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Abstract

Eisenberg and Gale (1959) gave a convex program for computing market equilibrium for
Fisher’s model for linear utility functions, and Eisenberg (1961) generalized this to concave
homogeneous functions of degree one. We further generalize to:

1. Homothetic, quasi-concave utilities. This also helps extend Eisenberg’s result to concave
homogeneous functions of arbitrary degree.

2. We introduce the notion of a trading cone which enables us to compute market equilibrium
in the presence of economies of scale in production provided differential pricing is allowed.
Applications to network pricing are provided.

1 Introduction

The study of market equilibria occupied a central place in mathematical economics. This study
was formally started by Walras [26] over a hundred years ago, and its high point came with the
celebrated Arrow-Debreu Theorem, establishing existence of market equilibria under very general
conditions. Despite being a rich and deep theory, general equilibrium theory suffers from a serious
deficiency: other than a handful of results, some of which are real gems, it was a non-algorithmic
theory. Recently, there has been a surge of activity within theoretical computer science to amend
this [5, 6, 17, 8, 14, 15, 25, 7, 16, 28].

Among the gems referred to above are works of Eisenberg and Gale [9], giving a convex optimization
program whose solution yields equilibrium allocations for the linear case of Fisher’s market equilib-
rium problem [4], and Eisenberg [10], which extended this approach to derive a convex program for
concave homogeneous functions of degree one. Their programs consist of maximizing a joint utility
function of all buyers (a concave, logarithmic function) over a convex region defined via linear
constraints. Their formulation has a number of attractive properties: Their joint utility function
is the unique one satisfying the property that the joint utility of buyers remains unchanged if the
money of one of the buyers, say b, is split among several new buyers with the same utility function
as b (this follows from Nash bargaining problem [21]). The dual of their program yields equilibrium
prices. The utility derived by a buyer is the same in all equilibria (contrast this with the very
diverse payoffs received in various Nash equilibria of a game). For the linear case of Fisher’s model,
uniqueness and rationality of equilibrium prices follow easily from this formulation. Furthermore,
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equilibrium allocations can be shown to satisfy proportional fairness [19]. This formulation also
gives the only known combinatorial characterization of the equilibria [16].

Our first result is to extend this approach further to derive a convex program for continuous,
monotone, homothetic, quasi-concave utility functions. Using our technique, one can also extend
Eisenberg’s result to concave homogeneous functions of arbitrary degree. Our model also includes
producers. At the heart of our proof is the following: we give a monotone transformation that
yields a log-concave function that is “equivalent” to such a utility function. Our proof of this fact
relies on a theorem of Friedman [11]. Furthermore, using [11] one can show that homotheticity
is necessary for our result. Our convex program also inherits some of the fundamental properties
of the Eisenberg-Gale’s convex program, such as uniqueness of utilities, proportional fairness [19],
and the combinatorial characterization [16].

The Arrow-Debreu model, also referred to as the exchange model, is a generalization of Fisher’s
model which does not demarcate between buyers and sellers. Arrow and Debreu also introduced
production in their model, and showed the existence of equilibrium when producers satisfy decreas-
ing economies of scale, i.e. production becomes less and less efficient with the quantity produced
[2]. [22] reports that V. M. Polterovich enhanced Fisher’s model with linear utilities to include
producers, and extended the Eisenberg-Gale approach to derive a convex program for this setting.
As reported in [22], Polterovich assumed only one producer who can not consume raw materials to
produce a finish good.

In some situations, production indeed becomes less and less efficient with the quantity produced;
for instance, people become less efficient if they work longer. On the other hand, it is even more
commonplace to find situations in which production satisfies economies of scale, i.e., it becomes
more efficient with the quantity produced. Over the years, several attempts have been made on
establishing existence of equilibria in the presence of economies of scale in production, but these
attempts have had only limited success, and typically involve weakening the notion of equilibrium
[23]. Indeed, this remains an important issue in mathematical economics.

Using price differentiation, we can incorporate economies of scale in production in the following
sense: production becomes more and more efficient as a function of the number of consumers of this
good (rather than the amount of the good produced). We show existence of equilibrium and present
a polynomial time algorithm for computing it. Such economies of scale are natural for instance in
software, media and entertainment industries. Applications to network pricing are provided. By
price differentiation we mean that different consumers will be charged different prices for the same
goods, depending on some criteria, such as affordability. An excellent example of a situation in
which price differentiation has been extremely effective is airline ticket pricing.

2 The model

Let Rn denote the n-dimensional Euclidean space; Rn
+ denotes the subset of Rn where each co-

ordinate is non-negative; R and R+ denote the set of reals and the set of non-negative reals,
respectively.

A utility function u : Rn
+ → R+ is said to be concave if for any x, y ∈ Rn

+ and any 0 ≤ α ≤ 1, we
have u(αx + (1− α)y) ≥ αu(x) + (1− α)u(y). It is quasi-concave if for any x ∈ Rn

+ and α ∈ R+,
the set {x ∈ Rn

+ : u(x) ≥ α} is convex. For example, the function ex − 1 is quasi-concave but not
concave.
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A utility fnction is homothetic if for any x, y ∈ Rn
+ and any α > 0, u(x) ≥ u(y) iff u(αx) ≥ u(αy).

It is monotone if for any x, y ∈ Rn
+ x ≥ y implies that u(x) ≥ u(y). It is homogeneous of degree d if

for any x ∈ Rn
+ and any α > 0, f(αx) = αdf(x). We assume that u(0) = 0. The function log 1 + x

is homothetic but not homogeneous.

A utility function is scalable if for any x ∈ RG
+ and α ∈ R+, we have u(αx) = αu(x). As before,

we assume that u(0) = 0. An important special family of scalable utility functions is provided by
CES functions (and by nested CES functions).

A CES function has the form

u(x1, . . . , xn) =

(
n∑

i=1

α
1
σ
i x

σ−1
σ

i

) σ
σ−1

,

where σ is the constant representing the given elasticity of substitution.

Leontief utilities are obtained in the limit, with zero elasticity of substitution, i.e., strict comple-
mentarity, while Cobb-Douglas utilities correspond to unitary elasticity of substitution. Conversely,
note that the case of linear utilities represents a situation where goods are perfect substitutes, and
is obtained in the limit, with infinite elasticity of substitution.

Consider a market with sets B of buyers, G of goods, and M of producers, with |G| = n. Each
buyer i ∈ B has a specified initial endowment of money ei > 0 and a concave, scalable utility
function ui : Rn

+ → R+ for the goods.

Each producer k ∈ M has the ability to produce certain goods and in doing so he is allowed to
consume other goods. A production point for a producer is a point in Rn. A production point can
have positive as well as negative coordinates, with positive coordinates representing output of the
corresponding goods and negative coordinates representing consumption. The set of production
points Pk of each producer k is given and forms a closed, bounded, convex set. We assume that
there is a production point for each k at which the net amount (over all producers) of each good
produced is strictly positive.

The Fisher setting has buyers with money and a set of goods. It can be viewed as a special case
of the above when there is only one producer and his set of production points is a singleton set
consisting of a point in Rn

+ with each coordinate strictly positive.

An equilibrium is defined as a non-negative price vector π ∈ Rn
+ at which there exist a bundle of

goods xi ∈ Rn
+ for each buyer i, and production point yk ∈ Pk for each producer k such that the

following conditions hold:

1. The vector xi optimizes the utility of buyer i given her endowment ei and the prices π, that
is, xi maximizes ui over all x ∈ Rn

+ such that πT x ≤ ei.

2. The vector yk maximizes the profit πT y over all y ∈ Pk.

3. For each good j, the total amount produced by the producers equals the total amount con-
sumed by the buyers, that is,

∑
i∈B xij =

∑
k∈M ykj .

4. The sum of the profits of all producers equals the sum of the money possessed by all buyers,
that is,

∑
k∈M πT yk =

∑
i∈B ei.

Equilibrium prices are also known as market clearing prices. We give a convex optimization problem
whose optimal solution gives market clearing prices; the proof of this fact follows from the method
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of variational calculus. We assume that each convex set corresponding to producers is either an
explicitly given polyhedron or a convex set with the corresponding strong separation oracle.

We assume that the utility function of a buyer is given via an oracle. That is, given x ∈ Rn
+ and

α ∈ R+, the oracle tells us whether α ≤ f(x) or not.

3 Obtaining a concave function from a quasi-concave homothetic
function

Given a function u : Rn
+ → R+, a transformation yielding function f : Rn

+ → R+ is said to be
a monotone transformation if for any x, y ∈ Rn

+, if u(x) > u(y) (u(x) = u(y)) then f(x) > f(y)
(f(x) = f(y)). It is easy to see that monotone transformations preserve monotonicity, quasi-
concavity and homotheticity.

In this section, we prove the following central theorem.

Theorem 1 Let u : Rn
+ → R+ be a continuous, monotone, quasi-concave, homothetic function.

Then there is a monotone transformation yielding a function f : Rn
+ → R+ that is homogeneous

of degree one and is log-concave. Given an oracle for u and a point x such that u(x) 6= 0, the
transformation can be approximated to any degree in polynomial time.

We may assume w.l.o.g. that u is not identically zero. Suppose supy∈Rn
+

u(y) = c 6= 0. Then we
can scale u by, say 2/c, to ensure that u attains the value of more than 1 at some point. We assume
this w.l.o.g. Let us define function f as follows. For x ∈ Rn

+, if u(x) = 0 then f(x) = 0. Otherwise,
f(x) = α, where α is such that u(x/α) = 1. We first prove that this transformation is well-defined,
i.e., that such an α exists and is unique.

Lemma 2 If u(x) 6= 0 then there exists a unique α ∈ R+ such that u(x/α) = 1.

Proof : By the assumption made above, u(y) = 1 for some y ∈ Rn
+. Since u(0) = 0 and u is

continuous and monotone, there exists β ∈ R+ such that u(βy) < u(x). Now by homotheticity of
u,

u(x/β) > u(y) = 1.

Finally, the continuity of u implies the existence of α.

Next we prove uniqueness of α. Since u(0) = 0 and u is continuous and homothetic, we get that if
u(x) = u(cx) for x, c 6= 0 then u(dx) = 0 for all d ∈ R+. Hence, non-uniqueness of α will contradict
the assumption that u(x) 6= 0. 2

The definition of f and the monotonicity of u clearly imply that the transformation given above is
monotone, i.e., u(x) > u(y) (u(x) = u(y)) implies that f(x) > f(y) (f(x) = f(y)).

Lemma 3 f is a homogeneous function of degree 1.

Proof : Let f(x) = α 6= 0. Then u(x/α) = 1. Therefore u(cx/cα) = 1. Hence f(cx) = cα. The
lemma follows. 2
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We finally prove Theorem 1.

[ : Proof of Theorem 1] We apply the monotone transformation given above to obtain f from u and
we need to show that f is log-concave. Clearly, f inherits monotonicity and quasi-concavity from
u. Moreover, since f is a homogeneous function, log(f) is concave along any ray passing through
the origin. We now apply Friedman’s theorem [11] which states that a monotone, homothetic,
quasi-concave function that is concave along any ray passing through the origin is in fact concave.
Hence we get that log(f) is concave. 2

Remark:Friedman gives an example showing that homotheticity is essential for his result. This
example also shows that homotheticity is essential for Theorem 1 to hold.

Remark:Observe that the proof of Theorem 1 can be used to show that if f is a concave homo-
geneous function of degree d, then f1/d is a log-concave homogeneous function of degree 1. This
helps extend Eisenberg’s [10] result to concave homogeneous functions of arbitrary degree.

The next result establishes the differentiability relation between u and f .

Proposition 4 If u ∈ Cp for p ≥ 1, then f ∈ Cp at any point where u(x) 6= 0 and ∇u(x/f(x))T x 6=
0. Furthermore, the partial derivatives to xi of f is given by

∇if(x) = f(x)
∇iu(x/f(x))
∇u(x/f(x))T x

, ∀i.

Proof : Consider equation u(x/α) = 1. We have α > 0 since u(x) 6= 0. The partial derivative
of function u(x/α) to α is −∇u(x/α)T x/α2 and it is not zero from the assumption. Thus, from
the implicit function theorem, α can be expressed as a function f(x) of x such that f(x) ∈ Cp and
u(x/f(x)) = 1.

Taking the partial derivative to xi on both sides of u(x/f(x)) = 1, we have

∇iu(x/f(x))
1

f(x)
−∇u(x/f(x))T x

∇if(x)
f2(x)

= 0.

Thus,

∇if(x) = f(x)
∇iu(x/f(x))
∇u(x/f(x))T x

, ∀i.

2

This shows that not only f can be approximated to any degree in polynomial time, its partial
derivatives have close forms with respect to f and the partial derivatives of the original utility
function u at any nonsingular point x. Note that our construction of f and the properties of u will
ensure nonsingularity.

4 The convex program yielding market equilibrium

We will assume that the monotone transformation of Theorem 1 has already been applied to the
given continuous, quasi-concave, monotone, homothetic utility function to yield an equivalent utility
function that is homogeneous of degree one and is log-concave.
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Lemma 5 Let u(x) from Ω ⊂ Rn → R be a homogeneous continuous function of degree d in C1,
that is, u(αx) = αd · u(x) then

∇u(x)T x =
∑

j

δu(x)
δxj

xj = d · u(x),

where ∇u(x) is the gradient vector function of u(x).

Proof : For any given x ∈ Ω, Consider u((1 + ε)x)) We have

(1 + ε)du(x) = u((1 + ε)x))

= u(x) +∇u(x)T ((1 + ε)x− x) + o(ε)

= u(x) + ε∇u(x)T x + o(ε)

Thus,

(1 + ε)du(x)− u(x) = ε∇u(x)T x + o(ε)

or

(1 + ε)d − 1
ε

· u(x) = ∇u(x)T x +
o(ε)
ε

.

Let ε → 0, we have the desired result. 2

We will also incorporate producers into the model and using ideas from [22], give the convex program
yielding market equilibrium prices. This will set the stage for introducing the notion of trading
cone in the next section. Let m index producer k’s production inequalities. We will show that the
optimal solution to the following convex program yields equilibrium allocations and productions.
Here the first set of inequalities provide production constraints for producer k, and the second set
ensure that the consumption of each good does not exceed its production.

maximize
∑

i

ei log(ui(xi)) (1)

subject to

∀k : ∀m :
∑

j

am
jkyjk ≤ bm

k

∀j :
∑

i

xij ≤
∑

k

yjk

∀i, j : xij ≥ 0
∀i : ui ≥ 0

Under the assumption that the production sets are closed and bounded, and the assumption that
there is a production point for each producer so that the net amount of each good produced (over
all producers) is positive, and the (obvious) assumption that none of the utility functions is the
identically-zero function, the maximum is well-defined. Let x̄ij , ūi, ȳjk denote an optimal solution
to this convex program. Note that ūi > 0 for all i. Consider the Lagrangian relaxation for the
convex program 1 by introducing dual variables βm

k for the first set, and pj for the second set. At
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optimality, pj ’s will turn out to be the equilibrium prices. Clearly at optimality each buyer buys
her optimal, i.e., utility maximizing, bundle. We will additionally show that each producer is at
a production point that maximizes his profit. This is accomplished by showing that the optimal
solution to convex program 1 provides optimal solutions to the following LP which corresponds to
producer k.

maximize
∑

j

pjyjk (2)

subject to ∀m :
∑

j

am
jkyjk ≤ bm

k

∀j : yjk is unconstrained

Theorem 6 An optimal solution to the convex program 1 optimizes for each buyer i her utility
and for each producer k LP 2, i.e., buyers are buying optimal bundles and producers maximizing
profits. Moreover, the money of each buyer is fully spent and the total money earned by producers
is precisely equal to the total money initially possessed by buyers.

We will first use Lemma 5 to show that buyers are buying optimal bundles. Then, the dual variables
introduced in obtaining the Lagrangian relaxation of 1 will be used in constructing the duals of
LP’s 2. The idea of the rest of the proof is to derive conditions on the primal and dual variables
from the optimality of 1 which yields feasibility of dual solutions constructed to LP’s 2. Since
LP’s 2 satisfy complementary slackness conditions w.r.t. these feasible duals, the primal solutions
constructed are optimal.

Proof : Let us start by taking the Lagrangian relaxation of program 1:

f = min
αl

i≥0,βm
k
≥0,pj≥0

max
xij≥0,yjk,ui

∑

i

ei log ui

−
∑

kl

(bm
k −

∑

j

al
jkyjk)βm

k −
∑

j

(
∑

k

yjk −
∑

i

xij)pj .

First, the feasible set of the optimization problem is compact, the maximal solution exists and
the maximum value is finite. Moreover, the optimization problem is convex. Setting the partial
differential of f w.r.t. xij to be zero, we get ([20], page 105) that there exist pj such that the
following conditions are necessary for optimality:

ei
uij(x)
ui(x) ≤ pj , ∀i, j

ei
uij(x)xij

ui(x) = pjxij ,

where p is the n-dimensional optimal dual price (Lagrangean) vector. The second equality constraint
is called the complementarity condition.

To prove p is a market clearing price, we sum the complementarity condition equations over j for
agent i, and have

∑

j

pjxij =
∑

j

ei
uij(x)xij

ui(x)
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= ei

∑
j uij(x)xij

ui(x)

= ei
ui(x)
ui(x)

= ei

which implies that under prices p each buyer spends her money completely.

Next setting the partial differential of f w.r.t. yjk to zero, we get that there exist non-negative βm
k

such that
∑
m

am
jkβ

m
k = pj (3)

βm
k

∑

j

am
jkȳjk = βm

k bm
k (4)

pj

∑

i

x̄ij = pj

∑

k

ȳjk (5)

We next obtain the dual of LP 2.

minimize
∑
m

bm
k ρm

k (6)

subject to ∀j :
∑
m

am
jkρ

m
k = pj

∀m : ρm
k ≥ 0

Note that from Equation 3, ρm
k = βm

k forms a feasible dual solution for this LP. Also, ȳjk is feasible
for LP 2. It is easy to verify using Equation 4 that the complementary slackness conditions are
satisfied. Hence ȳ is an optimal solution for the primal LP 2.

Thus both consumers and producers are making optimal choices with respect to prices pj . Now
we have to show that the market clears. Note that whenever pj is positive, then by Equation 5
the corresponding inequality for the good j is tight in convex program 1. In other words whenever
there is a surplus of good j its price is zero. If there is surplus of some good that has zero price
we just give this surplus to some buyer. Now we need to check the conservation of money. Again,
using the fact that each buyer spends her endowment and Equation 5, we get:

∑

i

ei =
∑

i

∑

j

pj x̄ij =
∑

j

pj

∑

i

x̄ij =
∑

j

pj

∑

k

ȳjk =
∑

k

∑

j

pj ȳjk.

Hence we have conservation of money. 2

Note that once we have an optimal solution to the convex program 1, the optimality conditions
yield a linear program to find the dual variables pj , αl

i, and βm
k . One can solve this linear program

within some bounded precision. Alternatively, one can use primal-dual path following interior point
methods to solve the convex program. As a side result one can derive the value of the dual variables.
The case with separation oracle can be solved as in [18]. When we solve a convex program using
the ellipsoid algorithm, the algorithm considers only polynomially many separating hyperplanes
(because it is a polynomial time algorithm). This polynomial number of separating hyperplanes
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forms a proof that the run of the algorithm has found an optimal solution. In essence, if one writes
a linear program consisting of halfspaces used by a run of the ellipsoid algorithm then this linear
program will have the same solution. Again, one needs to consider the dual variables corresponding
to these hyperplanes only; this is a polynomial sized program. Once we know a primal solution,
optimality conditions give a small sized linear program.

Theorem 7 There is a polynomial, in the input size and log(1/ε), time algorithm to find a feasible
primal and a dual for convex program 1 (and also for convex program 7 defined later) such that all
the complementarity slacks are less that ε.

5 The trading cone and economies of scale

The second set of inequalities in convex program 1 say that the quantity of good consumed is
at most the quantity of good produced. This is not true for goods which can be simultaneously
consumed, e.g., a software package which can be used by many users. Even in production, many
inputs can be used simultaneously, e.g., an authors’ efforts are used simultaneously whereas the
physical book itself can’t be. The situation is much more complicated with the service sector. To
encompass such situations, we define a new notion of a trading cone which defines the feasibility of
consumption with production.

We replace the second set of inequalities in convex program 1 as follows. These inequalities, which
are indexed by h, will create price differentiation for buyers as well as producers. In return, they
will enable us to impose desirable economic properties, such as introducing economies of scale for
consumption.

maximize
∑

i

ei log(ui(xi)) (7)

subject to ∀k : ∀m :
∑

j

am
jkyjk ≤ bm

k

∀h :
∑

i,j

dh
ijxij ≤

∑

j,k

gh
jkyjk

∀i, j : xij ≥ 0 ∀j, k : yjk is unconstrained

Let the dual variable for the new set of inequalities be δh; those for the rest of the inequalities are
as before. Setting the partial differential of f w.r.t. xij , yjk respectively to be zero, we get:

eiuij(xi)
ui

=
∑

h

δhdh
ij

∑
m

am
jkβ

m
k =

∑

h

δhgh
jk

Let pij denote the price of good j for buyer i and qjk denote the price of good j for producer k.
Then, by letting pij =

∑
h δhdh

ij and qjk =
∑

h δhgh
jk, one can show conservation of money as in

Theorem 6.

Let us see by an example how the notion of trading cone can be used to model economies of scale,
which had been a hard modeling question in the theory of equilibrium. Let us consider the set
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cover problem. This problem consists of a set of buyers, U , and a set of sellers, each with a fixed
endowment of a subset of U . A buyer i has a money ei and her utility function is linear in the
number of sets she buys containing her. The supply of each set, S, is dS . Also, for each set S, we
have a submodular function fS ; for T ⊂ S, fS(T ) says how much S is needed to serve each user in T
to the extent of one. Economies of scale are being modeled since fS is submodular (more precisely
fS is a polymatroid function, because fS is submodular, monotonic, non-negative and zero at the
empty set).

Let us now consider various scenarios based on fS ’s. Suppose each fS is just the cardinality function,
i.e., fS(T ) = |T |. This means each copy of S can serve at most one user to the extent of one. We
call such a set S an exclusive good. As an example, a book can be shared by two people to the
extent of half. The corresponding trading cone can be written as: ∀S :

∑
i∈S xiS ≤ yS , where

xiS denotes the consumption of S by i, and yS denotes the supply of S. Another case is when
fS(T ) = 1 for every nonempty set T . We call such a good a nonexclusive good. An example is
services of an author to write a book. Another major example is software. Once some software is
developed, it can used by many users on a nonexclusive basis. The corresponding trading cone can
be written as: ∀S : maxi∈S xiS ≤ yS , which further can be written as: ∀S and i ∈ S : xiS ≤ yS .

These two cases are the extremes for submodular functions. Typically, in real life, for any man-
ufacturing activity we have both kinds of input, exclusive and nonexclusive, e.g., exclusive inputs
are physical raw material and nonexclusive inputs are research and development. Other inputs,
like labor, are typically neither exclusive nor nonexclusive, but still satisfy economies of scale.

Next let us deal with general submodular functions. We want to come up with a cone which defines
the feasibility of the x and y variables. Consider a set S. Suppose it is supplied to the extent of
yS . Suppose xiS is the demand for this set by user i. We want to describe whether the supply
yS of S can satisfy the demand of xiS ’s. In other words we want to figure out whether yS can be
decomposed into yT

S ’s, where T ’s are subsets of S, and yT
S denotes the extent to which S is available

for T , i.e., ∑

T⊆S

yT
S ≤ yS

∀i ∈ S : xiS ≤
∑

T :i∈T

yT
S

fS(T )
.

For convenience we define zT
S = yT

S /fS(T ). Using this equality the above two conditions become:

∑

T⊆S

fS(T )zT
S ≤ yS (8)

∀i ∈ S : xiS ≤
∑

T :i∈T

zT
S (9)

Lemma 8 Suppose z satisfy inequalities 8 and 9. We may assume that whenever zT1
S > 0 and

zT2
S > 0, either T1 ⊆ T2 or T2 ⊆ T1. W.l.o.g. we may in fact assume that the former is the case.

Lemma 8 says that we may assume that the zS ’s are zero, except for a telescoping sequence of
subsets. Let us consider a permutation σ on users, so that without loss of generality we may
assume that zS is zero except for the sets T1 = {σ1}, T2 = {σ1, σ2}, · · ·Ts = {σ1.σ2, · · · , σs}, where

10



s is the cardinality of S.

Lemma 9 Inequalities 8 and 9 imply the following:

fS(T1)xσ1S + (fS(T2)− fS(T1))xσ2S + (fS(T3)− fS(T2))xσ3S · · · (fS(Ts)− fS(Ts−1))xσsS ≤ yS .

Proof : Denote the empty set by T0, so we have fS(T0) = 0. Now the left hand side of the above
inequality becomes:

s∑

i=1

(fS(Ti)− fS(Ti−1))xσiS ≤
s∑

i=1

(fS(Ti)− fS(Ti−1))
∑

Tj :i∈Tj

z
Tj

S =
s∑

j=1

j∑

i=1

(fS(Ti)− fS(Ti−1)) z
Tj

S .

The first inequality follows from the inequality 9 and the second equality follows by changing the
order of summation.

s∑

j=1

j∑

i=1

(fS(Ti)− fS(Ti−1)) z
Tj

S =
s∑

j=1

fS(Tj)z
Tj

S ≤ yS .

Here the first equality follows from cancellation and the second follows from the inequality 8. 2

Theorem 10 The trading cone corresponding to submodular function fS consists of the following
inequality for each permutation σ on the users in S:

fS(T1)xσ1S + (fS(T2)− fS(T1))xσ2S + (fS(T3)− fS(T2))xσ3S · · · (fS(Ts)− fS(Ts−1))xσsS ≤ yS .

Proof : Let us prove the easier direction first. Suppose the inequality in this theorem is valid for
every permutation then we need to show that we can find zT

S ’s so that inequalities 8 and 9 hold.
Choose the permutation σ which puts xiS ’s in descending order. Choose z

Tj

S = xσjS−xσj+1S except
for zTs

S which is simply xσsS . It is easy to verify inequalities 8 and 9.

For the harder direction, suppose we have xiS ’s and yS so that zT
S ’s exist that satisfy inequalities 8

and 9. Again consider a permutation σ which puts xiS ’s in descending order. It is not difficult to
see that the inequality in the theorem is satisfied for this permutation. But what about the other
permutations? Consider π as an arbitrary permutation. Using submodularity we will show that
the left hand side of the inequality in the theorem for permutation π is at most the left hand side
of the inequality for permutation σ. It is easy to verify that when π also puts xiS ’s in descending
order then the left hand side of the inequality in theorem is the same for π and σ.

Let us assume that π does not put x′iSs in descending order. Suppose for some j, xπjS < xπj+1S .
We create another permutation by interchanging the places of j and j + 1 and keeping the rest the
same. We claim that this procedure can not decrease the left hand side of the inequality in the
theorem.

Suppose it does, then we have:

(fS({π1, . . . , πj})− fS({π1, . . . , πj−1}))xπjS + (fS({π1, . . . , πj+1})− fS({π1, . . . , πj}))xπj+1S >
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(fS({π1, . . . , πj−1, πj+1})− fS({π1, . . . , πj−1}))xπj+1S+(fS({π1, . . . , πj+1})− fS({π1, . . . , πj−1, πj+1}))xπjS .

Rearranging terms we get:

(fS({π1, . . . , πj}) + fS({π1, . . . , πj−1, πj+1})− fS({π1, . . . , πj−1})− fS({π1, . . . , πj+1}))
(
xπjS − xπj+1S

)
> 0

This gives a contradiction because the first factor is nonnegative by submodularity of fS and the
second factor is negative because of the assumption. This completes the proof. 2

This theorem shows that an equilibrium exists. One can consider the trading cone consisting of
all the s-factorial inequalities for every set S. The number of such inequalities can’t be explicitly
written. The proof of the above theorem also gives us a separation oracle. Given x′iSs and yS ,
verify the inequality corresponding to that permutation which put xiS ’s in descending order.

Economies of scale via submodular functions are just an example of the power we get by introducing
trading cones. It is worthwhile studying this notion further.

5.1 A natural application to network pricing

Using the framework proposed by [1] for utilizing Network Coding, we present a natural application
of the notion of trading cone to network pricing.

Suppose we are given a directed network with capacities on edges and a special node s, the sender,
that is running a broadcasting session. There is a set of receivers, R, who want to receive this
broadcast. The sender s is running the broadcasting session in an asynchronous fashion. The
sender has M packets to broadcast and keeps sending out random linear combinations of these
M packets. Random linear combinations are linearly independent with high probability so each
receiver needs to accumulate only a little more than M packets to retrieve the information. This
scheme allows the receivers to accumulate packets at different rate.

Using the framework of Network Coding [3], each receiver can accumulate the packets at a rate
which equals the bandwidth between the sender and the receiver (see [27]). Hence an edge can
simultaneously augment the flow to more than one receiver. This is precisely the notion of economies
of scale which the trading cone can deal with. Let us define a market in this setting. Each receiver
is a buyer and each edge is a seller of bandwidth – the most it can sell to a buyer is its capacity.
Assume that receiver i has money mi. ([1] use this notion to control congestion in a scenario where
multiple broadcasting sessions are being run on the same network. This is along the lines of [19].)
Each receiver wants to maximize the rate at which packets are accumulated and we assume that
a buyer’s utility is proportional to this rate. Using network coding, this rate is the maximum
flow from the sender to the receiver. The convex program whose optimal solution gives market
equilibrium is as follows:

maximize
∑

i

mi log(ri) (10)

subject to ∀i :
∑

p∈Pi

xp ≥ ri

∀e : ye ≤ Cap(e)

∀e, i :
∑

p∈Pi:e∈p

xp ≤ ye
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∀i : ri ≥ 0
∀p : xp ≥ 0

Here variable ri denotes the rate of consumption by the i-th receiver, Pi the set of all paths from the
sender to receiver, Cap(e) the capacity of e, and ye the amount of capacity sold by edge e. The first
set of constraints chooses paths for routing ri amount of flow from the sender to the i-th receiver.
The second set of constraints implies that an edge can not sell more capacity than available. The
third set of constraints represents the trading cone between what the receivers bought and what the
edges sold. Note that a unit capacity bought on some edge e can potentially be used simultaneously
by all the receivers but can’t be used to more than a unit extent by any one receiver.

In the Lagrangian relaxation, the dual variable corresponding to the first set of constraints for the
i-the receiver denotes the amount of money paid by the receivers for one unit of flow. The dual
variables corresponding to the second set of constraints for the edge e denote the amount of money
received by edge e for one unit of capacity. The dual variables for the third set of constraints denote
how the money received from the receivers is distributed among various edges. Note that an edge
can receive money from more than one receiver and that too at an unequal rate.

A more enlightening example is when there are more than one broadcasting sessions happening on
the same network. Let the senders of these sessions be denoted by sj ’s. Let Rj denote the set of
receivers interested in getting data from sj . We superscript the variables corresponding to the j-th
broadcast by j. The Eisenberg-Gale convex program becomes:

maximize
∑

j,i∈Rj

mj
i log(rj

i ) (11)

subject to ∀j, i ∈ Rj :
∑

p∈P j
i

xj
p ≥ rj

i

∀e : ye ≤ Cap(e)

∀e :
∑

j

yj
e ≤ ye

∀e, j, i ∈ Rj :
∑

p∈P j
i :e∈p

xj
p ≤ yj

e

∀j, i ∈ Rj : rj
i ≥ 0

∀p : xj
p ≥ 0

The variables have the same meaning as in the previous scenario except they are in the context
of j. The first set of constraints represent the paths bought by the i-th receiver in j-th sessions.
The second constraints represent the capacity sold by the edge e. The third and the fourth sets of
constraints represent the capacity bought by different sessions. Note that a unit of capacity sold on
one edge can help only one session. So there is no economies of scale. This means that the capacity
on an edge e is sold to different sessions at the same price. Within a session this capacity can be
used by many receivers simultaneously hence the price paid by the session to the edge e is the sum
of prices paid by the receivers in the session. The situation can be thought of as if a session acts
as an intermediary to buy capacity on the edges for its receivers. This example demonstrates that
the trading cone can be quite sophisticated. Agarwal et. al. [1] is exploiting this interpretation
of trading cone in controlling the congestion in case there are many broadcasting sessions running
based on Network Coding.
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