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Early Complexity Analyses for Nonconvex Optimization

* min f(x),x € X in R",

where f IS nonconvex and twice-differentiable,

g = VI (xp), He = V2 f ()
* Goal: find x; such that:

| Vf(x,) IS € (primary, first-order condition)

Amin(Hy) = —/€ (In active subspace, second-order condition)
» For the ball-constrained nonconvex QP: min c¢’x + 0.5x"Qx s.t. | x || , <1

O(loglog(et)); see Vavasis&Zippel (1990), Y (1989,93).
* For nonconvex QP with polyhedral constraints: O(e™?); see Y (1998), Vavasis (2001)



Second-order Methods for General Optimization

SOM (Hessian-Type Methods) with M-Lipschitz cont. Hesslan

3
* Trust-region (More 70, Sorenson 80). Fixed-radius TR O(G_E), see the lecture notes by Y since 2005

* Cubic regularization, 0(e™3/?) ,see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)
* An adaptive trust-region framework, 0(e~3/%) ,Curtis, Robinson, and Samadi (2017)
SOM for convex functions

* Cubic regularization, 0(e~1/%) ,see Nesterov and Polyak (2006),

* Accelerated SOMs, 0(e~1/3), 0(e71/3), see Monteiro and Svaitor (2013), Nesterov (2008), Doikov et al.
(2022)

* Linearly convergent SOMs, self-concordance, see Nesterov and Nemirovskii (1994); scaled Lipschitz,

see Kortanek and Zhu (1993), Anderson and Ye (1998); generalized concordance, see Sun (2019).

Disadvantage: each iteration requires O(n3) operations: How to reduce It?



An Integrated Descent Direction Using the
SDP Homogeneous Model | (Zhang at al. SHUFE, 2022)

 Recall the fixed-radius trust-region method minimizes the Taylor quadratic
model

: 1 . 1 1
min mk(d) P — gg"d 1+ —dTde » [df]rélng"“ m(d) :=1 - ngd + EdTde + 55 - (1=17)
deR" ) :
s.t.||d|| £ A,. s.t. ||d||*+ 1 = A7 + 1

where A, =€1/? /M is the trust-ball radius.

* -0, IS the first-order steepest descent direction but ignores Hessian,

» the most-left eigenvector of H -would be a descent direction for the second order term
 Could we construct a direction integrating both?

Answer: Use the most-left eigenvector of the SDP homogenized quadratic function!
(see Rojas 2001, a specialized Lanczos method for the Trust-region Subproblem with a
given radius; and Adachi 2017 for solving more Generalized Trust-region Subproblems)



An Integrated Descent Direction Using the
SDP Homogeneous Model Il (Zhang at al. SHUFE, 2022)

o=t 1 4] -5 2 2]

* Find the direction & =&,/t (if t =0 then set t=1) by the leftmost

eigenvector:

8
‘[gom]r‘lqwk (&0, t;6)

with a suitable 6, and use ¢ as the direction to go — a single loop

algorithm to solve the original problem.

- Accessible at the cost of 0(n%¢~1/*) via the randomized Lanczos

method and needs only Hessian-Vector-Product (HVP).



How to Set 6 : Theoretical Guarantees of HSODM

 Consider using the second-order homogenized direction, and let the length of

each step |[né|| be fixed: |[né|| < Ay, = %E , where f(x) has L-Lipschitz gradient

and M-Lipschitz Hessian.

 Theorem 1 (Global convergence rate) : Let f(x) satisfy the Lipchitz

Assumption and fix § = Ve, and let x,, = x;. + n.§ wheren, = A, /||¢]|, then
algorithm has 0(e~3/?) iteration complexity to second-order stationarity,
where each iteration compute the most-left eigenvector of the homogenized
matrix to € accuracy.

 Theorem 2 (Local convergence rate): If the iterate x;, of HSODM converges to
a strict local optimum x* , HSODM possesses a local superlinear (quadratic)

speed of convergence: || x,.1 —x* I= O(ll x,, — x* II%).



HSODM with Line-Search

Fixed step length n;, may be too conservative.

Observation I: homogenized direction ¢ can be used with any
Line-search (e.g., Hager-Zhangq)

Theorem 3 (Global convergence with Line-search, informal) : If we

apply the backtrack to compute n, with parameter f € (0,1) then

3
the algorithm converges in O (E"E \l()gﬁ(e)\) iterations.



Application |: HSODM for Policy Optimization in Reinforcement Learning

* Consider policy optimization of linearized objective in reinforcement learning

max L(0) := L(my),
OcR?

01 = O + o - M Vn(6r),

* The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information
matrix where M, Is the inverse of

F.(0) = g, 10, [V log g, (s,a)V log my, (s, a)T]

* Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence In the constraint:

IIIOaXVLgk(Bk)T(H—Hk) . Wl [Fr gr] v
5.t Eoopy [Dic(ma,(- | 8);mo(- | 8))] < 6. ™ paliza[t] lgf —o] ¢

Homogeneous Natural Policy Gradient (NPG)



HSODM for Policy Optimization in RL I

* A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015)
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Homogeneous NPG provides a significant improvement over TRPO (public open-source solver)



Application II: HSODM for CUTEst Benchmark

* Compare HSODM (with Hessian), HSODM-
HVP (with HVP), Newton TR and ARC

0.8

* Compare performance metrics in SGM

3 06 method K tc ke k. A
= Newton-TR  155.00 15.41 216.59 211.99 219.58 203.82
S HSODM 170.00 4.13 80.22 159.76 180.04 80.22
04 HSODM-HVP 171.00 5.25 110.61 193.07 1080.57  0.00

ARC 167.00 5.32 185.03 185.03 888.35  0.00

0.2

* K—success #, t; - geometric mean running

l l l l l time (SGM), k. - geometric mean iteration #
2 5] 100 2 5 1000 2 (SGM)

a

== HSODM = HSODM-HVP = ARC ewton-TR

Performance Profile of iteration # _
* Newton-TR and ARC are public solvers
a — Iteration # compared to the best

profile(a) — percentage of solved instances within «



Application llI: HSODM for Sensor Network Localization

* Consider Sensor Network Location (SNL)
Ny = {(i,5) : |l&i — z;]| = dij < ra}, Na = {(i, k) : ||z — axl| = di < ra}

where 74 IS a fixed parameter known as
the radio range. The SNL problem considers
the following QCQP feasibility problem,

2
|lzi — z;||° = d;;,V(i,§) € Ny

|zi — ak||* = d2,,V(i, k) € N,

* We can solve SNL by the nonconvex
nonlinear least square (NLS) problem

Kurt’s Collection

: 2
min Y (e —il* = di)*+ Y (lax —z5)” — dij)

(1<4,J)ENz (k,j)EN,



IV £l

Application llI: HSODM for Sensor Network Localization

ONL, n :=200, m :=20

* Compare HSODM (with HVP), and

10

20
Running Time (s)

30

DAY Newton-TR Method.
* HSODM Is faster due to the
eigenvalue procedure
* The solution guality 1Is much better
than the FOMS
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Adaptive HSODM for 2"d order Lipschitz functions |

* Establish an equivalence of HSODM to Adaptive Trust-Region
Method.

Adjust 5, » )

Implicit controls: |d;(6;)| 7

* Establish an equivalence of HSODM to Cubic Regularized
Newton Method >
| \/hk(5k) H d H 3 » hk(6k): H d:H _

dk:argmin g];rd | ;dTde | 3

where 04, Is the dual variable; therefore one can tune 6,

adaptively using a bisection to find proper hy,
Takeaway: "O(n3) Newton" can be replaced by 0(n?e(-14))




Generalized Homogeneous Model (GHM) and HSODM

* Can we extend HSODM to more second-order frameworks?

* Introduce Generalized Homogeneous Model (GHM)

[Hk gk]: H; (Pk]
g O dr  Or|

* Adaptive 6, and smart choice of ¢, (g, suffices in most case)

Adaptive Controls
Method P Complexity References
Pr O
Gradient Regularization v 0(e~%°) Mishchenko 2022, Doikov
2022
_ _ Nesterov and Polyak 2006
1.5 0.5 ’
ARC T v 0(e72), 0(e7™) Cartis et al. 2011
Trust-region Method t v 0(e~ 1) Ye 2005, Curtis et al. 2017
_ Luenberger and Ye 2021
1
Homotopy Method (new) v v O(log(e™)) | ecture notes by Ye, 2015




Concordant Second-Order Lipschitz condition |
 Consider mxin f(x), where f(x) satisfies
\Vf(z+d)— Vf(z)— Vf(z)d| < B-d"V*f(z)d

whenever || d II< 0(1).

* This condition Is called the concordant second-order Lipschitz condition

(CSOLCQ), first introduced In Luenberger & Ye (2015, 2022).

« CSOLC is motivated from the Scaled Lipschitz Condition, which was
widely used In the IPMs and MCPs. see Zhu (1992), Kortane&Zhu (1993),
Andersen&Ye(1999).



Concordant Second-Order Lipschitz condition |
Properties of CSOLC:

* Closed under positive scalar multiplications and summations;
* Closed under affine transformation: if f(x) satisfies CSOLC, then f(Ax

Examples of CSOLC:

 Convex quadratic functions, exponential functions;

- y(0) -Regularized logistic regression: f(x) :% ™ log (1 + e—bi-aiTx)

1 Y x2



The Homotopy Model

 The homotopy model:

1T
> lx|1
Where ur - 0. We say {XuT} forms a “central” path.

X, = argmin f(x) A

At each iterate solve the homotopy model inexactly (approximate
“centering” condition, ACC):

HT
1+3(6+1)

|\Vf(zrr) + pr - zrk| <

 Use GHM with proper 6, and ¢, In each iteration!



Homotopy HSODM |

 For each homotopy model, we apply GHM to solve:

. U HT#: gr.k T HT " TT K| |V
min

 Lemma 2(a): (fixed distance from the “central” path)

 Lemma 2(b): (finite convergence for each epoch) For any ur, ACC can be

satisfied within K < 2 steps, specifically

v _10 log(14+3(f+1)) —log(B+1)\
B GE log3 — log 2




Homotopy HSODM ||

A Non-Interior Homotopy HSODM:

 Linearly decrease u; — simultaneously adaptive 6, and ¢,

1+ ||xrx|]
UT1] = : - 4T LT4+1,0 = LT,k
ST A0 ) 1T

 Use GHMs as each subproblem at u, with finite convergence

 Theorem: (global rate of convergence) After at most

T =

loe ( 1+3(8+1))e )
N2+ DL+ V) IP)((38 + 4)[|z*| +2)

iterates, we could find an iterate that satisfies |Vf(x7410)| < €

(no need to be strictly convex)



Application IV: A Comparison In L, - Logistic regression, y = 1le-5

Logistic Regression name := rcvl, n :=47236, N :=20242

o Adaptive-HSODM
—— Homotopy—-HSODM

o iNewton-10~7
—— iNewton-1078
o iNewton-107"

1072

1074
L, -Logistic regression:
S
_ 1 —h..al
= 0 f(x) =%, log (1+e7br o) +1|x|?
« Compare Homotopy-HSODM
* Inexact-Newton
10°F  Homotopy 107, 1078, o
HSODM |
:  and inexact Newton with different
10~ — e TRE— — — accuracy (public open-source code)

Running Time (s)



A Comparison in L, - Logistic regression, y = 1e-5

Logistic Regression name := news20, n :=1355191, N :=19996

o- Adaptive-HSODM
—o— Homotopy—-HSUODM

iNewton-10~"
——  iNewton-10~8
iNewton-10""

A larger dataset news20

10_1 | op-af

1072}

10—4 n

 Large dimension but relatively few
107

IV

data

¢« HSODM can benefit when dimension

1078}

Inexact-Newton

Homotopy
HSODM 107, 10,
10-10 | e Similar results were observed In

n gets large

l | ‘ | , Rojas 2001, Adachi 2017 for solving
0 o0 100 150 200

Running Time (s) Trust-region Subproblems.



Resilience of Homotopy-HSODM for small y, y = 1le-7

Logistic Regression name := rcvl, n :=47236, N :=20242

o Adaptive-HSODM
—— Homotopy—-HSODM

o iNewton-10~"
—— iNewton-1078
o iNewton-107"

« With same dataset rcv1
Inexact-Newto

e FG) =131, log (1+e ol x) 4+ L1x?
* Sensitivity study from y = 1le-5 - le-7
« Homotopy-HSODM is resilient to small y
l l 1 (almost degenerate case)
50 75 100

Running Time (s)



Warme-starting Lanczos Method in HSODM

Warm-start for Homotopy HSODM on name := rcvil

warm—-start
[ 1no warm—start

 Would the solution help in solving
next eigenvalue problem?
ol  Using warm-starting vectors saves

Krylov iterations !

Krylov Iterations K

0 10 20 30 40 50 60
Iterations k



Krylov Iterations: K

150

100

B S - —

Why does it work?
Resilience of Eigenvalue Techniques |

il [

ol

1
= — 2 <n,J] <n.
1+ —1

LRy =2.2e+095
B Ry =2.2e+07
LRy =2.2e+09
B Ry —=2.2e+10

 We imitate the system needed In

GHM-Lanczos

Eigenvalues

l
Newton-CG

1
Newton-GMRES

Method

Newton-rGMRES

Linear Systems

SOMs, using Hilbert matrices:

H+ &1 with 6 to adjust cond. #

GHM-Lanczos (eigenvalue) is Immune

to ill-conditioning



Table 3: Average number of Krylov iterations K(v) of calculating one
Newton-type direction (5.2) for a linear least-square problem (5.1) with

Why does It work?

Resilience of Eigenvalue Techniques Il

v e {1072,107%,107°,10~°}.

pame  method K (10—3) K (10—4) K (10—5) K (10—6)
Newton-GMRES 28.0 53.6 76.0 82.6

4 Newton-rGMRES 28.0 H3.4 128.0 190.6
ara Newton-CG 40.4 105.4 - -
GHM-Lanczos 6.0 6.0 6.0 6.0
Newton-GMRES 28.0 H3.4 74.2 85.8

292 Newton-rGMRES 28.0 H2.8 111.6 198.0
Newton-CG 39.8 105.2 - -
GHM-Lanczos 6.0 6.0 6.0 6.0
Newton-GMRES 28.0 54.4 99.2 152.0

: Newton-rGMRES 28.0 H4.4 141.0 198.0
covtype Newton-CG 33.4 85.2 - -
GHM-Lanczos 6.0 6.0 6.0 6.0
Newton-GMRES 9.6 11.0 12.0 13.0

1 Newton-rGMRES 9.6 11.0 12.0 13.0
Tev Newton—CG 11.4 19.0 32.4 52.8
GHM-Lanczos 6.0 6.0 6.0 6.0
Newton-GMRES 18.8 38.0 78.0 156.0

“da Newton-rGMRES 18.8 38.0 92.0 198.0
Newton-CG 19.4 61.6 - -
GHM-Lanczos 5.0 5.0 5.0 5.0

* Using real data to solve linear

least-square models.

« GHM-Lanczos (eigenvalue) is Immune
to ill-conditioning

 Highly robust in degenerate problems

« *|n theory, Lanczos method for
eigenvalue Is depends on gaps

Instead of cond. #



Takeaways

Homogeneous second-order direction as an extreme eigenvalue
computation is a “cheaper” alternative to the Trust-Region or

Newton step computation

Generalized Homogeneous direction Is flexible using different 6, and

¢,; and substitutes for other SOM step

Ongoing: HSODM for IPMs, non-smooth optimization.

Happy Birthday Jong-Shi



