)). In both SDP thatésts us
here, one can show that< n? +4n + 2 + K and that the problem can be solved K 3-515) operations,
with K being the number of pieces in the utility functiafr). We conclude that the portfolio optimization
problem can be solved i@(n®®). O

The results presented in Theorem 4 are related to PopesdBeatsimas (2000) where the authors pro-
posed semi-definite programming models for solving momeotlpms that are similar to the one present
in the objective of the DRPO. However, notice how our SDP nmdetually address the more involved
problem of making robust decisions and don't result in a lerasomputational load. It is also the case
that our proposed SDP models consider a more practical skistabutions which accounts for covariance
matrix uncertainty (in the form of a linear matrix inequgliand support information.
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REMARK 5. The computational complexity presented here is basedearrgl theory for solving semi-
definite programs. Based on an implementation that uses I8e(@iurm (1999)), we actually observed
empirically that complexity grows in the order 6X(n”) for dense problems. In practice, one may also be
able to exploit structure in problems where subsets (oalimembinations of assets) are known to behave
independently from each other.

REMARK 6. Since the submission of this article, we became aware adépandent work presented
in Natarajan et al. (2008), which also addresses the coriguigh difficulties related to the method pro-
posed by Popescu. Their work is closely related to the eguisented in Section 4.2. Actually, for the
case of unbounded support, their derivations lead to adurduction of the DRPO model with known
moments to the form of a second-order cone program. On trer b#nd, they do not consider support
constraints and do not study the effect of moment unceytaintportfolio performance. Their approach is
therefore susceptible, in practice, to the same deficisrasePopescu’s method when these moments are
estimated using historical data.

4.2. A Case where the Worse Distribution has Largest Covariance Matrix

When presenting our distributionally robust framework,amgued in Remark 1 that a positive semi-definite
lower bound on the covariance matrix was uninterestingudlgy, in the case of a portfolio optimization
problem with piecewise concave utility function, the arganhcan be made more formally. The proof of
the following proposition also provides valuable insighttbe structure of a worst case distribution for the
distributionally robust portfolio optimization problem.

PropPosITION3. The distributionally robust portfolio optimization pradsh with piecewise linear concave
utility and infinite support constraint on the distributieman instance of distributionally robust optimiza-
tion where the upper positive semi-definite constraint @ dbvariance matrix is tight for a worst case
distribution.

Proof: Consider the inner problem of our robust portfoligimization with unconstrained support for the
distribution:
max E¢[max —apé'x —by] . (20)
fe € D1(R™,4,5,0,72) k

For simplicity of our derivations, we consider that thera@suncertainty in the mean of the distribution
(i.e.,v1 = 0). The dual of this problem can be formulated as:

minimize (i] Q)+ Qu+p"q+r

Q.q,r
, Q q/2+ ax/2
> .
subject to [qT/2+akxT/2 "+ by =0, Vk

Applying duality theory a second time leads to formulatingesv equivalent version of the primal problem,
which by strong duality achieves the same optimum.

K
. T
Bt P S 1)
K
subject to Z Ay <3+ " (21b)
k;l K
D A=, Y w=1 (21c)
k=1 k=1

}zo Vike{l,2,.. K} . (21d)
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We can show that there always exists an optimal solution gwttConstraint (21b) is satisfied with equality.
Given an optimal assignment* = { (A}, \;,v;) K, such thath = ~,3 + i’ — Zszl A >0, consider
an alternate solutioX” = {(A}, \}, i) }=—_, which is exactly the same as the original soluti&n except
for A} = A7 + A. Obviously the two solutions achieve the same objectivaeabince{ (A}, v;) /-, and
{(\,,ve;) HE | are the same. If we can show thét is also feasible then it is necessarily optimal. The only
feasibility constraint that seriously needs to be verifgethe following:

AN AT N A0
= -
[XIT u;] [X;T vi|Tlool=0
and is necessarily satisfied since by definitiéh is feasible and that by constructidx is positive semi-
definite. It is therefore the case that there exists a soluio that is optimal with respect to Problem (21)
and satisfies Constraint (21b) with equality. Furthermone is assured th@,ﬁil apx' \; + ;b is equal
to the optimal value of Problem (20).

After assuming without loss of generality that &l > 0, let us now construcfX random vectors
(¢1,Ca, .-+, (i) that satisfy the following conditions:

BlG= M, BlGdl]= oA

k Vi

Note that sinceX* satisfies Constraint (21d), we are assured that:

wa-nimer - | 9761y
L[58 5] Lhr

1 I r Ay X I
B V_fg [—E[Ck]T} [AZT VfJ [_E[Ck]T] =0

Hence, the random vectofs,, (s, ..., (x ) exists. For instance, iE[(¢, — E[¢]) (¢ — E[¢e])T] = 0, then(,
can take the form of a multivariate Gaussian distributiotihwuch mean and covariance matrix. Otherwise,
one can construct a lower dimensional random vector; faaime, ifE[((, — E[¢x]) (¢ — E[¢:])T] = 0 then
the random vector is the Dirac measuitg, ;.

Let & be an independent multinomial with parameters v;, ..., v ), such thalP(k = i) = v7, and use it
to construct the random vectgr= (;. SinceX* satisfies Constraint (21b) and (21c) tightly, one can show
that the distribution function of* lies inD(R™, /i, s, 0,7-2) and has largest covariance.

K
El¢] =Y E[¢ |k =K]P Z R
k:lK K 1 )
El¢¢ "] =D ElGGi Ik =kIP(k=1) =) —Ajvj =05+ ia
k=1 k=1 k

Moreover, when used as a candidate worst case distributi®nablem (20) it actually achieves the maxi-
mum since we can show it must be greater or equal to it.

[M] >

E [max —a;x"¢" — bl} -YE [mlax —ax" G — bl‘ff - k} P(k = k)

el
Il

1

E[—akxT(k — bk]]P(% == ]{7)

M)~

el
Il

1
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K
_ Ty * *
= Z —agx A, — by,
k=1
= max E¢[max —a,x"€ — by
fe € DI(R™,0,5,0,72) k

We conclude that we just constructed a worst case distoibiliat does have largest covariance.]

An interesting consequence of Proposition 3 is that in taenéwork considered in Popescu (2007), if
the utility function is piecewise concave, one can find thénoal portfolio in polynomial time using our
semi-definite programming formulation with the distrilautal setD, (Rm,ﬂ,i,o, 1). Theoretically, our
semi-definite program formulation is more tractable thattethod proposed in Popescu (2007). However,
it is true that our framework does not provide a polynomialgialgorithm for the larger range of utility
functions considered in Popescu (2007).

4.3. Experiments

We evaluate our portfolio optimization method with stockrked investments. We use a historical dataset
of 30 assets over a horizon of 15 years (1992-2007), obtdinetthe Yahoo! FinancéEach experiment
consists of randomly choosing 4 assets, and building a digyaantfolio with these assets through the years
2001-2007. At any given day of the experiment, the algorgtare limited to using a period of 30 days
from the most recent history to assign the portfolio. All hreds assume that in this period the samples are
independent and identically distributed. Note that 30 dampf data is not much to generate good empirical
estimates of the mean and covariance matrix of returns; Yenasing a larger history would cause the
assumption of independent and identical samples to be sbatewrealistic.

In implementing our method, referred as the DRPO model, ibk#ilolitional set is formulated as
D (R, 1, $,1.35, 8.32), whereg andy. are the empirical estimates of the mean and covarian¢easpec-
tively. Due to the sample size being too small to gis@ndy, from Definition 2, instead these parameters
are chosen based on a simple statistical analysis of thergrabuooise presentin the estimation of mean and
covariance matrix during the years 1992-200/e compare our approach to the one proposed by Popescu
(2007), where the mean and covariance of the distribufios assumed to be equal to the empirical esti-
mates measured on the last 30 days period. The method is@tgmaced to a naive approximation of the
stochastic program, referred as the SP model, in which tleetse portfolio is the one that maximizes
the average utility over the last 30 days period. We beliba¢ the statistics obtained over the set of 300
experiments demonstrate how much there is to gain in terrageyhge performance and risk reduction by
considering an optimization model that accounts for bagitridiution and moment uncertainty.

Method Single Day 2001-2004 2004-2007
Avg. utility 1-perc.| Avg. yearly return 10-perg.Avg. yearly return 10-perg.
Our DRPO model 1.000 0.983 0.944 0.846 1.1017 1.025
Popescu’s DRPO model 1.000 0.975 0.700 0.334 1.047 0.9364
SP model 1.000 0.973 0.908 0.694 1.045 0.923

First, from the analysis of the daily returns generated lheaethod, one observes that they achieve
comparable average daily utility. However, our DRPO motkeids out as being more reliable. For instance,
the lower 1%-percentile of the utility distribution is 0.8%gher then the two competing methods. Also, this
difference in reliability becomes more obvious when coesity the respective long term performances.
Figure 1 presents the average evolution of wealth on a sbsyaiod when managing a portfolio of 4 assets
on a daily basis with either of the three methods. The perdnices over the years 2001-2004 are presented
separately from the performances over the years 2004-200iler to measure how they are affected by
different level of economic growth. The figures also indécaeriodically the 10% and 90% percentile of the
wealth distribution over the set of 300 experiments. Thisties of the long term experiments demonstrate
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Figure 1  Comparison of wealth evolution in 300 experiments condiioter the years 2001-2007 using three different portfolio
optimization models. For each model, the figures indicatéoogially the 10% and 90% percentile of the wealth
distribution in the set of experiments.

empirically that our method significantly outperforms tetother ones in terms of average return and
risks during both the years of economic growth and the yehdeoline. More specifically, our DRPO
model outperformed Popescu’s DRPO model in terms of totatmecumulated over the period 2001-2007
in 79.2% of our experiments (total set of 300 experiment$3oAit performed on average at least 1.67
times better than any competing models. Note that theseiexgets are purely illustrative of the strengths
and weaknesses of the different models. For instance, tinensobtained in each experiment does not take
into account transaction fees. The realized returns acelaésed due to the fact that the assets involved
in our experiments were known to be major assets in theigoayein January 2007. On the other hand,
the realized returns were also negatively biased due toattiettiat in each experiment the models were
managing a portfolio of only four assets. Overall we belithat these biases affected all methods equally.

Appendix. Proof of Lemma 1

We first establish the primal-dual relationship betweerbferm (4) and Problem (5). In a second step,
we will prove that strong duality holds and that the solutibfx, ., ~-) is bounded.

STep 1. One can first find through formulating the Lagrangian oftlem (3) that the dual can take the
following form

migignpize (7220 — proig) @ Q + 7+ (X o P) — 2115p + 71 (22a)
subject to ¢TQE+26T(p— Quo) + 7 —h(x,£) >0, VEES (22b)
Q-0 (22c)

P p
2 P] =0, @220)

wherer € R, Q € R™*™ are the dual variables for Constraint (4b) and 4c respdgtwhile P € R™*™,
p € R™ ands € R form together a matrix which is the dual variable associatighl Constraint (4d).

We can further simplify This equivalence by finding analgtisolutions for the variable@, p, s) in
terms of some fixedQ, q, ). Because of Constraint (22d), we can consider two casehdorariables*:
eithers* = 0 or s* > 0. Assuming thas* = 0, then it must be thap* = 0 otherwisep*'p* > 0 and

T 5 T T % g %
p* P* p*||p* I S T p* P'p
. =p* ' P*'p*—2 <0, fory>=——"— |
[y} [p*Ts][y} p p P Py Y 50 Tpr
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which contradicts Constraint (22d). Finallp; = 0 is an optimal solution since it minimizes the objective.
If s* =0 then, after replacing = 2(p — Quo), Problem (22)’s objective does indeed reduces to

Y2(S00 Q) — g Quo+ 1 = 7"+72(20°Q)+/LEQM0+MEQ+W‘|25/2(Q+2QMO)H .

If instead one assumes that > 0, then by applying Schur's complement, Constraint (22d) lban
shown equivalent t® = tpp'. SinceX, = 0, P* = 1pp' is a valid optimal solution and can be replaced
in the objective. It remains to solve for > 0 in the one dimensional convex optimization problem
minimize,-, 1 p’Xop + 7; 5.By setting the derivative of the objective function to zese obtain that* =

%pTEOp. Thus, once again, after replaciag= 2(p — Qo ), the optimal value of Problem (22) reduces
to the form of Problem (5):

r+72(S0 0 Q) + 119 Quio + poa + \/ﬂHEé/Q(q%— 2Quo)|| -

STEP 2. One can easily show that the conditionsygn~, and}, are sufficient to ensure that the Dirac
measurey,,, (see Endnote 1 for definition) lies in the relative interiditioe feasible set of Problem (3).
Based on the weaker version of Proposition 3.4 in ShapirdXp@ve can conclude that there is no duality
gap between the two problems. One can also showltfwei~,,v,) is bounded above by deriving a feasible
assignment for the variables of Problem (5). Choo$hg I andq = 0 ensures that the functioi(x, £) —
£'Q¢ — ¢ q is strictly concave thus enforcingp, . s 2 (x, &) — £TQE — £ q to be finite. It then follows that
letting r = sup,.s h(x,€) — €TQE —ETq andt = (1,5 + o) ¢ Q + g a+ /A1 155" (a+2Qpuo) | con-
stitutes, withQ = I andq = 0, a feasible solution that bounds Problem (5). We concluded®lix; v, ,7-)
must be finite and that the set of optimal solutions to Prol{E@nmust be non-empty. [J

Notes

'Recall that the Dirac measufeg is the measure of mass one at the peint

Note that if¢’s support set is unbounded, one can also derive bounds d&smmature either by considering thahas bounded
support with high probability, or by making use of partialokviedge of higher moments of the distribution. This last faas
recently confirmed in So (2008).

30ne should also verify that > 0.

“The list of assets that is used in our experiments was iriyeGoldfarb and Ilyengar (2003). More specifically, the 30
assets are: AAR Corp., Boeing Corp., Lockheed Martin, Uhitechnologies, Intel Corp., Hitachi, Texas Instrumentsl| Bom-
puter Corp., Palm Inc., Hewlett Packard, IBM Corp., Sun M&ystems, Bristol-Myers-Squibb, Applera Corp.-Celerau®t Eli
Lilly and Co., Merck and Co., Avery Denison Corp., Du Pontwb@hemical, Eastman Chemical Co., AT&T, Nokia, Motorola,
Ariba, Commerce One Inc., Microsoft, Oracle, Akamai, CiSystems, Northern Telecom, Duke Energy Company, Exelop.Cor
Pinnacle West, FMC Corp., General Electric, 'Honeywelgdrsoll Rand.

*More specifically, given that one chooses 4 stocks randomdysalects a period of 60 days between 1992 and 2001 randomly,
the values fory; and~. are chosen such that when using the first 30 days of the pericenterD(+1,~2), the distributional set
contains, with 99% probability, distributions with momemigual to the moments estimated from the second 30 days pétiosl.
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