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Stochastic programming can effectively describe many decision-making problems in uncertain environments. Unfortu-
nately, such programs are often computationally demandingto solve. In addition, their solution can be misleading when
there is ambiguity in the choice of a distribution for the random parameters. In this paper, we propose a model that
describes uncertainty in both the distribution form (discrete, Gaussian, exponential, etc.) and moments (mean and covari-
ance matrix). We demonstrate that for a wide range of cost functions the associated distributionally robust (or min-max)
stochastic program can be solved efficiently. Furthermore,by deriving a new confidence region for the mean and the
covariance matrix of a random vector, we provide probabilistic arguments for using our model in problems that rely heav-
ily on historical data. These arguments are confirmed in a practical example of portfolio selection, where our framework
leads to better performing policies on the “true” distribution underlying the daily return of assets.
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1. Introduction
Stochastic programming can effectively describe many decision-making problems in uncertain environ-
ments. For instance, given that one is interested in solvinga convex optimization problem of the type

minimize
x∈X

h(x, ξ) ,

whereX is a convex set of feasible solutions andh(x, ξ) is a convex cost function inx that depends on
some parametersξ, it is often the case that at the time of optimizing, the parameters have not yet been fully
resolved. For examples, an investment manager cannot know the exact return for any available securities;
or in a different context, a manufacturing producer cannot know the exact size of future demand.

If one chooses to represent his uncertainty aboutξ through a distributionfξ, one can instead resort to
minimizing the expected cost. This leads to solving a stochastic program:

(SP) minimize
x∈X

Eξ[h(x, ξ)] ,

where the expectation is taken with respect to the random parametersξ ∈ R
m. Thus, based on a well for-

mulated stochastic model, our investment banker can now choose a portfolio of stocks which maximize
long-term expected return, or similarly our company can take early manufacturing decisions which lead
to highest expected profits. Unfortunately, even when the SPis a convex optimization problem, in order
to solve it one must often resort to Monte Carlo approximations, which can be computationally challeng-
ing (see Shapiro (2000)). A more challenging difficulty thatarises in practice is the need to commit to a
distributionfξ given only limited information about the stochastic parameters.
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In an effort to address these issues, a robust formulation for stochastic programming was proposed
in Scarf (1958). In this model, after defining a setD of possible probability distributions that is assumed to
include the truefξ, the objective function is reformulated with respect to theworst case expected cost over
the choice of a distribution in this set. Hence, this leads tosolving the Distributionally Robust Stochastic
Program:

(DRSP) minimize
x∈X

(

max
fξ∈D

Eξ[h(x, ξ)]

)

.

Since its introduction, this model has gain a lot of interestin the context of computing upper bounds on
the moment of a random vector (i.e., the moment problem as reviewed in Landau (1987)), computing upper
bounds on the optimal value of a stochastic program (e.g. in Birge and Wets (1987) and in Kall (1988)), or
providing robust decisions in contexts where distributioninformation is limited (e.g. in Dupacová (1987)
and in Shapiro and Kleywegt (2002)).

Depending on the context, authors have considered a wide range of forms for the distributional setD.
Interestingly, if one chooses the distributional set to be one that contains distributions that put all of their
weight at a single point anywhere in the parameter support set S, then the DRSP reduces to a so-called
robust optimization problem with respect to the worst realization ofξ in S (e.g., in Ben-Tal and Nemirovski
(1998) and in Bertsimas et al. (2007)). Otherwise, in Lagoa and Barmish (2002) and in Shapiro (2006),
the authors consider a set that contains unimodal distributions that satisfy some given support constraints;
under some conditions onh(x, ξ), they characterize the worst distribution as being a uniform distribution.
The most popular type of distributional setD imposes linear constraints on moments of the distribution
as is discussed in Scarf (1958), in Dupacová (1987), in Prékopa (1995) and in Bertsimas and Popescu
(2005). While many more forms of distributional set can be found in the literature (see Dupacová (2001)
and reference therein), our work falls in the category of approaches that consider constraints on the first and
second moments of the distribution.

In order to make the DRSP model tractable, approaches that consider moment constraints have typically
assumed that these moments are known exactly and that they lead to linear equality or inequality constraints.
For example, in his original model, Scarf considered a one dimensional decision variablex representing
how much inventory one should hold, and a single parameterξ representing a random demand with known
mean and variance. The return function had the formh(x, ξ) = −min{rξ − cx , rξ − cx}. To solve this
model, Scarf exploited the fact that the worst case distribution of demand could be chosen to be one with
all its weight on two points. This idea was reused in Yue et al.(2006), in Zhu et al. (2006) and in Popescu
(2007) where, although the objective functions take more interesting forms, they all assume known first and
second moments of the stochastic demand and their solution methods all rely on characterizing the worst
case distribution as a point distribution.

The computational difficulties related to dealing withξ of a larger dimension and with richer objective
functions have limited the practical application of the DRSP model. More specifically, although in some
cases the worst case moment expression can be simplified analytically, like in the linear chance constraint
problem considered in Calafiore and El Ghaoui (2006), it is typical that the model becomes intractable (or
NP-Hard to solve) and that only global optimization methodscan be employed to get an optimal solution
(e.g., in Ermoliev et al. (1985) and in Gaivoronski (1991)). Furthermore, the current approaches can lead to
a false sense of security since they often falsely assume exact knowledge of mean and covariance statistics
for the stochastic parameters. For instance, in many data-driven problems, one must estimate these moments
based on limited historical data assumed to be generated from fξ. As the experiment presented in Section 4
will demonstrate, disregarding the uncertainty (or noise)in these estimates can lead to taking poor decisions.

The main contribution of this paper is two-fold. First, we present a new setD of distributions that takes
into account knowledge about the distribution’s support and aconfidence regionfor its mean and its covari-
ance matrix. In Section 2, we show that under this distributional set the DRSP can be solved in polynomial
time for a large range of objective functions. In fact, the structure of our distribution set allows us to solve
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instances of the DRSP that are known to be intractable under the current exact-moment approaches (see
Example 1 of Section 2.3 for more details). As a second contribution, in Section 3, after deriving a new
confidence region for covariance matrices, we show how our proposed distributional set is well justified
for addressing data-driven problems (i.e., problems where the knowledge ofξ is solely derived from his-
torical data). Finally, our model is applied to a portfolio selection problem in Section 4. In the context of
this application, our experiments demonstrate that, besides computational advantages, our model performs
better in practice on the distribution that drives the dailyreturn of popular stocks compared to other DRSP
formulations.

2. Robust Stochastic Programming with Moment uncertainty
As we mentioned earlier, it is often the case in practice thatone has limited information about the dis-
tribution fξ driving the uncertain parameters which are involved in the decision-making process. In such
situations, it might instead be safer to rely on estimates ofthe meanµ0 and covariance matrixΣ0 of the
distribution:e.g., empirical estimates. However we believe that in such problems, it is also rarely the case
that one is entirely confident in these moments. For this reason, we propose representing this uncertainty
with the following set parameterized byγ1 ≥ 0 andγ2 ≥ 1:

(E[ξ]−µ0)
TΣ−1

0 (E[ξ]−µ0) ≤ γ1 (1a)
E[(ξ−µ0)(ξ−µ0)

T] � γ2Σ0 . (1b)

While Constraint (1a) assumes that the mean ofξ lies in an ellipsoid of sizeγ1 centered at the estimateµ0,
Constraint (1b) forces the covariance matrixE[(ξ − µ0)(ξ − µ0)

T] to lie in a positive semi-definite cone
bounded by a matrix inequality. In other words, it describeshow likely ξ is close toµ0 in terms of the
correlations expressed inΣ0. Note that the parametersγ1 andγ2 provide natural means of quantifying the
size of one’s confidence inµ0 andΣ0 respectively.

In what follows, we will study the DRSP model under the distributional set

D1(S, µ0,Σ0, γ1, γ2) =







fξ ∈M

∣

∣

∣

∣

∣

∣

P(ξ ∈ S) = 1
(E[ξ]−µ0)

TΣ−1
0 (E[ξ]−µ0)≤ γ1

E[(ξ−µ0)(ξ−µ0)
T]� γ2Σ0







,

whereM is the set of all probability measures on the measurable space (Rm,B), with B the Borel
σ-algebra onR

m, andS ⊆ R
m is any closed convex set known to contain the support offξ. The set

D1(S, µ0,Σ0, γ1, γ2), which will also be referred to in short-hand notation asD1, can be seen as a gen-
eralization of many previously proposed sets. For example,D1(S, µ0, I,0,∞) imposes exact mean and
support constraints as is studied in Dupacová (1987) and inBertsimas and Popescu (2005). Similarly,
D1(R

m, µ0,Σ0,0,1) relates closely to the exact mean and covariance matrix constraints considered in Scarf
(1958), in Yue et al. (2006) and in Popescu (2007). We will show that there is a lot to be gained, both on a
theoretical and practical point of view, by formulating theDRSP model using the setD1(S, µ0,Σ0, γ1, γ2)
which constrains all three types of statistics: support, mean and covariance matrix.

REMARK 1. While our proposed uncertainty model cannot be used to express arbitrarily large confidence
in the second order statistics ofξ, in Section 3 we will show how in practice there are natural ways of
assigningµ0, Σ0, γ1 andγ2 based on historical data. Of course, in some situations it might be interesting to
add the following constraint:

γ3Σ0 �E[(ξ−µ0)(ξ−µ0)
T] , (2)

where0 ≤ γ3 ≤ γ2. Unfortunately, this leads to important computational difficulties for the DRSP model.
Furthermore, in most applications of our model, we expect the worst case distribution to actually achieve
maximum variance, thus making Constraint (2) unnecessary.For example, an instance of the portfolio
optimization problem presented in Section 4 will have this characteristic.
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2.1. The Inner Moment Problem with Moment Uncertainty

We start by considering the difficulty in solving the inner maximization problem of a DRSP that uses the
setD1.

DEFINITION 1. Given a fixedx, let Ψ(x;γ1, γ2) be the optimal value of the moment problem:

maximize
fξ ∈ D1

Eξ[h(x, ξ)] . (3)

Sincefξ is a probability measure on(Rm,B), Problem (3) can be described as a semi-infinite conic linear
problem:

maximize
fξ

∫

S
h(x, ξ)dfξ(ξ) (4a)

subject to

∫

S
dfξ(ξ) = 1 (4b)

∫

S
(ξ−µ0)(ξ−µ0)

Tdfξ(ξ)� γ2Σ0 (4c)
∫

S

[

Σ0 (ξ−µ0)
(ξ−µ0)

T γ1

]

dfξ(ξ)� 0 (4d)

fξ ∈M . (4e)

As it is often done with moment problems, since we are strictly interested in the optimal value of this prob-
lem, we can shortcut the difficulties in solving this problemby making use of duality theory (see Rockafeller
(1970) and Rockafeller (1974) for a detailed theory of duality in infinite dimensional convex problems and
both Isii (1963) and Shapiro (2001) for the case of general moment problems).

LEMMA 1. For a fixedx ∈ R
n, given thatγ1 ≥ 0, γ2 ≥ 1, Σ0 ≻ 0, andh(x, ξ) beingfξ-integrable for all

fξ ∈D1, Ψ(x;γ1, γ2) is finite and equal to the value of the following dual problem:

minimize
Q,q,r ,t

r + t (5a)

subject to r ≥ h(x, ξ)− ξTQξ− ξTq ∀ ξ ∈ S (5b)
t≥
(

γ2Σ0 +µ0µ
T

0

)

•Q+µT

0q+
√
γ1 ‖Σ1/2

0 (q+2Qµ0)‖ (5c)
Q� 0 , (5d)

where(A •B) refers to the Frobenius inner product between matrices,Q ∈ R
m×m is a symmetric matrix,

the vectorq ∈ R
m and r , t ∈ R. In addition, there exists a set of real-valued assignmentsfor (Q,q, r , t)

that achieves optimality for Problem(5).

We defer the proof of this Lemma to the appendix since it results from the application of well established
concepts in duality theory.

To show that there exists a tractable solution method for solving Problem (5), we employ a famous
equivalence between convex optimization and convex set separation.

LEMMA 2. (Grötschel et al. (1981)) Consider a convex optimization problem of the form

minimize
z∈Z

cTz

with linear objective and convex feasible setZ. Given that the the set of optimal solutions is non-empty,
the problem can be solved to any precisionǫ in time polynomial inlog(1/ǫ) and the size of the problem by
using the ellipsoid method if and only ifZ satisfies the following two conditions :

1. for any z̄, z̄ ∈Z can be verified in time polynomial in the dimension ofz;
2. for any infeasiblēz, a hyperplane that separates̄z from the feasible setZ can be generated in time

polynomial in the dimension ofz.
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A first application of this lemma leads to quantifying the difficulty of solving the feasibility problem
associated with Constraint (5b).

ASSUMPTION1. The support setS ⊂R
m is convex and compact (closed and bounded), and it is equipped

with an oracle that can for anyξ ∈ R
m either confirm thatξ ∈ S or provide a hyperplane that separatesξ

fromS in time polynomial inm.

LEMMA 3. Let functionh(x, ξ) be concave inξ and be such that one can provide a super-gradient ofξ in
time polynomial inm. Then, under Assumption 1, for any fixed assignmentx, Q� 0, andq, one can find
an assignmentξ∗ that isǫ-optimal with respect to the problem

maximize
t,ξ

t (6a)

subject to t≤ h(x, ξ)− ξTQξ− ξTq (6b)
ξ ∈ S , (6c)

in time polynomial inlog(1/ǫ) and the size of the problem.

Proof: First, the feasible set of the problem is convex sinceQ� 0 so thath(x, ξ)−ξTQξ−ξTq is a concave
function inξ. BecauseS is compact, the set of optimal solutions for Problem (6) is therefore non-empty. By
Assumption 1, Condition (1) and (2) in Lemma 2 are met for Constraint (6c). On the other hand, feasibility
of Constraint (6b) can be verified directly after the evaluation of h(x, ξ); and for an infeasible assignment
(ξ̄, t̄), the following separating hyperplane can be generated in polynomial time:

t− (∇ξh(x, ξ̄)− 2Qξ̄−q)Tξ≤ h(x, ξ̄)−∇ξh(x, ξ̄)Tξ̄+ ξ̄TQξ̄ ,

where∇ξh(x, ξ) is a super-gradient ofh(x, ·). It follows from the application of Lemma 2 that the ellipsoid
method will converge to anǫ-optimal solution in polynomial time. �

We are now able to derive an important result about the complexity Problem (4) and Problem (5) under a
more general form ofh(x, ξ).

ASSUMPTION2. The functionh(x, ξ) has the formh(x, ξ) = maxk∈{1,...,K} hk(x, ξ) such that for eachk,
hk(x, ξ) is concave inξ. In addition, given a pair(x, ξ), it is assumed that one can in polynomial time:

1. evaluate the value ofhk(x, ξ)
2. find a super-gradient ofhk(x, ξ) in ξ.

Furthermore, for anyx∈ R
n, q∈ R

m, and positive semi-definiteQ∈ R
m×m, the set{y ∈ R | ∃ξ ∈ S, y ≤

h(x, ξ)−qTξ− ξTQξ} is closed.

PROPOSITION1. Given thatS satisfies Assumption 1 and thath(x, ξ) satisfies Assumption 2, Problem(5)
is a convex optimization problem and can be solved to anyǫ precision in time polynomial inlog(1/ǫ) and
the size of the problem.

Proof: First, the feasible set of the problem is convex in(Q,q, r , t) since(γ2Σ0 +µ0µ
T

0 ) • Q + µT

0q +√
γ1 ‖Σ1/2

0 (q + 2Qµ0)‖ is a convex function in(Q,q). By Lemma 1, we are assured that the optimal
solution set of Problem (5) is non-empty. In order to apply Lemma 2, we verify the two conditions for each
constraint of Problem (5). In the case of Constraint (5d), feasibility can be verified inO(m3) arithmetic
operations. Moreover, a separating hyperplane can be generated, if necessary, based on the eigenvector
corresponding to the lowest eigenvalue. The feasibility ofConstraint (5c) is also easily verified. Otherwise,
based on an infeasible assignment(Q̄, q̄, r̄ , t̄), a separating hyperplane can be constructed in polynomial
time:

(

γ2Σ0 +µ0µ
T

0 +∇Qg(Q̄, q̄)
)

•Q+(µ0+∇qg(Q̄, q̄))Tq−t≤∇qg(Q̄, q̄)Tq̄+∇Qg(Q̄, q̄)•Q̄−g(Q̄, q̄) ,
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whereg(Q,q) =
√
γ1 ‖Σ1/2

0 (q+2Qµ0)‖ and∇Qg(Q,q) and∇qg(Q,q) are its associated gradients inQ

andq respectively. Finally, given the assumed structure ofh(x, ξ), Constraint (5b) can be decomposed into
K sub-constraints

r ≥ hk(x, ξ)− ξTQξ− ξTq ∀ ξ ∈ S ∀ k ∈ {1,2, ...,K}
When considering thek-th sub-constraint, it was already shown in Lemma 3 thatsupξ∈S hk(x, ξ)−ξTQξ−
ξTq can be solved to an precisionǫ in polynomial time. Given that the optimal value is found to be above
r + ǫ, one can conclude infeasibility of the constraint and generate an associated separating hyperplane
using any optimal solutionξ∗ as follows:

(ξ∗ξ∗
T •Q) + ξ∗

T
q+ r ≥ hk∗(x, ξ∗) .

SinceK is finite, the conditions derived from Grötschel et al. (1981) are necessarily met by Problem (5).
We therefore conclude thatΨ(x;γ1, γ2) can be computed up to any precisionǫ in polynomial time using
the ellipsoid method. �

2.2. The Distributionally Robust Stochastic Program with Moment Uncertainty

Based on our result with the inner moment problem, we can now address the existence of a tractable solution
method for a DRSP model under the distributional setD1:

minimize
x

(

max
fξ ∈ D1

Eξ[h(x, ξ)]

)

(7a)

subject to x∈X . (7b)

ASSUMPTION3. The setX ⊂R
n is convex and compact (closed and bounded), and it is equipped with an

oracle that can for anyx∈ R
n either confirm thatx∈X or provide a hyperplane that separatesx fromX

in time polynomial inn.

ASSUMPTION4. The functionh(x, ξ) is convex inx and satisfies Assumption 2. In addition, it is assumed
that one can find in polynomial time a sub-gradient ofh(x, ξ) in x.

PROPOSITION2. Given that Assumption 1, 2, 3 and 4 hold, then the DRSP model presented in Problem(7)
can be solved to any precisionǫ in time polynomial inlog(1/ǫ) and the sizes ofx andξ.

Proof: The proof of this theorem follows similar lines as theproof for Proposition 1. We first reformulate
the inner moment problem in its dual form and use the fact thatmin-min operations can be performed jointly
and that the constraint involvingh(x, ξ) decomposes. This leads to an equivalent convex optimization form
for Problem (7):

minimize
x,Q,q,r ,t

r + t (8a)

subject to r ≥ hk(x, ξ)− ξTQξ− ξTq , ∀ ξ ∈ S, k ∈ {1, ...,K} (8b)
t≥
(

γ2Σ0 +µ0µ
T

0

)

•Q+µT

0q+
√
γ1 ‖Σ1/2

0 (q+2Qµ0)‖ (8c)
Q� 0 (8d)
x∈X . (8e)

As in the proof of Proposition 1, we need to show that the ellipsoid method can be successfully applied.
BecauseX is compact and because of Lemma 1, we are assured that the optimal solution set is non-empty.
The arguments that were presented in the proof of Proposition 1 still apply for Constraint (8c) and (8d).
However, the argument for Constraint (8b) needs to be revisited sincex is now considered as an optimiza-
tion variable. Feasibility of an assignment(x̄, Q̄, q̄, r̄) can still be verified in polynomial time because of
Lemma 3 and of the fact thatK is finite. However, in the case that one of the indexed constraints, say the
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k∗-th one, is found to be infeasible, one now needs to generate aseparating hyperplane using the worst case
ξ∗ and∇xhk(x̄, ξ∗), a sub-gradient ofhk∗(·, ξ∗) at x̄:

(ξ∗ξ∗
T •Q) + ξ∗

T
q+ r −∇xhk∗(x̄, ξ∗)

Tx≥ hk∗(x̄, ξ∗)−∇xhk∗(x̄, ξ∗)
Tx̄ .

Since by Assumption 4, a sub-gradient∇xhk(x̄, ξ∗) can be obtained in polynomial time and since, by
Assumption 3, the conditions are met for Constraint (8e), wecan conclude that Lemma 2 can be applied.
Problem (8) can therefore be solved to any precision in polynomial time. �

We believe this result should be of high significance for boththeoreticians and practitioners as it indicates
that, if minx maxξ h(x, ξ) is a tractable robust optimization problem (cf., Ben-Tal and Nemirovski (1998)
and Bertsimas et al. (2007)), then the less-conservative DRSPminx maxfξ∈D1

E[h(x, ξ)] is also tractable.
In some cases, the inner moment problem might even be reducible analytically (see Section 4 for an exam-
ple). Moreover, one still has access to the wide spectrum of methods that have been proposed for robust
optimization problems: ranging from methods that use cutting planes more efficiently such as in Goffin and
Vial (1993), in Ye (1997) and in Bertsimas and Vempala (2004), to methods that approximate the feasible
set with a finite number of sampled constraints such as in De Farias and Van Roy (2001) and in Calafiore
and Campi (2005).

REMARK 2. The constraintQ� 0 plays an important role in making Problem (7) solvable in polynomial
time. This constraint corresponds to the covariance matrixinequality in our distribution setD1 construction.
If the inequality is replaced by an equality, thenQ is “free” and Problem (6) is no longer a convex opti-
mization problem. This explains why many DRSP problems under the exact-covariance knowledge actually
become intractable.

REMARK 3. We also remark that the bounded condition onS in Assumption 1 is imposed in order to
simplify the exposition of our results. In the case thatS is unbounded, Proposition 1 and 2 will hold as long
as that feasibility with respect to Constraint (5b) can be verified in polynomial time. And given an infeasible
assignment(x̄, Q̄, q̄, r̄), one can interrupt the solution process for Problem (6) whenthe achieved maximum
is good enough,i.e., t > r̄ , which is guaranteed to occur in polynomial time since either the problem is
unbounded above or the set of optimalt∗ is non-empty due to the technical condition in Assumption 2.

2.3. Examples

Because our framework only imposes weak conditions onh(x, ξ) through Assumption 2 and 4, it is pos-
sible to revisit many well-known cases of stochastic programs and reformulate them taking into account
distribution and moment uncertainty.

EXAMPLE 1. Optimal Inequalities in Probability Theory.

Consider the problem of finding a tight upper bound onP(ξ ∈ C) for a random vectorξ with known
mean, and covariance matrix and some closed setC. By formulating this problem as a semi-infinite linear
program:

maximize
fξ∈D

∫

S
11{ξ ∈ C}dfξ(ξ) , (9)

many have proposed methods to provide useful extensions to the popular Chebyshev inequality (see Mar-
shall and Olkin (1960) and Bertsimas and Popescu (2005)). However, these methods fail when dealing with
support constraints. More specifically, ifC is a finite union of disjoint convex sets, it is known that for Prob-
lem (9) with unconstrained support,i.e., S = R

m, the worst case value can be found in polynomial time.
But if the support is constrained, such asS = R

+, then the problem is known to be NP-hard. In fact, the
hardness of this last problem arises already in finding a distribution that is feasible.
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Our framework recommends relaxing the restrictions on the covariance ofξ and instead consider the
distributional setD1(S, µ0,Σ0, γ1, γ2). Such a distributional set constrains all three types of statistics: mean,
covariance matrix and support. IfC is a finite union of disjoint convex setsCk (equipped with their respective
feasibility oracle), and if for eachk, Ck ∩S 6= ∅, then our framework leads to a new Chebyshev inequality
that can be evaluated in polynomial time. First, in our framework the problem of finding afξ ∈D1 is already
resolved using the Dirac measureδµ0

.1 We can also construct anh(x, ξ) that satisfies Assumption 2 and 4

by choosingh0(x, ξ) = 0 andhk(x, ξ) =

{

1 , if ξ ∈ Ck

−∞ , otherwise
. Then, clearly by the fact that

Eξ[h(x, ξ)] = Eξ[max
k

hk(x, ξ)] = Eξ[11{ξ ∈ C}] = P(ξ ∈ C)≤ max
fξ∈D1

Eξ[h(x, ξ)] ,

it follows that for distributions inD1, a tight Chebyshev bound can be found in polynomial time. Note that
by using the formD1(R

+, µ,Σ,0,1) one can also provide useful upper bounds to the mentioned NP-hard
versions of the problem with the exact covariance information.

EXAMPLE 2. Distributionally Robust Optimization with piecewise-linear convex costs.

Assume that one is interested in solving the following DRSP model for a general piece-wise linear convex
cost function ofx

minimize
x∈X

(

max
fξ∈D1

Eξ[max
k

ξT

kx]

)

,

where eachξk ∈ R
n is a random vector. This is quite applicable since any convexcost function can be

approximated by a piecewise linear function. By considering ξ to be a random matrix whosek-th column is
the random vectorξk and takinghk(x, ξ) = ξT

kx, which is linear (hence concave) inξ, the results presented
earlier allows one to conclude that the DRSP can be solved efficiently. In fact, due tohk(x, ξ) − ξTQξ −
ξTq being a concave quadratic function ofξ, the DRSP can be solved more efficiently then suggested by
Proposition 2. For instance, ifS can be formulated as an ellipsoid then the DRSP reduces to a semi-definite
program of finite size. Section 4 will exploit this property in a case of portfolio optimization.

EXAMPLE 3. Distributionally robust conditional value-at-risk.

Conditional value-at-risk, also called mean excess loss, was introduced in the mathematical finance com-
munity as a new risk measure in decision-making. It is closely related to the more common value-at-risk
measure, which for a risk tolerance level ofϑ∈ (0,1) evaluates the lowest amountτ such that with probabil-
ity 1−ϑ, the loss does not exceedτ . Instead, CVaR evaluates the conditional expectation of loss above the
value-at-risk. In order to keep the focus of our discussion on the topic of DRSP models, we refer the reader
to Rockafellar and Uryasev (2000) for technical details on this subject. CVaR has gained a lot of interest in
the community because of its attractive numerical properties. For instance, Rockafellar and Uryasev (2000)
demonstrated that one can evaluate theϑ-CVaRξ[c(x, ξ)] of a cost (or loss) functionc(x, ξ) with random
parameters distributed according tofξ by solving a minimization problem of convex form:

ϑ-CVaRξ[c(x, ξ)] = min
λ∈R

λ+
1

ϑ
Eξ

[

(c(x, ξ)−λ)+
]

,

where(y)+ = max{y , 0}. While CVaR is a rich risk measure, it still requires the decision maker to commit
to a distributionfξ. This is a step that can be difficult to take in practice; thus,justifying the introduction
of a distributionally robust version of the criterion such as in Čerbáková (2005) and in Zhu and Fukushima
(2005). Using the results presented earlier in this section, we can derive new conclusions for the general
form of robust conditional value at risk. Given that the distribution is known to lie in a distributional setD1,
let the Distributionally Robustϑ-CVaR Problem be expressed as:

(DR ϑ-CVaR) minimize
x∈X

(

max
fξ∈D1

ϑ-CVaRξ[c(x, ξ)]

)

.
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By the equivalence statement presented above, this problemis equivalent to the form

minimize
x∈X

(

max
fξ∈D1

(

min
λ∈R

λ+
1

ϑ
Eξ

[

(c(x, ξ)−λ)+
]

))

.

Given thatc(x, ξ) meets the conditions of Assumption 2 and 4, since the function λ+ 1
ϑ
Eξ [(c(x, ξ)−λ)+]

is real valued, convex inλ and concave (actually linear) infξ, and sinceD1 is weakly compact (see Shapiro
(2001)), the minimax theorem holds true. Thus, interchanging themaxfξ

andminλ operators leads to an
equivalent formulation of the (DRϑ-CVaR) Problem.

minimize
x∈X ,λ∈R

(

max
fξ∈D1

Eξ[h(x, λ, ξ)]

)

,

whereh(x, λ, ξ) = λ+ 1
ϑ
(c(x, ξ)−λ)+. Because of the argument that

h(x, λ, ξ) = λ+
1

ϑ
max{ 0 , c(x, ξ)−λ } = max

{

λ , max
k

(

1− 1

ϑ

)

λ+
1

ϑ
ck(x, ξ)

}

,

it is clear thath(x, λ, ξ) meets Assumption 2 and 4. Hence, Proposition 2 allows us to conclude that finding
an optimalx (and its associatedλ) with respect to the worst case conditional value-at-risk obtained over the
set of distributionsD1 can be done in polynomial time.

3. Moment Uncertainty in Data-driven Problems
The computational results presented in the previous section rely heavily on the structure of the described
distributional setD1. This set was built to take into account moment uncertainty in the stochastic parameters.
We now turn ourselves to showing that such a structure can be naturally justified in the context of data-
driven optimization problems. To be more specific, we now focus on problems where the knowledge of
the stochastic parameters is restricted to a set of samples,{ξi}M

i=1, generated independently and randomly
according to an unknown distributionfξ. Under such conditions, a common approach is to assume that the
true moments lie in a neighborhood of their respective empirical estimates. In what follows, we will show
how one can define a confidence region for the mean and the covariance matrix such that it is assured with
high probability to contain the mean and covariance matrix of the distribution ofξ. This result will in turn be
used to derive a distributional set of the formD1 and will provide probabilistic guarantees that the solution
found using our proposed DRSP model is robust with respect tothe true distribution of the random vector
ξ.

In order to simplify the derivations, we start by reformulating the random vectorξ in terms of a mixture of
uncorrelated componentζ. More specifically, given the random vectorξ ∈R

m with meanµ and covariance
matrixΣ≻ 0, let us defineζ ∈R

m to be the normalized random vectorζ = Σ−1/2(ξ−µ) such thatE[ζ] = 0
andE[ζζT] = I. Also, let us make the following assumption aboutζ:

ASSUMPTION5. There exists a ball of radiusR that contains the entire support of the unknown distribution
of ζ. More specifically, there existR≥ 0 such that

P
(

(ξ−µ)T Σ−1(ξ−µ)≤R2
)

= 1 .

In practice, even when one does not have information aboutµ andΣ, we believe that one can often still make
an educated and conservative guess about the magnitude ofR. We will also revisit this issue in Section 3.3
where we deriveR based on the bounded support ofξ. In this work, a confidence region forµ andΣ will
be derived based on Assumption 5 and on an inequality known asthe “independent bounded differences
inequality”, which was popularized by McDiarmid.2 In fact, this inequality can be seen as a generalized
version of Hoeffding’s inequality.
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THEOREM 1. (McDiarmid (1998)) Let{ξi}M
i=1 be a set of independent random vectorsξi taking values in

a setSi for eachi. Suppose that the real-valued functiong(ξ1, ξ2, ..., ξM ) defined onS1 × S2 × ...× SM

satisfies

|g(ξ1, ξ2, ..., ξM )− g(ξ′1, ξ
′
2, ..., ξ

′
M )| ≤ cj (10)

whenever the vector sets{ξi}M
i=1 and{ξ′i}M

i=1 differ only in thej-th vector. Then for anyt≥ 0,

P (g(ξ1, ξ2, ..., ξM )−E[g(ξ1, ξ2, ..., ξM )]≤−t)≤ exp

(

−2t2
∑M

j=1 c
2
j

)

.

3.1. Uncertainty Cone Centered at Empirical Mean

A first use of the McDiarmid’s theorem leads to defining an ellipsoidal constraint relating the empirical
estimatêµ=M−1

∑M

i=1 ξi to the true mean and true covariance of the random vectorξ.
The following result was demonstrated from McDiarmid’s theorem.

LEMMA 4. (Shawe-Taylor and Cristianini (2003)) Let{ζi}M
i=1 be a set ofM samples generated indepen-

dently at random according to the distribution ofζ. If ζ satisfies Assumption 5 then with probability at least
(1− δ) over the choice of sets{ζi}M

i=1, we have

∥

∥

∥

∥

∥

1

M

M
∑

i=1

ζi

∥

∥

∥

∥

∥

2

≤ R2

M

(

2 +
√

2 ln(1/δ)
)2

.

This result can in turn be used to derive a similar statement about the random vectorξ.

COROLLARY 1. Let {ξi}M
i=1 be a set ofM samples generated independently at random according to the

distribution ofξ. If ξ satisfies Assumption 5, then with probability greater than1− δ, we have:

(µ̂−µ)TΣ−1(µ̂−µ)≤ β(δ) , (11)

whereµ̂= 1
M

∑M

i=1 ξi andβ(δ) = (R2/M)(2 +
√

2 ln(1/δ))2.

Proof: This generalization for aξ with arbitrary mean and covariance matrix is quite straightforward:

P
(

(µ̂−µ)TΣ−1(µ̂−µ)≤ β(δ)
)

= P





∥

∥

∥

∥

∥

Σ−1/2

(

1

M

M
∑

i=1

ξi −µ

)∥

∥

∥

∥

∥

2

≤ β(δ)





= P





∥

∥

∥

∥

∥

1

M

M
∑

i=1

Σ−1/2(ξi −µ)

∥

∥

∥

∥

∥

2

≤ β(δ)





= P





∥

∥

∥

∥

∥

M
∑

i=1

ζi

∥

∥

∥

∥

∥

2

≤ β(δ)



≥ 1− δ . �

SinceΣ is non-singular, the inequality of Equation (11) constrains the vectorµ and matrixΣ to a convex
set. This set can be represented by the following linear matrix inequality after applying the principles of
Schur’s complement:

[

Σ (µ̂−µ)
(µ̂−µ)T β(δ)

]

� 0 .
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3.2. Uncertainty Cone Centered at Empirical Covariance

In order for Constraint (11) to describe a bounded set, one must be able to contain the uncertainty inΣ.
While confidence regions for the covariance matrix are typically defined on a term by term basis (see
for example Shawe-Taylor and Cristianini (2003)), we favorthe structure imposed by two linear matrix
inequalities boundingΣ around its empirical estimatêΣ =M−1

∑M

i=1(ξi − µ̂)(ξi − µ̂)T:

P

(

cminΣ̂�Σ� cmaxΣ̂
)

≥ 1− δ . (12)

Note that the difficulty of this task relies heavily on the fact that one needs to derive a confidence interval
for the eigenvalues of the stochastic matrixΣ−1/2Σ̂Σ−1/2, which is an important field of study in statistics.
For the case that interests us, whereM ≫ m with M finite andm fixed, prior work usually assumesξ
is a normally distributed random vector (see Anderson (1984) and Edelman (1989)). Under the Gaussian
assumption, the sample covariance matrix follows the Wishart distribution, thus one can formulate the
distribution of eigenvalues in a closed form expression andderive such percentile bounds. In the case where
ξ takes a non-normal form, the asymptotic distribution of eigenvalues was studied by Waternaux (1976)
and Fujikoshi (1980) among others. However, to the best of our knowledge, our work is the first to formulate
an uncertainty sets with the characteristics presented in Equation (12) for a sample set of finite size. In
what follows, we start by demonstrating how a confidence region of the form presented in Equation (12)
can be defined around̂I = M−1

∑

i ζiζ
T

i for the mean and covariance matrix ofζ. Next, we will assume
that the mean ofξ is exactly known and will formulate the confidence region forΣ in terms ofΣ̂(µ) =
M−1

∑M

i=1(ξi −µ)(ξi −µ)T. We conclude this section with our main result about a confidence region forµ
andΣ which relies solely onM and on support information about the random vectorξ.

LEMMA 5. Let{ζi}M
i=1 be a set ofM samples generated independently at random according to thedistri-

bution ofζ. If ζ satisfies Assumption 5, then with probability greater than1− δ, we have

1

1 +α(δ/2)
Î� I� 1

1−α(δ/2)
Î , (13)

whereα(δ/2) = (R2/
√
M)

(

√

1−m/R4 +
√

ln(2/δ)
)

, provided that

M >R4
(

√

1−m/R4 +
√

ln(2/δ)
)2

. (14)

Proof: The proof of this theorem relies on applying Theorem 1twice to show that both 1
1+α(δ/2)

Î� I and

I� 1
1−α(δ/2)

Î occur with probability greater than1− δ/2. Our statement then simply follows by the union
bound. However, for the sake of conciseness, this proof willfocus on deriving the upper bound since the
steps that we follow can easily be adjusted for the derivation of the lower bound.

When applying Theorem 1 to show thatI � 1
1−α(δ/2)

Î occurs with probability1 − δ/2, the main step

consists of definingg(ζ1, ζ2, ..., ζM ) = min‖z‖=1 zTÎz and finding a lower bound forE[g(ζ1, ζ2, ..., ζM )].
One can start by showing that Constraint (10) is met whencj =R2/M for all j.

|g(ζ1, ζ2, ..., ζM )− g(ζ ′1, ζ
′
2, ..., ζ

′
M )|=

∣

∣

∣

∣

min
‖z‖=1

zTÎz− min
‖z‖=1

zTÎ′z

∣

∣

∣

∣

,

whereÎ′ = 1
M

∑M

i=1 ζ
′
iζ

′
i
T = Î+ 1

M
(ζ ′jζ

′
j
T − ζjζ

T

j ) since{ζi}M
i=1 and{ζ ′i}M

i=1 only differ in thej-th vector.
Now assume thatmin‖z‖=1 zTÎz≥min‖z‖=1 zTÎ′z. Then, for anyz∗ ∈ argmin‖z‖=1 zTÎ′z

|g(ζ1, ζ2, ..., ζM )− g(ζ ′1, ζ
′
2, ..., ζ

′
M ))| = min

‖z‖=1
zTÎz− z∗T

Î′z∗

≤ z∗T(Î− Î′)z∗
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= z∗T 1

M
(ζjζ

T

j − ζ ′jζ
′T
j )z∗

=
1

M

(

(ζT

j z∗)2 − (ζ ′Tj z∗)2
)

≤ ‖z∗‖2‖ζj‖2

M
≤ R2

M
.

Otherwise, in the case thatmin‖z‖=1 zTÎz ≤ min‖z‖=1 zTÎ′z the same argument applies usingz∗ ∈
argmin‖z‖=1 zTÎz.

As for boundingE[g(ζ1, ζ2, ..., ζM )], the task is a bit harder. We can instead try to find an upper bound on
the maximum eigenvalue of(I− Î) since

E

[

max
‖z‖=1

zT(I− Î)z

]

= 1−E

[

min
‖z‖=1

zTÎz

]

. (15)

Using Jensen’s inequality and basic linear algebra, one canshow that

(

EÎ

[

max
‖z‖=1

zT(I− Î)z

])2

≤ EÎ

[

(

max
‖z‖=1

zT(I− Î)z

)2
]

≤ EÎ

[

m
∑

i=1

σ2
i (I− Î)

]

= EÎ

[

trace
(

(I− Î)2
)]

= E



trace





(

1

M

M
∑

i=1

I− ζiζ
T

i

)2








= trace

(

1

M 2

M
∑

i=1

E
[

I− 2ζiζ
T

i +(ζiζ
T

i )2
]

)

=
1

M

(

trace
(

E
[

(ζiζ
T

i )2
])

− trace (I)
)

=
E [‖ζi‖4]−m

M
≤ R4 −m

M
,

where we used the fact thatζi are sampled independently thus makingE[(I − ζiζ
T

i )(I − ζjζ
T

j )] =
E[I − ζiζ

T

i ]E[I − ζjζ
T

j ] = 0. By replacing this lower bound in Equation (15), we can now state that
E[g(ζ1, ζ2, ..., ζM )] ≥ 1 − (R2/

√
M)
√

1−m/R4. More importantly, Theorem 1 allows us to confirm the
proposed upper bound using the following argument. Since the statement

P

(

min
‖z‖=1

zTÎz−EÎ

[

min
‖z‖=1

zTÎz

]

≤−ǫ
)

≤ exp

(

−2ǫ2
∑M

j=1(R
4/M 2)

)

,

implies that

P

(

min
‖z‖=1

zTÎz−EÎ[ min
‖z‖=1

zTÎz]≥−R
2
√

ln(2/δ)√
M

)

≥ 1− δ/2 ,

and since relaxingEÎ[min‖z‖=1 zTÎz] to its lower bound can only include more random events, we neces-
sarily have that

P

(

min
‖z‖=1

zTÎz≥ 1− R2

√
M

(

√

1−m/R4 +
√

ln(2/δ)
)

)

≥ 1− δ/2 .

Thus, given thatM is large enough to ensure that1−α(δ/2)> 0, we conclude that

P

(

I� 1

1−α(δ/2)
Î

)

≥ 1− δ/2 .

The task of showing that1/(1 + α(δ/2))Î � I also occurs with probability1 − δ/2 is very similar.
One needs to apply Theorem 1, now definingg(ζ1, ζ2, ..., ζM ) =−min‖z‖=1 zTÎz, and to demonstrate that
E[g(ζ1, ζ2, ..., ζM )]≥−1−α(δ/2). The rest follows easily. �
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REMARK 4. Considering for simplicity the single dimension case where one is interested in a confidence
region based on̂I =

∑M

i=1 ζ
2
i , one can easily verify thatα(δ) is asymptotically of the right order in terms

of M andR. SinceE[ζ4] is bounded byR4, the central limit theorem guarantees that
√
M(Î−E[ζ2]) con-

verges in distribution toN (0,E[ζ4]− 1). Thus, it follows that(M/(E[ζ4]− 1))‖Î−E[ζ2]‖2 converges in
distribution to aχ2-distribution with degree 1. For anyδ > 0, one can findc(δ) such that with probabil-

ity greater than1 − δ, ‖Î − E[ζ2]‖ ≤ c(δ)
√

E[ζ4]−1√
M

. Hence, asymptotically speaking the confidence region

− 1

1+
c(δ)R2
√

M

Î ≤ I ≤ 1

1− c(δ)R2
√

M

Î is tight.

We are now interested in extending Lemma 5 to a random vector with general mean and covariance
matrix. Given the random event that Constraint (13) is satisfied, then:

I� 1

1−α(δ/2)
Î ⇒ Σ1/2IΣ1/2 � 1

1−α(δ/2)
Σ1/2ÎΣ1/2

⇒ Σ� 1

1−α(δ/2)

1

M

M
∑

i=1

Σ1/2ζiζ
T

i Σ1/2

⇒ Σ� 1

1−α(δ/2)

1

M

M
∑

i=1

(ξi −µ)(ξi −µ)T

⇒ Σ� 1

1−α(δ/2)
Σ̂(µ) ,

and similarly,

1

1 +α(δ/2)
Î� I ⇒ 1

1 +α(δ/2)
Σ̂(µ)�Σ .

Since Constraint (13) is satisfied with probability greaterthan 1 − δ, the following corollary follows
easily.

COROLLARY 2. Let {ξi}M
i=1 be a set ofM samples generated independently at random according to the

distribution ofξ. If ξ satisfies Assumption 5 andM satisfies Equation 14, then with probability greater then
1− δ, we have that

1

1 +α(δ/2)
Σ̂(µ)�Σ� 1

1−α(δ/2)
Σ̂(µ) ,

whereΣ̂(µ) = 1
M

∑M

i=1(ξi −µ)(ξi −µ)T andα(δ/2) is defined as in Lemma 5.

This statement leads to the description of a convex set whichis constructed using empirical estimates of
the mean and covariance matrix and yet is guaranteed to contain the true mean and covariance matrix ofξ
with high probability.

THEOREM 2. Let {ξi}M
i=1 be a set ofM samples generated independently at random according to the

distribution ofξ. If ξ satisfies Assumption 5 andM satisfies Equation 14, then with probability greater than
1− δ over the choice of{ξi}M

i=1, the following set of constraints are met:

(µ̂−µ)Σ−1(µ̂−µ)≤ β(δ/2) (16a)

Σ� 1

1−α(δ/4)−β(δ/2)
Σ̂ (16b)

Σ� 1

1 +α(δ/4)
Σ̂ , (16c)

where Σ̂ = 1
M

∑M

i=1(ξi − µ̂)(ξi − µ̂)T, α(δ/4) = (R2/
√
M)

(

√

1−m/R4 +
√

ln(4/δ)
)

, β(δ/2) =

(R2/M)(2 +
√

2 ln(2/δ))2.
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Proof: By applying Corollary 1, 2 and Lemma 5, the union boundguarantees us with probability greater
than1− δ that the following constraints are met:

(µ̂−µ)Σ−1(µ̂−µ)≤ β(δ/2)

Σ� 1

1−α(δ/4)
Σ̂(µ)

Σ� 1

1 +α(δ/4)
Σ̂(µ) .

Note that our result is not proven yet since, although the first constraint is exactly Constraint (16a), the
second and third constraints actually refer to covariance matrix estimates that uses the true mean of the
distribution instead of its empirical estimate. The following steps will convince us that these conditions are
sufficient for Constraint (16b) and (16c) to hold.

(1−α(δ/4))Σ � Σ̂(µ) =
1

M

M
∑

i=1

(ξi −µ)(ξi −µ)T

=
1

M

M
∑

i=1

(ξi − µ̂+ µ̂−µ)(ξi − µ̂+ µ̂−µ)T

=
1

M

M
∑

i=1

(ξi − µ̂)(ξi − µ̂)T +(ξi − µ̂)(µ̂−µ)T +(µ̂−µ)(ξi − µ̂)T +(µ̂−µ)(µ̂−µ)T

= Σ̂+ (µ̂−µ)(µ̂−µ)T

� Σ̂+β(δ/2)Σ ,

where the last semi-definite inequality of the derivation can be explained using the fact that for anyx∈R
m,

xT(µ̂−µ)(µ̂−µ)Tx = (xT(µ̂−µ))2 = (xTΣ1/2 Σ−1/2(µ̂−µ))2

≤ ‖xTΣ1/2‖2‖Σ−1/2(µ̂−µ)‖2 ≤ β(δ/2)xTΣx .

Thus we can conclude that Constraint (16b) is met. The same steps can be used to show that Constraint (16c)
also holds.

(1 +α(δ/4))Σ � Σ̂(µ) =
1

M

M
∑

i=1

(ξi −µ)(ξi −µ)T

= Σ̂+ (µ̂−µ)(µ̂−µ)T

� Σ̂ .

�

3.3. Bounding the Support of ζ using Empirical Data

The above derivations assumed that one is able to describe a ball containing the support of the rather fictive
random vectorζ. In fact, this assumption can be replaced by an assumption onthe support of the more
tangible random vectorξ as is presented in the following corollary.

COROLLARY 3. Let {ξi}M
i=1 be a set ofM samples generated independently at random according to the

distribution ofξ. Given that the support of the distribution ofξ is known to be contained inSξ, let

R̂= sup
ξ∈Sξ

‖Σ̂−1/2(ξ− µ̂)‖2
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be a stochastic approximation ofR and for anyδ > 0, let

R̄=

(

1− (R̂2 +2)
2 +

√

2 ln(4/δ̄)√
M

)−1/2

R̂ ,

whereδ̄= 1−
√

1− δ. If

M > max











(R̂2 +2)2

(

2 +
√

2 ln(4/δ̄)

)2

,

(

8 +
√

32 ln(4/δ̄)
)2

(
√

R̂+4− R̂
)4











, (17)

then with probability greater than1 − δ, Constraint (16a), (16b) and (16c) are satisfied withα(δ/4)

andβ(δ/2) replaced withᾱ(δ̄/4) = (R̄2/
√
M)

(

√

1−m/R̄4 +
√

ln(4/δ̄)
)

and β̄(δ̄/2) = (R̄2/M)(2 +
√

2 ln(2/δ̄))2 respectively.

Proof: Since we assumed thatΣ was non-singular, the support ofξ being bounded by a ball of radius
Rξ implies thatζ is also bounded. Thus, there exists anR such thatP(‖ζ‖ ≤ R) = 1. Given thatζ has
a bounded support and the size ofM , Theorem 4 guarantees us that with probability greater than1 − δ̄,
Constraint (16a), (16b) and (16c) are met. Thus

R = sup
ζ∈Sζ

‖ζ‖2 = sup
ξ∈Sξ

‖Σ−1/2(ξ−µ)‖2 = sup
ξ∈Sξ

‖Σ−1/2(ξ−µ+ µ̂− µ̂)‖2

≤ sup
ξ∈Sξ

‖Σ−1/2(ξ− µ̂)‖2 + ‖Σ−1/2(µ̂−µ)‖2

≤ sup
ξ∈Sξ

√

1 +α(δ̄/4)‖Σ̂−1/2(ξ− µ̂)‖2 +
√

β(δ̄/2)

≤
√

1 +α(δ̄/4)R̂+
√

β(δ̄/2)

≤ R̂
√

1 + cR2 + cR ,

wherec= (2 +
√

2 ln(4/δ̄))/
√
M .

A careful analysis of the functionψ(R, R̂) = R̂
√

1 + cR2 +cR leads to the observation that ifM satisfies
Constraint (17) then the fact thatR≤ ψ(R, R̂) necessarily implies thatR≤ R̄. We can therefore conclude
thatP(R≤ R̄)≥ 1− δ̄.

Given the event thatR≤ R̄ occurs, since

α(δ̄/4) = (R2/
√
M)

(

√

1−m/R4 +
√

2 ln(4/δ̄)

)

≤ (R̄2/
√
M)

(

√

1−m/R̄4 +
√

2 ln(4/δ̄)

)

= ᾱ(δ̄/4)

and since

β(δ̄/2) = (R2/M)(2 +
√

2 ln(2/δ̄))2 ≤ (R̄2/M)(2 +
√

2 ln(2/δ̄))2 = β̄(δ̄/2) ,

we can conclude with a second application of Theorem 2 that with probability greater than1 − δ̄ the fol-
lowing statements are satisfied:

(µ̂−µ)Σ−1(µ̂−µ)≤ β(δ̄/2)≤ β̄(δ̄/2) ,

Σ� 1

1−α(δ/4)−β(δ/2)
Σ̂� 1

1− ᾱ(δ̄/4)− β̄(δ̄/2)
Σ̂ ,

Σ� 1

1−α(δ/4)
Σ̂� 1

1− ᾱ(δ/4)
Σ̂ .
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It follows that Theorem 2 applies with̄α(δ̄/4) and β̄(δ̄/4) because the probability that the event,E , that
Constraint (16a), (16b) and (16c) equipped withᾱ(δ̄/4) and β̄(δ̄/4) are met is necessarily greater than
1− δ:

P(E)≥ P(E|R≤ R̄)P(R≤ R̄)≥ (1− δ̄)(1− δ̄) = 1− δ . �

3.4. Data-driven DRSP Optimization

In most practical situations where one needs to deal with uncertainty in the parameters, it might not be clear
how to define an uncertainty set for the mean and covariance matrix of the random vector of parametersξ.
It is more likely that one only has in hand a set of independentsamples,{ξi}M

i=1, drawn according to the
distribution ofξ and wishes to solve a form of the DRSP model for which it is guaranteed that with high
probability the solution is robust with respect to the unknown random vectorξ.

We will first use our last result to define, based on the samples{ξi}M
i=1, a set of distributions which is

known to contain the distribution ofξ with high probability, given thatM is sufficiently large.

DEFINITION 2. Given a set{ξi}M
i=1 of M samples, for anyδ > 0 let µ̂, Σ̂, γ̄1 andγ̄2 be defined as

µ̂=
1

M

M
∑

i=1

ξi , Σ̂ =
1

M

M
∑

i=1

(ξi − µ̂)(ξi − µ̂)T

γ̄1 =
β̄(δ̄/2)

1− ᾱ(δ̄/4)− β̄(δ̄/2)
, γ̄2 =

1 + β̄(δ̄/2)

1− ᾱ(δ̄/4)− β̄(δ̄/2)
.

whereᾱ(δ̄/4) = O(1/
√
M) and β̄(δ̄/2) = O(1/M) are constants defined in Corollary 3; hence,γ̄1 → 0

andγ̄2 → 1 asM goes to infinity.

COROLLARY 4. Let {ξi}M
i=1 be a set ofM samples generated independently at random according to

the distribution ofξ. If M satisfies Constraint(17) and ξ has a support contained in a bounded setS,
then with probability greater than1 − δ over the choice of{ξi}M

i=1, the distribution ofξ lies in the set
D1(S, µ̂, Σ̂, γ̄1, γ̄2).

Proof: This result can be derived from Corollary 3. One can show that given any estimateŝµ andΣ̂ that
satisfy both Constraint (16a) and (16b) equipped withᾱ(δ̄/4) and β̄(δ̄/2), these estimates should also
satisfy Constraint (1a) and (1b). First, Constraint (1a) isnecessarily met since for sucĥµ andΣ̂,

(1− ᾱ(δ̄/4)− β̄(δ̄/2))(µ̂−µ)Σ̂−1(µ̂−µ)≤ (µ̂−µ)Σ−1(µ̂−µ)≤ β̄(δ̄/2) ,

where we used the fact that Constraint (16a) implies thatxTΣ−1x≥ (1− ᾱ(δ̄/4)− β̄(δ̄/2))xTΣ̂−1x for any
x∈R

m. Similarly, the samêµ andΣ̂ can be shown to satisfy Constraint (1b):

1

1− ᾱ(δ̄/4)− β̄(δ̄/2)
Σ̂ � Σ = E[ξξT]−µµT

� E[(ξ−µ)(ξ−µ)T]− β̄(δ̄/2)

1− ᾱ(δ̄/4)− β̄(δ̄/2)
Σ̂ ,

since for allx∈R
m,

xTµµTx = (xT(µ− µ̂+ µ̂))2 = (xT(µ− µ̂))2 +2xT(µ− µ̂)µ̂Tx+(xTµ̂)2

= trace(xTΣ1/2Σ−1/2(µ− µ̂)(µ− µ̂)TΣ−1/2Σ1/2x) + 2xTµµ̂Tx− (xTµ̂)2

≤ (µ− µ̂)TΣ−1(µ− µ̂)xTΣx+2xTµµ̂Tx− (xTµ̂)2

≤ xT

(

β̄(δ̄/2)

1− ᾱ(δ̄/4)− β̄(δ̄/2)
Σ̂+µµ̂T + µ̂µT − µ̂µ̂T

)

x

= xT

(

β̄(δ̄/2)

1− ᾱ(δ̄/4)− β̄(δ̄/2)
Σ̂+ E[ξξT]−E[(ξ−µ)(ξ−µ)T]

)

x .
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By Corollary 3, the random variableŝµ andΣ̂ are guaranteed to satisfy Constraint (16a) and (16b) with
probability greater than1 − δ, therefore they must also satisfy Constraint (1a) and (1b) with probability
greater than1− δ. �

We can now extend the results presented in sections 2 to a data-driven framework where moments of
the distribution are estimated using independent samples.Based on the computational argument of Propo-
sition 2 and the probabilistic guarantees provided by Corollary 4, we present an important result for data-
driven problems.

THEOREM 3. Let {ξi}M
i=1 be a set ofM samples generated independently at random according to the

distributionfξ which support is contained in the setS. For anyδ > 0, if Assumption 1, 2, 3 and 4 are satisfied
then, given the set{ξi}M

i=1, one can solve in polynomial time Problem(7) under the setD1(S, µ̂, Σ̂, γ̄1, γ̄2)
whereµ̂, Σ̂, γ̄1 and γ̄2 are assigned as in Definition 2. Furthermore, ifM satisfies Constraint(17), then
with probability greater than1− δ over the choice of{ξi}M

i=1, we have that any optimal solutionx∗ of the
DRSP formed using these samples will satisfy the constraint

Eξ[h(x∗, ξ)]≤Ψ(x∗; γ̄1, γ̄2) .

Since we believe the moment problem to be interesting in its own right, we wish to mention a simple
consequence of the above result for moment problems in a data-driven framework.

COROLLARY 5. Let δ > 0 and let {ξi}M
i=1 be a set ofM samples generated independently at random

according to the distributionfξ which support is contained in the setS. For anyδ > 0 and functiong(ξ) , if
S satisfies Assumption 1 and the functionh(x, ξ) = g(ξ) satisfies Assumption 2 then, given the set{ξi}M

i=1,
one can solve in polynomial time the moment problem

maximize
fξ ∈ D1(S,µ̂,Σ̂,γ̄1,γ̄2)

Eξ[g(ξ)] ,

whereµ̂, Σ̂, γ̄1 and γ̄2 are assigned as in Definition 2. Furthermore, ifM satisfies Constraint(17), then
with probability greater than1− δ over the choice of{ξi}M

i=1, we have that

Eξ[g(ξ)] ≤ Ψ(0; γ̄1, γ̄2) .

4. Application to Portfolio Optimization
We now turn ourselves to applying our framework to an instance of portfolio optimization. In such a prob-
lem, one is interested in maximizing his expected utility for the potential one step return of an investment
portfolio. Given thatn investment options are available, expected utility can be defined asE[u(ξTx)], where
u(·) is a non-decreasing function andξ ∈ R

n is a random vector of returns for the different options. In the
robust approach to this problem, one defines a distributional setD that is known to contain the distribution
fξ and choose the portfolio which is optimal according to the following Distributionally Robust Portfolio
Optimization model:

(DRPO) maximize
x

min
fξ ∈ D

Eξ[u(ξ
Tx)] (18a)

subject to
n
∑

i=1

xi = 1 , x≥ 0 . (18b)

In Popescu (2007), the author addresses the case of Problem (18) whereE[ξ] andE[ξξT] are known
exactly and one considersD to be the set of all distribution with such first and second moments. Based
on these assumptions, the author presents a parametric quadratic programming algorithm that is efficient
for a large family of utility functionu(·). This approach is interesting as it provides a mean of takinginto
account uncertainty in the form of the distribution of returns. Unfortunately, our experiments will show that
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in practice it is highly sensitive to the noise in the empirical estimation of these moments. Secondly, the
proposed algorithm also relies on solving a one dimensionalnon-convex mathematical program. Thus, it is
not guaranteed to converge to an optimal solution in polynomial time. Although the approach that we are
about to propose addresses a smaller family of utility functions, it will take into account moment uncertainty
and will lead to the formulation of a semi-definite program, which can be solved efficiently using interior
point methods.

In Goldfarb and Iyengar (2003), the authors propose accounting for moment uncertainty in Markowitz
models. Their motivation is closely aligned with ours and many of the proposed techniques can be applied
in our context:e.g., the use of factor models to reduce the dimensionality ofξ. Similarly, the results pre-
sented in Section 3 for the data-driven framework should extend easily to the context of Markowitz models.
Because Problem (18) reduces to a Markowitz model when the utility function is quadratic and concave, we
consider our model to be richer than the one considered in Goldfarb and Iyengar (2003). On the other hand,
the robust Markowitz model typically gives rise to problemsthat are easier to solve.

4.1. Portfolio Optimization with Moment Uncertainty

In order to apply our framework we need to assume that the utility function is piecewise linear concave,
such thatu(y) = mink∈{1,2,...,K} aky + bk. This is not too constraining since in portfolio optimization
the interesting utility functions are usually concave and such functions always have good piecewise lin-
ear approximation with finiteK. We use historical knowledge of investment returns{ξ1, ξ2, ..., ξM} to
define a distributional uncertainty set forfξ. This can be done using the setD1(S, µ̂, Σ̂, γ1, γ2) whereµ̂
andΣ̂ are assigned as the empirical estimates of the meanµ̂ = M−1

∑M

i=1 ξi and covariance matrix̂Σ =
M−1

∑M

i=1(ξi − µ̂)(ξi− µ̂)T of ξ respectively.3 We consider two options for the choice ofS: eitherS = R
n,

or an ellipsoidal setS = {ξ|(ξ− ξ0)
TΘ(ξ− ξ0)≤ 1}, with Θ� 0.

Building on the results presented in Section 2, one can make the following statement about the tractability
of the DRPO model.

THEOREM 4. Given thatu(·) is piecewise linear concave and thatX satisfies Assumption 3, finding
an optimal solutionx ∈ R

n to the DRPO model, Problem(18), equipped with the set of distributions
D1(S, µ̂, Σ̂, γ1, γ2) can be done inO(n6.5).

Proof: We first reformulate the objective of Problem (18) in its minimization form :

minimize
x∈X

(

max
fξ ∈ D1(S,µ̂,Σ̂,γ1,γ2)

Eξ[max
k

−akξ
Tx− bk]

)

.

After confirming thatS satisfies the weaker version of Assumption 1 (see Remark 3) and thath(x, ξ) =
maxk −akξ

Tx− bk satisfies Assumption 2 and 4, a straightforward applicationof Proposition 2 already
confirms that Problem (18) can be solved in polynomial time. In order to get a more precise computational
bound, one needs to take a closer look at the dual formulationpresented in Lemma 1 and exploit the special
structure ofh(x, ξ) in Problem (18):

minimize
x,Q,q,r ,P,p,s

γ2(Σ0 •Q)−µT

0Qµ0 + r +(Σ0 •P)− 2µT

0p+ γ1s (19a)

subject to

[

P p

pT
s

]

≥ 0 , p =−q/2−Qµ̂ , Q� 0 (19b)

ξTQξ+ ξTq+ r ≥−akξ
Tx− bk , ∀ξ ∈ S, k ∈ {1,2, ...,K} (19c)

n
∑

i=1

xi = 1 , xi ≥ 0 , ∀i . (19d)
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Given thatS = R
n, one can use Schur’s complement to replace Constraint (19c)by an equivalent linear

matrix inequality.

minimize
x,Q,q,r ,P,p,s

γ2(Σ̂ •Q)− µ̂TQµ̂+ r +(Σ̂ •P)− 2µ̂Tp+ γ1s

subject to

[

P p

pT
s

]

� 0 , p =−q/2−Qµ̂
[

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

]

� 0 , ∀k
n
∑

i=1

xi = 1 , xi ≥ 0 , ∀i .

While if S is an ellipsoid, the S-Lemma (cf., Pólik and Terlaky (2007)) can be used to replace Con-
straint (19c)

[

ξ
1

]T [

Θ −Θξ0
−ξT

0 Θ ξT

0 Θξ0 − 1

][

ξ
1

]

≤ 0→
[

ξ
1

]T [

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

][

ξ
1

]

≥ 0 ,

with an equivalent constraint:
[

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

]

�−τk

[

Θ −Θξ0
−ξT

0 Θ ξT

0 Θξ0 − 1

]

, τk ≥ 0 ,

whereτk, k ∈ {1, ...,K}, are extra slack variables. The problem can therefore also be reformulated as a
semi-definite program:

minimize
x,Q,q,r ,P,p,s,τ

γ2(Σ̂ •Q)− µ̂TQµ̂+ r +(Σ̂ •P)− 2µ̂Tp+ γ1s

subject to

[

P p

pT
s

]

� 0 , p =−q/2−Qµ̂ , Q� 0
[

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

]

�−τk

[

Θ −Θξ0
−ξT

0 Θ ξT

0 Θξ0 − 1

]

, ∀k
τk ≥ 0 ∀k

n
∑

i=1

xi = 1 , xi ≥ 0 , ∀i .

In both cases, the optimization problem that needs to be solved is a semi-definite program. It is well
known that an interior point algorithm can be used to solve anSDP of the form

minimize
x∈Rñ

cTx

subject to Ai(x)� 0 ∀i= 1,2, ..., K̃

in O

(

(

∑K̃

i m̃i

)0.5 (

ñ2
∑K̃

i m̃
2
i + ñ

∑K̃

i m̃
3
i

)

)

, wherem̃i stands for the dimension of the positive semi-

definite cone (i.e., Ai(x) ∈ R
m̃i×m̃i) (see Nesterov and Nemirovski (1994)). In both SDP that interests us

here, one can show thatñ≤ n2 +4n+2+K and that the problem can be solved inO(K3.5n6.5) operations,
with K being the number of pieces in the utility functionu(·). We conclude that the portfolio optimization
problem can be solved inO(n6.5). �

The results presented in Theorem 4 are related to Popescu andBertsimas (2000) where the authors pro-
posed semi-definite programming models for solving moment problems that are similar to the one present
in the objective of the DRPO. However, notice how our SDP models actually address the more involved
problem of making robust decisions and don’t result in a heavier computational load. It is also the case
that our proposed SDP models consider a more practical set ofdistributions which accounts for covariance
matrix uncertainty (in the form of a linear matrix inequality) and support information.
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REMARK 5. The computational complexity presented here is based on general theory for solving semi-
definite programs. Based on an implementation that uses SeDuMi (Sturm (1999)), we actually observed
empirically that complexity grows in the order ofO(n5) for dense problems. In practice, one may also be
able to exploit structure in problems where subsets (or linear combinations of assets) are known to behave
independently from each other.

REMARK 6. Since the submission of this article, we became aware of independent work presented
in Natarajan et al. (2008), which also addresses the computational difficulties related to the method pro-
posed by Popescu. Their work is closely related to the results presented in Section 4.2. Actually, for the
case of unbounded support, their derivations lead to a further reduction of the DRPO model with known
moments to the form of a second-order cone program. On the other hand, they do not consider support
constraints and do not study the effect of moment uncertainty on portfolio performance. Their approach is
therefore susceptible, in practice, to the same deficiencies as Popescu’s method when these moments are
estimated using historical data.

4.2. A Case where the Worse Distribution has Largest Covariance Matrix

When presenting our distributionally robust framework, weargued in Remark 1 that a positive semi-definite
lower bound on the covariance matrix was uninteresting. Actually, in the case of a portfolio optimization
problem with piecewise concave utility function, the argument can be made more formally. The proof of
the following proposition also provides valuable insight on the structure of a worst case distribution for the
distributionally robust portfolio optimization problem.

PROPOSITION3. The distributionally robust portfolio optimization problem with piecewise linear concave
utility and infinite support constraint on the distributionis an instance of distributionally robust optimiza-
tion where the upper positive semi-definite constraint on the covariance matrix is tight for a worst case
distribution.

Proof: Consider the inner problem of our robust portfolio optimization with unconstrained support for the
distribution:

max
fξ ∈ D1(Rm,µ̂,Σ̂,0,γ2)

Eξ[max
k

−akξ
Tx− bk] . (20)

For simplicity of our derivations, we consider that there isno uncertainty in the mean of the distribution
(i.e., γ1 = 0). The dual of this problem can be formulated as:

minimize
Q,q,r

(Σ̂ •Q) + µ̂TQµ̂+ µ̂Tq+ r

subject to

[

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

]

� 0 , ∀k .

Applying duality theory a second time leads to formulating anew equivalent version of the primal problem,
which by strong duality achieves the same optimum.

maximize
{(Λk,λk ,νk)}K

k=1

K
∑

k=1

akx
Tλk + νkbk (21a)

subject to
K
∑

k=1

Λk � γ2Σ̂+ µ̂µ̂T (21b)

K
∑

k=1

λk = µ̂ ,
K
∑

k=1

νk = 1 (21c)
[

Λk λk

λT

k νk

]

� 0 ∀ k ∈ {1,2, ...,K} . (21d)
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We can show that there always exists an optimal solution suchthat Constraint (21b) is satisfied with equality.
Given an optimal assignmentX∗ = {(Λ∗

k, λ
∗
k, ν

∗
k)}K

k=1 such that∆ = γ2Σ̂ + µ̂µ̂T −∑K

k=1 Λ∗
k � 0, consider

an alternate solutionX ′ = {(Λ′
k, λ

′
k, ν

′
k)}K

k=1 which is exactly the same as the original solutionX∗ except
for Λ′

1 = Λ∗
1 + ∆. Obviously the two solutions achieve the same objective values since{(λ∗

k, ν
∗
k)}K

k=1 and
{(λ′

k, νk; )}K
k=1 are the same. If we can show thatX ′ is also feasible then it is necessarily optimal. The only

feasibility constraint that seriously needs to be verified is the following:
[

Λ′
1 λ

′
1

λ′T
1 ν ′1

]

=

[

Λ∗
1 λ∗

1

λ∗
1

T ν∗1

]

+

[

∆ 0
0 0

]

� 0 ,

and is necessarily satisfied since by definitionX∗ is feasible and that by construction∆ is positive semi-
definite. It is therefore the case that there exists a solutionX∗ that is optimal with respect to Problem (21)
and satisfies Constraint (21b) with equality. Furthermore,one is assured that

∑K

k=1 akx
Tλ∗

k + ν∗kbk is equal
to the optimal value of Problem (20).

After assuming without loss of generality that allν∗k > 0, let us now constructK random vectors
(ζ1, ζ2, ..., ζK) that satisfy the following conditions:

E[ζk] =
1

ν∗k
λ∗

k , E[ζkζ
T

k ] =
1

ν∗k
Λ∗

k .

Note that sinceX∗ satisfies Constraint (21d), we are assured that:

E[ζkζ
T

k ]−E[ζk]E[ζk]
T =

[

I

−E[ζk]
T

]T [

E[ζkζ
T

k ] E[ζk]
E[ζk]

T 1

][

I

−E[ζk]
T

]

=

[

I

−E[ζk]
T

]T
[

1
νk

Λ∗
k

1
νk
λ∗

k
1
νk
λ∗

k
T 1

]

[

I

−E[ζk]
T

]

=
1

ν∗k

[

I

−E[ζk]
T

]T [

Λ∗
k λ∗

k

λ∗
k

T ν∗k

][

I

−E[ζk]
T

]

� 0 .

Hence, the random vectors(ζ1, ζ2, ..., ζK) exists. For instance, ifE[(ζk −E[ζk])(ζk −E[ζk])
T]≻ 0, thenζk

can take the form of a multivariate Gaussian distribution with such mean and covariance matrix. Otherwise,
one can construct a lower dimensional random vector; for instance, ifE[(ζk −E[ζk])(ζk −E[ζk])

T] = 0 then
the random vector is the Dirac measureδE[ζk].

Let k̃ be an independent multinomial with parameters(ν∗1 , ν
∗
2 , ..., ν

∗
K), such thatP(k̃= i) = ν∗i , and use it

to construct the random vectorξ = ζk̃. SinceX∗ satisfies Constraint (21b) and (21c) tightly, one can show
that the distribution function ofξ∗ lies inD(Rm, µ̂, Σ̂,0, γ2) and has largest covariance.

E[ξ∗] =
K
∑

k=1

E[ζk|k̃= k]P(k̃= l) =
K
∑

k=1

1

ν∗k
λ∗

kν
∗
k = µ̂

E[ξ∗ξ∗T] =
K
∑

k=1

E[ζkζ
T

k |k̃ = k]P(k̃= l) =
K
∑

k=1

1

ν∗k
Λ∗

kν
∗
k = γ2Σ̂+ µ̂µ̂T

Moreover, when used as a candidate worst case distribution in Problem (20) it actually achieves the maxi-
mum since we can show it must be greater or equal to it.

E

[

max
l

−alx
Tξ∗ − bl

]

=
K
∑

k=1

E

[

max
l

−alx
Tζk̃ − bl

∣

∣

∣
k̃= k

]

P(k̃= k)

≥
K
∑

k=1

E[−akx
Tζk − bk]P(k̃= k)
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=
K
∑

k=1

−akx
Tλ∗

k − bkν
∗
k

= max
fξ ∈ D1(Rm,µ̂,Σ̂,0,γ2)

Eξ[max
k

−akx
Tξ− bk]

We conclude that we just constructed a worst case distribution that does have largest covariance.�
An interesting consequence of Proposition 3 is that in the framework considered in Popescu (2007), if

the utility function is piecewise concave, one can find the optimal portfolio in polynomial time using our
semi-definite programming formulation with the distributional setD1(R

m, µ̂, Σ̂,0,1). Theoretically, our
semi-definite program formulation is more tractable than the method proposed in Popescu (2007). However,
it is true that our framework does not provide a polynomial time algorithm for the larger range of utility
functions considered in Popescu (2007).

4.3. Experiments

We evaluate our portfolio optimization method with stock market investments. We use a historical dataset
of 30 assets over a horizon of 15 years (1992-2007), obtainedfrom the Yahoo! Finance.4 Each experiment
consists of randomly choosing 4 assets, and building a dynamic portfolio with these assets through the years
2001-2007. At any given day of the experiment, the algorithms are limited to using a period of 30 days
from the most recent history to assign the portfolio. All methods assume that in this period the samples are
independent and identically distributed. Note that 30 samples of data is not much to generate good empirical
estimates of the mean and covariance matrix of returns; however, using a larger history would cause the
assumption of independent and identical samples to be somewhat unrealistic.

In implementing our method, referred as the DRPO model, the distributional set is formulated as
D1(R

4, µ̂, Σ̂,1.35,8.32), whereµ̂ andΣ̂ are the empirical estimates of the mean and covariance ofξ respec-
tively. Due to the sample size being too small to useγ̄1 andγ̄2 from Definition 2, instead these parameters
are chosen based on a simple statistical analysis of the amount of noise present in the estimation of mean and
covariance matrix during the years 1992-2001.5 We compare our approach to the one proposed by Popescu
(2007), where the mean and covariance of the distributionfξ is assumed to be equal to the empirical esti-
mates measured on the last 30 days period. The method is also compared to a naive approximation of the
stochastic program, referred as the SP model, in which the selected portfolio is the one that maximizes
the average utility over the last 30 days period. We believe that the statistics obtained over the set of 300
experiments demonstrate how much there is to gain in terms ofaverage performance and risk reduction by
considering an optimization model that accounts for both distribution and moment uncertainty.

Method Single Day 2001-2004 2004-2007
Avg. utility 1-perc. Avg. yearly return 10-perc.Avg. yearly return 10-perc.

Our DRPO model 1.000 0.983 0.944 0.846 1.1017 1.025
Popescu’s DRPO model 1.000 0.975 0.700 0.334 1.047 0.9364

SP model 1.000 0.973 0.908 0.694 1.045 0.923

First, from the analysis of the daily returns generated by each method, one observes that they achieve
comparable average daily utility. However, our DRPO model stands out as being more reliable. For instance,
the lower 1%-percentile of the utility distribution is 0.8%higher then the two competing methods. Also, this
difference in reliability becomes more obvious when considering the respective long term performances.
Figure 1 presents the average evolution of wealth on a six years period when managing a portfolio of 4 assets
on a daily basis with either of the three methods. The performances over the years 2001-2004 are presented
separately from the performances over the years 2004-2007 in order to measure how they are affected by
different level of economic growth. The figures also indicate periodically the 10% and 90% percentile of the
wealth distribution over the set of 300 experiments. The statistics of the long term experiments demonstrate
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Figure 1 Comparison of wealth evolution in 300 experiments conducted over the years 2001-2007 using three different portfolio
optimization models. For each model, the figures indicate periodically the 10% and 90% percentile of the wealth
distribution in the set of experiments.

empirically that our method significantly outperforms the two other ones in terms of average return and
risks during both the years of economic growth and the years of decline. More specifically, our DRPO
model outperformed Popescu’s DRPO model in terms of total return cumulated over the period 2001-2007
in 79.2% of our experiments (total set of 300 experiments). Also, it performed on average at least 1.67
times better than any competing models. Note that these experiments are purely illustrative of the strengths
and weaknesses of the different models. For instance, the returns obtained in each experiment does not take
into account transaction fees. The realized returns are also biased due to the fact that the assets involved
in our experiments were known to be major assets in their category in January 2007. On the other hand,
the realized returns were also negatively biased due to the fact that in each experiment the models were
managing a portfolio of only four assets. Overall we believethat these biases affected all methods equally.

Appendix. Proof of Lemma 1

We first establish the primal-dual relationship between Problem (4) and Problem (5). In a second step,
we will prove that strong duality holds and that the solutionΨ(x, γ1, γ2) is bounded.

STEP 1. One can first find through formulating the Lagrangian of Problem (3) that the dual can take the
following form

minimize
r ,Q,P,p,s

(γ2Σ0 −µ0µ
T

0 ) •Q+ r +(Σ0 •P)− 2µT

0p+ γ1s (22a)

subject to ξTQξ+2ξT(p−Qµ0) + r −h(x, ξ)≥ 0 , ∀ ξ ∈ S (22b)
Q� 0 (22c)
[

P p

pT
s

]

� 0 , (22d)

wherer ∈ R, Q ∈ R
m×m are the dual variables for Constraint (4b) and 4c respectively while P ∈ R

m×m,
p∈R

m ands ∈ R form together a matrix which is the dual variable associatedwith Constraint (4d).
We can further simplify This equivalence by finding analytical solutions for the variables(P,p, s) in

terms of some fixed(Q,q, r). Because of Constraint (22d), we can consider two cases for the variables∗:
eithers∗ = 0 or s

∗ > 0. Assuming thats∗ = 0, then it must be thatp∗ = 0 otherwisep∗Tp∗ > 0 and

[

p∗

y

]T [

P∗ p∗

p∗T
s
∗

][

p∗

y

]

= p∗T
P∗p∗ − 2p∗T

p∗y < 0 , for y >
p∗TP∗p∗

2p∗Tp∗ ,
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which contradicts Constraint (22d). Finally,P∗ = 0 is an optimal solution since it minimizes the objective.
If s

∗ = 0 then, after replacingq = 2(p−Qµ0), Problem (22)’s objective does indeed reduces to

γ2(Σ0 •Q)−µT

0Qµ0 + r = r + γ2(Σ0 •Q) +µT

0Qµ0 +µT

0q+
√
γ1‖Σ1/2

0 (q+2Qµ0)‖ .

If instead one assumes thats
∗ > 0, then by applying Schur’s complement, Constraint (22d) canbe

shown equivalent toP� 1
s
ppT. SinceΣ0 � 0, P∗ = 1

s
ppT is a valid optimal solution and can be replaced

in the objective. It remains to solve fors∗ > 0 in the one dimensional convex optimization problem
minimize

s>0
1
s
pTΣ0p+ γ1s.By setting the derivative of the objective function to zero, we obtain thats∗ =

√

1
γ1

pTΣ0p. Thus, once again, after replacingq = 2(p−Qµ0), the optimal value of Problem (22) reduces
to the form of Problem (5):

r + γ2(Σ0 •Q) +µT

0Qµ0 +µT

0q+
√
γ1‖Σ1/2

0 (q+2Qµ0)‖ .

STEP 2. One can easily show that the conditions onγ1, γ2 andΣ0 are sufficient to ensure that the Dirac
measureδµ0

(see Endnote 1 for definition) lies in the relative interior of the feasible set of Problem (3).
Based on the weaker version of Proposition 3.4 in Shapiro (2001), we can conclude that there is no duality
gap between the two problems. One can also show thatΨ(x;γ1, γ2) is bounded above by deriving a feasible
assignment for the variables of Problem (5). ChoosingQ = I andq = 0 ensures that the functionh(x, ξ)−
ξTQξ− ξTq is strictly concave thus enforcingsupξ∈S h(x, ξ)− ξTQξ− ξTq to be finite. It then follows that
lettingr = supξ∈S h(x, ξ)−ξTQξ−ξTq andt= (γ2Σ0 +µ0µ

T

0 )•Q+µT

0q+
√
γ1 ‖Σ1/2

0 (q+2Qµ0)‖ con-
stitutes, withQ = I andq = 0, a feasible solution that bounds Problem (5). We conclude that Ψ(x;γ1, γ2)
must be finite and that the set of optimal solutions to Problem(5) must be non-empty. �

Notes
1Recall that the Dirac measureδa is the measure of mass one at the pointa.
2Note that ifξ’s support set is unbounded, one can also derive bounds of similar nature either by considering thatζ has bounded

support with high probability, or by making use of partial knowledge of higher moments of the distribution. This last fact was
recently confirmed in So (2008).

3One should also verify that̂Σ≻ 0.
4The list of assets that is used in our experiments was inspired by Goldfarb and Iyengar (2003). More specifically, the 30

assets are: AAR Corp., Boeing Corp., Lockheed Martin, United Technologies, Intel Corp., Hitachi, Texas Instruments, Dell Com-
puter Corp., Palm Inc., Hewlett Packard, IBM Corp., Sun Microsystems, Bristol-Myers-Squibb, Applera Corp.-Celera Group, Eli
Lilly and Co., Merck and Co., Avery Denison Corp., Du Pont, Dow Chemical, Eastman Chemical Co., AT&T, Nokia, Motorola,
Ariba, Commerce One Inc., Microsoft, Oracle, Akamai, CiscoSystems, Northern Telecom, Duke Energy Company, Exelon Corp.,
Pinnacle West, FMC Corp., General Electric, ’Honeywell, Ingersoll Rand.

5More specifically, given that one chooses 4 stocks randomly and selects a period of 60 days between 1992 and 2001 randomly,
the values forγ1 andγ2 are chosen such that when using the first 30 days of the period to centerD(γ1, γ2), the distributional set
contains, with 99% probability, distributions with moments equal to the moments estimated from the second 30 days of theperiod.
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The authors acknowledge the Fonds Québécois de la recherche sur la nature et les technologies and Boeing for their
financial support. They wish to also thank Amir Dembo, Anthony Man-Cho So, Alexander Shapiro, Melvyn Sim and
Benjamin Armbruster for valuable discussions.

References
Anderson, T. W. 1984.An Introduction to Multivariate Analysis. John Wiley & Sons, New York, NY, USA.

Ben-Tal, A., A. Nemirovski. 1998. Robust convex optimization. Mathematics of Operations Research23(4) 769–805.

Bertsimas, D., D. B. Brown, C. Caramanis. 2007. Theory and applications of robust optimization.

Bertsimas, D., I. Popescu. 2005. Optimal inequalities in probability theory: A convex optimization approach.SIAM
Journal on Optimization15(3) 780–804.

Bertsimas, D., S. Vempala. 2004. Solving convex programs byrandom walks.Journal of the ACM51540–556.



Delage and Ye:Distributionally Robust Optimization under Moment Uncertainty
Operations Research 00(0), pp. 000–000,c© 0000 INFORMS 25

Birge, J. R., R. J-B. Wets. 1987. Computing bounds for stochastic programming problems by means of a generalized
moment problem.Mathematics of Operations Research12(1) 149–162.

Calafiore, G., M.C. Campi. 2005. Uncertain convex programs:Randomized solutions and confidence levels.Mathe-
matical Programming10225–46.

Calafiore, G., L. El Ghaoui. 2006. On distributionally robust chance-constrained linear programs.Optimization Theory
and Applications130(1) 1–22.

De Farias, D. P., B. Van Roy. 2001. On constraint sampling forthe linear programming approach to approximate
dynamic programming.Mathematics of Operations Research292004.
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Programming: Recent Advances. Kluwer Academic Publishers, 135–165.

Shapiro, A. 2006. Worst-case distribution analysis of stochastic programs.Math. Program.107(1) 91–96.

Shapiro, A., A.J. Kleywegt. 2002. Minimax analysis of stochastic problems.Optimization Methods and Software17
523–542.

Shawe-Taylor, J., N. Cristianini. 2003. Estimating the moments of a random vector with applications. J. Siemons, ed.,
Proceedings of GRETSI 2003 Conference. Cambridge University Press, 47–52.

So, A. M-C. 2008. Private communication.

Sturm, J.F. 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.Optimization
Methods and Software11–12625–653.
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