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Abstract: We extend the analysis of [26] to handling more general utility functions: linear

substitution functions, which include the Leontief utility. We show that the problem reduces

to the general analytic center model discussed in [26]. Thus, the same complexity bound

applies to approximating the Fisher equilibrium problem with linear substitution utilities.

More importantly, we apply the model to show that the solution to a (pairing) class of Arrow-

Debreu problems with Leontief’s utility, a more difficult exchange market problem, can be

decomposed to solutions of two systems of linear equalities and inequalities, and the price

vector is the Perron-Frobenius eigen-vector of a scaled Leontief utility matrix. Consequently,

if all input data are rational, then there always exists a rational Arrow-Debreu equilibrium,

that is, the entries of the equilibrium vector are rational numbers. Furthermore, the size

(bit-length) of the equilibrium solution is bounded by the size of the input data. The result

is interesting since rationality does not hold for Leontief’s utility in the general model, and

it implies, for the first time, that this class of Leontief’s exchange market problems can be

solved as a linear complementarity problem.
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1 Introduction

Consider the Fisher exchange market problem where players are divided into two sets: pro-

ducer and consumer; see Brainard and Scarf [2, 22]. Consumers have money to buy goods

and maximize their individual utility functions; producers sell their goods for money. The

price equilibrium is an assignment of prices to goods so that when every consumer buys a

maximal bundle of goods then the market clears, meaning that all the money is spent and

all the goods are sold.

Eisenberg and Gale [10, 13] gave a convex optimization setting to formulate Fisher’s

problem with linear utilities. They constructed an aggregated concave objective function

that is maximized at the equilibrium. Thus, finding an equilibrium became solving a convex

optimization problem, and it could be obtained by using the Ellipsoid method or interior-

point algorithms in polynomial time. Here, polynomial time means that one can compute

an ε-approximate equilibrium in a number of arithmetic operations bounded by polynomial

in n and log 1
ε
. The best arithmetic operation bound for solving the Fisher problem with

linear utilities is O(n4 log 1
ε
); see [26]. Moreover, if the input data are rational, then an

exact solution can be obtained by solving a system of linear equations and inequalities when

ε < 2−L, where L is the bit length of the input data. Thus, the arithmetic operation bound

becomes O(n4L), which is in line with the best complexity bound for linear programming of

the same dimension and size.

In this note, we extend the analysis of [26] to handling more general utility functions:

linear substitution functions, which include the Leontief utility. We show that the problem

reduces to the same general analytic center model discussed in [26]. Thus, the same com-

plexity bound applies to approximating the Fisher problem with linear substitution utilities.

More importantly, we apply a theorem on the model in [26] to show that the solution to an

Arrow-Debreu problem with Leontief’s utilities, a more difficult exchange market problem,

is the Perron-Frobenius eigen-vector to a scaled Leontief utility matrix, and the equilibrium

vector is a solution to a system of linear equations and inequalities of the original data.

Therefore, if all input data are rational, then there always exists a rational Arrow-Debreu
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equilibrium, that is, the entries of the equilibrium vector are rational numbers; and the size

(bit-length) of the solution vector is bounded by the size of the data.

2 The Fisher equilibrium problem

Without loss of generality, assume that there is 1 unit good from each producer j ∈ P with

|P | = n. Let consumer i ∈ C (with |C| = m) has an initial endowment wi to spend and buy

goods to maximize his or her individual linear substitution utility:

ui(xi) = min
k
{uk

i (xi1, ..., xin)}, (1)

where uk
i (xi) is a linear function in xij—the amount of good bought from producer j by

consumer i. More precisely,

uk
i (xi) = (uk

i )
T xi =

∑
j∈P

uk
ijxij.

In particular, the Leontief utility function is the one with

uk
i (xi) =

xik

aik

, k = j ∈ P

for a given aik > 0, that is, vector uk
i is an all zero vector except for the kth entry that equals

1/aik.

Through out this note, we make the following assumptions:

Assumption 1. Every consumer’s initial money endowment wi > 0, at least one uk
ij > 0

for every k and i ∈ C and at least one uk
ij > 0 for every k and j ∈ P .

This is to say that every consumer in the market has money to spend and he or she

likes at least one good; and every good is valued by at least one consumer. We will see that,

with these assumptions, each consumer can have a positive utility value at equilibria. If a

consumer has zero budget or his or her utility has zero value for every good, then buying

nothing is an optimal solution for him or her so that he or she can be removed from the

market; if a good has zero value to every consumer, then it is a “free” good with zero price
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in a price equilibrium and can be arbitrarily distributed among the consumers so that it can

be removed from the market too.

For given prices pj on good j, consumer i’s maximization problem is

maximize ui(xi1, ..., xin)

subject to
∑

j∈P pjxij ≤ wi,

xij ≥ 0, ∀j.
(2)

Let x∗i denote a maximal solution vector of (2). Then, vector p is called a Fisher price

equilibrium if there is x∗i for each consumer such that

∑
i∈C

x∗i = e

where e is the vector of all ones representing available goods on the exchange market.

Problem (2) can be rewritten as an linear program, after introducing a scalar variable

ui, as

maximize ui

subject to
∑

j∈P pjxij ≤ wi,

ui −
∑

j∈P uk
ijxij ≤ 0, ∀k,

ui, xij ≥ 0, ∀j.

(3)

Besides (ui, xi) being feasible, the optimality conditions of (3) are

λipj −
∑

k πk
i u

k
ij ≥ 0, ∀j ∈ P

∑
k πk

i = 1

λiwi = ui.

(4)

for some λi, πk
i ≥ 0.

It has been shown by Eisenberg and Gale [10, 9, 13] (independently later by Codenotti

et al. [3]) that a Fisher price equilibrium is an optimal Largrange multiplier vector of an

aggregated convex optimization problem:

maximize
∑

i∈C wi log ui

subject to
∑

i∈C xij = 1, ∀j ∈ P,

ui −
∑

j∈P uk
ijxij ≤ 0, ∀k, i ∈ C,

ui, xij ≥ 0, ∀i, j.

(5)
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Conversely, an optimal Largrange multiplier vector is also a Fisher price equilibrium, which

can be seen from the optimality conditions of (5):

pj −
∑

k πk
i u

k
ij ≥ 0, ∀i, j

πk
i (

∑
j∈P uk

ijxij − ui) = 0, ∀i, k
xij(pj −

∑
k πk

i u
k
ij) = 0, ∀i, j

ui

∑
k πk

i = wi, ∀i.

(6)

for some pj, the Largarange multiplier of equality constraint of j ∈ P , and some πk
i ≥ 0,

the Largarange multiplier of inequality constraint of i ∈ C and k. Summing the second

constraint over k we have

wi =
∑

k

πk
i ui =

∑

k

πk
i

∑
j∈P

uk
ijxij =

∑
j∈P

(
xij

∑

k

πk
i u

k
ij

)
, ∀i;

then summing the third constraint over j we have

∑
j∈P

pjxij =
∑
j∈P

(
xij

∑

k

πk
i u

k
ij

)
= wi.

This implies that xi from the aggregate problem is feasible for (3). Moreover, note that πk
i

in (6) equals πk
i /λi in (4). Thus, finding a Fisher price equilibrium is equivalent to finding

an optimal Largrange multiplier of (5).

In particular, if each uk
i (xi) has the Leontief utility form, i.e.,

uk
i (xi) =

xik

aik

, ∀k = j ∈ P

for a given aik > 0. Then, upon using ui to replace variable xij, the aggregated convex

optimization problem can be simplified to

maximize
∑

i wi log ui

subject to AT u ≤ e,

u ≥ 0.

(7)

where the Leontief matrix

A =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...

am1 am2 ... amn




and variable vector u =




u1

u2

...

um




(8)
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Therefore, the jth entry of AT u is the total amount of good j purchased by all m consumers,

and a Fisher equilibrium is an optimal Largrange multiplier vector of the simplified problem.

If (AT u∗)j < 1 at the optimal solution u∗, then the equilibrium price of the jth good will be

0.

3 The weighted analytic center problem

In [26] the Eisenberg-Gale aggregated problem was related to the (linear) analytic center

problem studied in interior-point algorithms

maximize
∑n

j=1 wj log(xj) (9)

subject to Ax = b,

x ≥ 0,

where the given A is an m×n-dimensional matrix with full row rank, b is an m-dimensional

vector, and wj is the nonnegative weight on the jth variable. Any x who satisfies the

constraints is called a primal feasible solution, while any optimal solution to the problem is

called a weighted analytic center.

If the weighted analytic center problem has an optimal solution, the optimality condi-

tions are

Sx = w,

Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0,

(10)

where y and s are the Largrange or KKT multipliers or dual variable and slacks of the dual

linear program:

min bT y subject to s = AT y ≥ 0,

and S is the diagonal matrix with slack vector s on its diagonals.

Let the feasible set of (9) be bounded and has a (relative) interior, i.e., has a strictly

feasible point x > 0 with Ax = b (clearly holds for problem (5) and (7)). Then, there is
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a strictly feasible dual solution s > 0 with s = AT y for some y. Furthermore, [26], based

on the literature of interior-point algorithms (e.g., Megiddo and Kojima et al. [19, 18] and

Güler [14]), has shown that

Theorem 1. Let A, b be fixed and consider a solution (x(w), y(w), s(w)) of (10) as a mapping

of w ≥ 0 with
∑

j wj = 1. Then,

• The mapping of Sn
++ = {x > 0 ∈ Rn : eT x = 1} to F++ = {(x > 0, y, s > 0) : Ax =

b, s = AT y} is one-to-one, continuously and differentiable.

• The mapping of Sn
+ = {x ≥ 0 ∈ Rn : eT x = 1} to F+ = {(x ≥ 0, y, s ≥ 0) : Ax =

b, s = AT y} is upper semi-continuous.

• The pair (xj(w), sj(w)) is unique for any j ∈ W = {j : wj > 0}, and

x′j(w)s′′j (w) = x′′j (w)s′j(w) = 0, ∀j 6∈ W

and for any two solutions (x′(w), y′(w), s′(w)) and (x′′(w), y′′(w), s′′(w)) of (10).

From this theorem, we see that, in the Fisher equilibrium problem (5) or (7), ui(w), the

utility value of each consumer, is unique; but the price vector p(w) can be non-unique.

In addition, a modified primal-dual path-following algorithm was developed in [26], for

computing an ε-solution for any ε > 0:

‖Sx− w‖ ≤ ε,

Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0.

(11)

Theorem 2. The primal-dual interior-point algorithm solves the weight analytic center prob-

lem (9) in O(
√

n log(n max(w)/ε)) iterations and each iteration solves a system of linear

equations in O(nm2 + m3) arithmetic operations. If Karmarkar’s rank-one update technique

is used, the average arithmetic operations per iteration can be reduced to O(n1.5m).

A rounding algorithm is also developed for certain types of problems possessing a ra-

tional solution, and the total iteration bound would be O(
√

nL) and the average arithmetic
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operation bound would be O(n1.5m) per iteration, where L is the bit-length of the input

data A, b, w. These results indicate, for the first time, that the complexity of the Fisher

equilibrium problem with linear substitution utility functions is completely in line with lin-

ear programming of the same dimension and size.

4 The Arrow-Debreu equilibrium problem

The Arrow-Debreu exchange market equilibrium problem which was first formulated by Leon

Walras in 1874 [24]. In this problem everyone in a population of m players has an initial

endowment of a divisible good and a utility function for consuming all goods—their own and

others. Every player sells the entire initial endowment and then uses the revenue to buy a

bundle of goods such that his or her utility function is maximized. Walras asked whether

prices could be set for everyone’s good such that this is possible. An answer was given by

Arrow and Debreu in 1954 [1] who showed that such equilibrium would exist if the utility

functions were concave.

We consider a special class of Arrow-Debreu’s problems, where each of the m = n

players have exactly one unit of a divisible good for trade (e.g., see [15, 26]), and let player

i, i = 1, ..., m, bring good j = i and have the linear substitution utility function of (1).

We call this class of problems the pairing class. The main difference between Fisher’s and

Arrow-Debreu’ models is that, in the latter, each player is both producer and consumer and

the initial endowment wi of player i is not given and will be the price assigned to his or her

good i. Nevertheless, we can still write a (parametric) convex optimization model

maximize
∑

i wi log ui

subject to
∑

i xij = 1, ∀j,
ui ≤

∑
j uk

ijxij, ∀i, k,

ui, xij ≥ 0, ∀i, j,

where we wish to select weights wi’s such that an optimal Largrange multiplier vector p
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equals w. It is easily seen that any optimal Largrange multiplier vector p satisfies

p ≥ 0 and eT p = eT w.

For fixed uk
ij, consider p be a map from w. Then, the mapping is from Sn

+ to Sn
+, and

the mapping is upper semi-continuous from Theorem 1. Thus, there is a w ∈ Sn
+ such

that an Largrange multiplier vector p(w) = w from the Kakutani fixed-point theorem (see,

e.g., [22, 23, 25]). This may be seen as an alternative, restricted to the case of the linear

substitution utility functions, to Arrow-Debreu’s general proof of the existence of equilibria.

We now focus on the Arrow-Debreu equilibrium with the (complete) Leontief utility

function:

uk
i (xi) =

xik

aik

, ∀k = j = 1, ..., m

for a given aik > 0. The parametric convex optimization model becomes

maximize
∑

i wi log ui

subject to AT u ≤ e,

u ≥ 0.

where the Leontief matrix A of (8) is a m×m positive matrix or each entry of A is positive.

Let p ∈ Rm be an optimal Largrange multiplier vector of the constraints. Then, we have

ui

∑
j aijpj = wi, ∀i

pj(1−
∑

i aijui) = 0, ∀j
∑

i aijui ≤ 1, ∀j
ui, pj ≥ 0, ∀i, j.

Thus, the Arrow-Debreu equilibrium is a p ∈ Rm, together with u ∈ Rm, satisfy

ui

∑
j aijpj = pi, ∀i

pj(1−
∑

i aijui) = 0, ∀j
∑

i aijui ≤ 1, ∀j
ui, pi ≥ 0, ∀i.
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In the matrix form, they become

UAp = p,

P (e− AT u) = 0,

AT u ≤ e,

u, p ≥ 0,

(12)

where U and P are diagonal matrices whose diagonal entries are u and p, respectively. The

Arrow-Debreu theorem implies that nonzero p and u exist for this system of equalities and

inequalities, even in general case where A ≥ 0, that is, some aik = 0 in the Leontief matrix.

5 Characterization of an Arrow-Debreu equilibrium

If ui > 0 at a solution (u, p 6= 0) of system (12), we must have pi > 0, that is, player i’s good

must be priced positively in order to have a positive utility value. On the other hand, pi > 0

implies that
∑m

k akiuk = 1, that is, good i must be all consumed and gone. Conversely, if

pi > 0, we must have ui > 0, that is, player i’s utility value must be positive. Thus, there is

a partition of all players (or goods) such that

B = {i : pi > 0} and N = {i : pi = 0}

where the union of B and N is {1, 2, ..., m}. Then, (u, p) satisfies

(UBABB)pB = pB,

AT
BBuB = e,

AT
BNuB ≤ e,

uB, pB > 0.

Here ABB is the principal submatrix of A corresponding to the index set B, ABN is the

submatrix of A whose rows in B and columns in N . Similarly, uB and pB are subvectors of

u and p with entries in B, respectively.

Since the scaled Leontief matrix UBABB is a (column) stochastic matrix (i.e., eT UBABB =

eT ), pB must be the (right) Perron-Frobenius eigen-vector of UBABB. Moreover, ABB is
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(generally) irreducible because UBABB is (generally) irreducible and uB > 0, and UBABB is

(generally) irreducible because pB > 0. (Stochastic matrix A is (generally) irreducible if it

has a strictly positive distribution p such that Ap = p, and p is a strictly convex combination

of all irreducible subclass distributions.) To summarize, we have

Theorem 3. Let B ⊂ {1, 2, ..., n}, N = {1, 2, ..., n} \B, ABB be (generally) irreducible, and

uB satisfy the linear system

AT
BBuB = e,

AT
BNuB ≤ e,

uB > 0.

Then the (right) Perron-Frobenius eigen-vector pB of UBABB together with pN = 0 will be

an Arrow-Debreu equilibrium. And the converse is also true. Moreover, there is always a

rational Arrow-Debreu equilibrium for every such B, that is, the entries of price vector are

rational numbers, if the entries of A are rational. Furthermore, the size (bit-length) of the

equilibrium is bounded by the size of A.

Proof. We only need to prove pB > 0. But this is the result of the Perron-Frobenius

theorem on UBABB since it is (generally) irreducible. Conversely, if (pB > 0, pN = 0) is an

Arrow-Debreu price, then uB > 0 and AT
BBuB = e from the complementarity, and ABB is

(generally) irreducible from pB > 0. To prove the rationality, we see that there is a rational

vector uB to the linear system, so that matrix UBABB will be rational, so that there will be

a rational solution pB to the linear system

(UBABB − I) pB = 0, eT pB = 1, pB > 0.

The size result is due to that the sizes of these two linear systems are bounded by the size

of A.

Our theorem implies that the players in block B can trade among them self and keep

others goods “free.” In particular, if one player likes his or her own good more than any other

good, that is, aii ≥ aij for all j. Then, ui = 1/aii, pi = 1, and uj = pj = 0 for all j 6= i, that

is, B = {i}, makes an Arrow-Debreu equilibrium. The theorem thus establishes, for the first
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time, a combinatorial algorithm to compute an Arrow-Debreu equilibrium with Leontief’s

utility by finding a right block B 6= ∅, which is actually a non-trivial complementarity

solution to a linear complementarity problem (LCP)

AT u + v = e, uT v = 0, 0 6= u, v ≥ 0. (13)

If A > 0, then any complementarity solution u 6= 0 and B = {j : uj > 0} of (13) induce

an equilibrium that is the (right) Perron-Frobenius eigen-vector of UBABB, and it can be

computed in polynomial time by solving a linear equation. If A is not strictly positive, then

any complementarity solution u 6= 0 and B = {j : uj > 0}, as long as ABB is (generally)

irreducible, induces an equilibrium. The equivalence between the pairing Arrow-Debreu

model and the LCP also implies

Corollary 1. Let square matrix A ≥ 0 and have no all-zero row nor all zero-column. Then,

LCP (13) has a complementarity solution u 6= 0 such that ABB is (generally) irreducible

where B = {j : uj > 0}.

The pairing class of Arrow-Debreu’s problems is a rather restrictive class of problems.

Consider a general supply matrix 0 ≤ G ∈ Rm×n where row i of G represents the multiple

goods brought to the market by player i, i = 1, ..., m. Without loss of generality, we assume

eT G = eT ∈ Rn, that is, each of the n goods has exactly one unit in the market. The

pairing model represents the case that G = I, the identity matrix, or G = P where P is any

permutation matrix of m×m.

What to do if one player brings two different goods? One solution is to copy the same

player’s utility function twice and treat the player as two players with an identical Leontief

utility function, where each of them brings only one type of good. Then, the problem reduces

to the pairing model. Thus, we have

Corollary 2. If all goods are different from each other in the general Arrow-Debreu problem

with Leontief ’s utility, that is, each column of G ∈ Rm×n has exactly one nonzero entry,

then there is always a rational equilibrium, that is, the entries of price vector are rational

numbers, if the entries of Leontief ’s coefficient matrix are rational. Furthermore, the size

(bit-length) of the equilibrium is bounded by the size Leontief ’s coefficient matrix.
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6 An illustrative example

The rationality result is interesting since the existence of a rational equilibrium is not true

for Leontief’s utility in Fisher’s setting with rational data, see the following example, with

three consumers and three goods, adapted from Codenotti et al. [3] and Eaves [11].

AT =




1 1/2 1/4

1/2 1 1/5

1/2 1 1/5.


 .

Note that goods 2 and 3 have identical coefficients from each of the three consumers.

Let the initial endowments of three consumers be w1 = w2 = w3 = 1 in Fisher’s setting.

Then, the maximal utility values of the three consumers are

u∗1 =
2

3
√

3
, u∗2 =

1

3
+

1

3
√

3
, u∗3 =

10

3
− 10

3
√

3
,

the Fisher equalibrium price for good 1 is

p∗1 = 3(
√

3− 1),

and the (multiple) Fisher equilibrium prices for goods 2 and 3 are

{(p∗2, p∗3) : p∗2 + p∗2 = 3(2−
√

3), p∗2 + p∗3 ≥ 0}.

However, let player i owns good i, i = 1, 2, 3, in the Arrow-Debreu model. Then, there

are multiple rational equilibria:

1. B = {1}, with u∗1 = 1 and p∗1 = 1, and u∗2 = u∗3 = p∗2 = p∗3 = 0.

2. B = {2}, with u∗2 = 1 and p∗2 = 1, and u∗1 = u∗3 = p∗1 = p∗3 = 0.

3. B = {1, 2}, with u1∗ = u∗2 = 2
3

and p∗1 = p2∗ = 1
2
, and u∗3 = p∗3 = 0.

4. B = {2, 3}, with an equilibrium u∗2 = 1
2
, u∗3 = 5

2
, p∗2 = 1

2
, p∗3 = 1

2
, and u∗1 = p∗1 = 0.

5. B = {1, 2, 3}, with an equilibrium u∗1 = 7
15

, u∗2 = 17
30

, u∗3 = 1, p∗1 = 7
23

, p∗2 = 221
460

, and

p∗3 = 99
460

.

13



Now what to do if two players bring the same type of good? In our present pairing

class, they are being treated as two different goods. However, one can set the same utility

coefficients to them so that they receive an identical appreciation from all the players (as

illustrated in the example). Again, the problem reduces to the pairing class, which leads to

rationality. The problem is that these two “same” goods may receive two different prices; for

example, one is priced higher and the other is at a discount level. I guess this could happen

in the real world since two “same” goods may not be really the same and the market has

“freedom” to price. Another open question: is there a polynomial-time algorithm to solve

the pairing class of Arrow-Debreu’s problems?
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