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• min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝛻𝑓(𝑥𝑘) ∥≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (in active subspace, second-order condition) 

• For the ball-constrained nonconvex QP: min 𝑐𝑇𝑥 + 0.5𝑥𝑇𝑄𝑥 𝑠. 𝑡. ∥ 𝑥 ∥ 2 ≤1   

O(loglog(𝜖-1)); see Vavasis&Zippel (1990), Y (1989,93). 

• For nonconvex QP with polyhedral constraints: O(𝜖-1); see Y (1998), Vavasis (2001)

Early Complexity Analyses for Nonconvex Optimization



Second-order Methods for General Optimization

SOM (Hessian-Type Methods) with 𝑀-Lipschitz cont. Hessian 

• Trust-region (More 70, Sorenson 80). Fixed-radius TR 𝑶 𝝐−
𝟑

𝟐 , see the lecture notes by Y since 2005

• Cubic regularization, 𝑶(𝝐−𝟑/𝟐) ,see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)

• An adaptive trust-region framework, 𝑶(𝝐−𝟑/𝟐) ,Curtis, Robinson, and Samadi (2017)

SOM for convex functions

• Cubic regularization, 𝑶(𝝐−𝟏/𝟐) ,see Nesterov and Polyak (2006),

• Accelerated SOMs, 𝑶(𝝐−𝟏/𝟑), 𝑶(𝝐−𝟏/𝟑.𝟓), see Monteiro and Svaitor (2013), Nesterov (2008), Doikov et al. 

(2022)

• Linearly convergent SOMs, self-concordance, see Nesterov and Nemirovskii (1994); scaled Lipschitz, 

see Kortanek and Zhu (1993), Anderson and Ye (1998); generalized concordance, see Sun (2019).

Disadvantage: each iteration requires O(n3) operations: How to reduce it?



An Integrated Descent Direction Using the 

SDP Homogeneous Model I (Zhang at al. SHUFE, 2022)

where Δ𝑘 =𝜖1/2/𝑀 is the trust-ball radius.

• -gk is the first-order steepest descent direction but ignores Hessian; 

• the most-left eigenvector of Hk-would be a descent direction for the second order term

• Could we construct a direction integrating both?

Answer: Use the most-left eigenvector of the SDP homogenized quadratic function!

(see Rojas 2001, a specialized Lanczos method for the Trust-region Subproblem with a 

given radius; and Adachi 2017 for solving more Generalized Trust-region Subproblems)

• Recall the fixed-radius trust-region method minimizes the Taylor quadratic 

model



An Integrated Descent Direction Using the 

SDP Homogeneous Model II (Zhang at al. SHUFE, 2022)

• Find the direction 𝜉 = 𝜉0/𝑡 (if t = 0 then set t=1) by the leftmost 

eigenvector: 

min
| 𝜉0;𝑡 |≤1

𝜓𝑘 𝜉0, 𝑡; 𝛿

with a suitable 𝜹k and use 𝜉 as the direction to go – a single loop 

algorithm to solve the original problem.

• Accessible at the cost of 𝑂 𝑛2𝜖−1/4 via the randomized Lanczos

method and needs only Hessian-Vector-Product (HVP).



How to Set 𝛿 : Theoretical Guarantees of HSODM

• Consider using the second-order homogenized direction, and let the length of 

each step η𝜉 be fixed: η𝜉 ≤ Δ𝑘 =
2 𝜖

𝑀
, where 𝑓(𝑥) has 𝐿-Lipschitz gradient 

and 𝑀-Lipschitz Hessian. 

• Theorem 1 (Global convergence rate) : Let 𝑓(𝑥) satisfy the Lipchitz 

Assumption and fix 𝛿 = √𝜀 , and let 𝑥𝑘+1= 𝑥𝑘 + η𝑘𝜉 where η𝑘 = Δ𝑘/ 𝜉 , then 

algorithm has 𝑂(𝜖−3/2) iteration complexity to second-order stationarity, 

where each iteration compute the most-left eigenvector of the homogenized 

matrix to ∊ accuracy.

• Theorem 2 (Local convergence rate): If the iterate 𝑥𝑘 of HSODM converges to 

a strict local optimum 𝑥∗ , HSODM possesses a local superlinear (quadratic) 

speed of convergence: ∥ 𝑥𝑘+1 − 𝑥∗ ∥= 𝑂 ∥ 𝑥𝑘 − 𝑥∗ ∥2 .



HSODM with Line-Search

• Fixed step length η𝑘 may be too conservative.

• Observation I: homogenized direction 𝜉 can be used with any

Line-search (e.g., Hager-Zhang)

• Theorem 3 (Global convergence with Line-search, informal) : If we 

apply the backtrack to compute η𝑘 with parameter 𝛽 ∈ 0,1 then

the algorithm converges in 𝑂 𝜖−
3

2 |log𝛽 𝜖 | iterations.



Application I: HSODM for Policy Optimization in Reinforcement Learning 

• Consider policy optimization of linearized objective in reinforcement learning

• The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information 

matrix where Mk is the inverse of

• Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence in the constraint:

Homogeneous Natural Policy Gradient (NPG)



HSODM for Policy Optimization in RL II
• A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015) 

• Homogeneous NPG provides a significant improvement over TRPO (public open-source solver)



Application II: HSODM for CUTEst Benchmark

• Compare HSODM (with Hessian), HSODM-

HVP (with HVP), Newton TR and ARC 

• Compare performance metrics in SGM

• K – success #, 𝑡𝐺 - geometric mean running 

time (SGM), 𝑘𝐺 - geometric mean iteration # 

(SGM)

• Newton-TR and ARC are public solvers
Performance Profile of iteration #

𝜶 – iteration # compared to the best

𝒑𝒓𝒐𝒇𝒊𝒍𝒆(𝜶) – percentage of solved instances within 𝜶



Application III: HSODM for Sensor Network Localization

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as 

the radio range. The SNL problem considers 

the following QCQP feasibility problem,

• We can solve SNL by the nonconvex 

nonlinear least square (NLS) problem

Kurt’s Collection



Application III: HSODM for Sensor Network Localization

• Compare HSODM (with HVP), and

Newton-TR Method.

• HSODM is faster due to the 

eigenvalue procedure

• The solution quality is much better 

than the FOMs



Adaptive HSODM for 2nd order Lipschitz functions I

• Establish an equivalence of HSODM to Adaptive Trust-Region 

Method:

• Establish an equivalence of HSODM to Cubic Regularized 

Newton Method 

where 𝜽𝒌 is the dual variable; therefore one can tune  𝜹𝒌

adaptively using a bisection to find proper 𝒉𝒌

Adjust 𝜹𝒌 ↗ Implicit controls: |𝒅𝒌(𝜹𝒌)| ↗

𝐓𝐚𝐤𝐞𝐚𝐰𝐚𝐲: "O(n3) Newton" 𝐜𝐚𝐧 𝐛𝐞 𝐫𝐞𝐩𝐥𝐚𝐜𝐞𝐝 𝐛𝐲 𝑂(𝑛2𝜖(−1/4)) 



Generalized Homogeneous Model (GHM) and HSODM 

• Can we extend HSODM to more second-order frameworks?

• Introduce Generalized Homogeneous Model (GHM)

𝑯𝒌 𝒈𝒌

𝒈𝒌
𝑻 𝜹

⇒
𝑯𝒌 𝝓𝒌

𝝓𝒌
𝑻 𝜹𝒌

, 

• Adaptive 𝜹𝒌 and smart choice of 𝝓𝒌 (𝒈𝒌 suffices in most case)

Method
Adaptive Controls

Complexity References
𝝓𝒌 𝜹𝒌

Gradient Regularization ✓ 𝑂(𝜖−0.5)
Mishchenko 2022, Doikov

2022

ARC † ✓ 𝑂(𝜖−1.5), 𝑂(𝜖−0.5)
Nesterov and Polyak 2006, 

Cartis et al. 2011

Trust-region Method † ✓ 𝑂(𝜖−1.5) Ye 2005, Curtis et al. 2017

Homotopy Method (new) ✓ ✓ 𝑂(𝑙𝑜𝑔 𝜖−1 )
Luenberger and Ye 2021

Lecture notes by Ye, 2015



Concordant Second-Order Lipschitz condition I

• 𝐂𝐨𝐧𝐬𝐢𝐝𝐞𝐫 min
𝑥

𝑓 𝑥 , where 𝑓 𝑥 satisfies 

• This condition is called the concordant second-order Lipschitz condition 

(CSOLC), first introduced in Luenberger & Ye (2015, 2022). 

whenever ∥ 𝑑 ∥≤ 𝑂(1). 

• CSOLC is motivated from the Scaled Lipschitz Condition, which was 

widely used in the IPMs and MCPs. see Zhu (1992), Kortane&Zhu (1993), 

Andersen&Ye(1999).



Concordant Second-Order Lipschitz condition II

Properties of CSOLC:

• Closed under affine transformation:  if 𝑓 𝑥 satisfies CSOLC, then 𝑓(𝐴𝑥

• Closed under positive scalar multiplications and summations; 

Examples of CSOLC:

• Convex quadratic functions, exponential functions;

• 𝛄(𝟎) -Regularized logistic regression: 𝒇 𝒙 =
𝟏

𝒎
 𝒊=𝟏

𝒎 𝒍𝒐𝒈 𝟏 + 𝒆−𝒃𝒊⋅ 𝒂𝒊
𝑻 𝒙

+
𝛄

𝟐
|𝒙|𝟐



The Homotopy Model

• The homotopy model:

Where 𝜇𝑇 → 0. We say {𝑋𝜇𝑇
} forms a “central” path.  

• At each iterate solve the homotopy model inexactly  (approximate 

“centering” condition, ACC):

• Use GHM with proper 𝜹𝒌 and 𝝓𝒌 in each iteration!



Homotopy HSODM I

• For each homotopy model, we apply GHM to solve:

• Lemma 2(a): (fixed distance from the “central” path)

• Lemma 2(b): (finite convergence for each epoch) For any 𝜇𝑇, ACC can be 

satisfied within 𝑲 ≤ 𝟐 steps, specifically  



Homotopy HSODM II

A Non-Interior Homotopy HSODM:

• Linearly decrease 𝜇𝑇 → simultaneously adaptive 𝜹𝒌 and 𝝓𝒌

• Use GHMs as each subproblem at 𝜇𝑇 with finite convergence

• Theorem: (global rate of convergence) After at most

iterates, we could find an iterate that satisfies 𝛻𝑓 𝑥  𝑇+1,0 ≤ 𝝐

(no need to be strictly convex)



Application IV: A Comparison in 𝑳𝟐 - Logistic regression, 𝜸 = 1e-5

• 𝑳𝟐 -Logistic regression:

𝒇 𝒙 =
𝟏

𝒎
 𝒊=𝟏

𝒎 𝒍𝒐𝒈 𝟏 + 𝒆−𝒃𝒊⋅ 𝒂𝒊
𝑻 𝒙 +

𝛄

𝟐
|𝒙|𝟐

• Compare Homotopy-HSODM, Adaptive 

HSODM

• and inexact Newton with different 

accuracy (public open-source code)

Inexact-Newton

10-7, 10-8, 10-9Homotopy

HSODM
Adaptive 

HSODM



A Comparison in 𝑳𝟐 - Logistic regression, 𝜸 = 1e-5

• A larger dataset news20

• Large dimension but relatively few 

data

• HSODM can benefit when dimension 

𝒏 gets large

• Similar results were observed in 

Rojas 2001, Adachi 2017 for solving 

Trust-region Subproblems.

Homotopy

HSODM

Adaptive 

HSODM

Inexact-Newton

10-7, 10-8, 10-9



Resilience of Homotopy-HSODM for small 𝜸, 𝜸 = 1e-7

• With same dataset rcv1

𝒇 𝒙 =
𝟏

𝒎
 𝒊=𝟏

𝒎 𝒍𝒐𝒈 𝟏 + 𝒆−𝒃𝒊⋅ 𝒂𝒊
𝑻 𝒙 +

𝛄

𝟐
|𝒙|𝟐

• Sensitivity study from 𝜸 = 1e-5 → 1e-7

• Homotopy-HSODM is resilient to small 𝜸

(almost degenerate case)

Adaptive 

HSODM

Inexact-Newton

10-7, 10-8, 10-9

Homotopy

HSODM



Warm-starting Lanczos Method in HSODM

• Would the solution help in solving 

next eigenvalue problem?

• Using warm-starting vectors saves 

Krylov iterations ! 



Eigenvalues Linear Systems

Why does it work? 

Resilience of Eigenvalue Techniques I

• We imitate the system needed in 

SOMs, using Hilbert matrices:

H + δ Ι  with δ to adjust cond. #

• GHM-Lanczos (eigenvalue) is immune 

to ill-conditioning



Why does it work? 

Resilience of Eigenvalue Techniques II

• Using real data to solve linear 

least-square models.

• GHM-Lanczos (eigenvalue) is immune 

to ill-conditioning

• Highly robust in degenerate problems

• ‡ In theory, Lanczos method for 

eigenvalue is depends on gaps 

instead of cond. #



Takeaways

Homogeneous second-order direction as an extreme eigenvalue 

computation is a “cheaper” alternative to the Trust-Region or 

Newton step computation

Generalized Homogeneous direction is flexible using different 𝜹𝒌 and 

𝝓𝒌 and substitutes for other SOM step 

Ongoing: HSODM for IPMs, non-smooth optimization.

Happy Birthday Jong-Shi


