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Algorithms for Linear Programming

min ¢ x

X

subject to Ax=0>b
x>0

one of the most fundamental models
’ In mathematical programming
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Robust and highly accurate, but not that scalable if “dense”



First-order LP Algorithms: Recent Successes

First-order methods for LP

* (Generally) based on gradient information Solver Accuracy
Integrated with many other techniques ABIP/ABIP+ 10~%~ 10~
such as scaling, restart, parameter-tuning... SCS 10-4 ~ 106

* Free of matrix factorization (each iteration) PDLP 107°~107°

* Able to achieve medium accuracy

* State of the art first-order solvers now solve LPs to medium/high
relative accuracy

* Enough for certain applications



Potential Reduction for Linear Programming

The potential function In linear programming:

o(x) = plog(g Z log x;

Optimality Centrality

* Proved as a theoretical tool to establish polynomial complexity and
Implemented as a neighborhood-tuning-free method comparing with the
path-following methods

* There are different variants of interior point methods reduce different
potential functions under linear/affine constraints

* Manage an automatic balance between optimality ¢ and centrality

Directly reduce the potential function using the gradients?



Choose the Right Potential Function to Reduce

A desirable first-order friendly potential function should

* Represent LP as an unconstrained problem
* Admit cheap gradient computation

* Convergece with gradient-based optimization

We choose the potential from the homogeneous self-dual model

G(x,y,5,T,K)= HAX br||? + \|ATy+s—CTH2 (bT —c'x—K)?
“'—v—"’ \_v_./ \._V_./

Primal infeas Dual infeas Complementarity

min d(x,y,s,7T, k)
qbzplog(g)—z log xis; — log kT X,Y,8,K,T

subject to e (

x;s; Kk, 7)=1




Reducing the Potential Function

The LP Is represented by an almost unconstrained problem

min plog(g Z log X;

X

subject to e' x =

One may apply
* first-order interior point trust region
* dimension-reduced second-order interior point trust region

* second-order potential reduction method



A Briefing of the Algorithms

First-order interior point trust region Dimension-reduced second-order trust region

m}jn Vo(x¥) T (x — x*) + 1(x — x¥) TV2p(x*)(x — x¥)

- U b(xK) T (x — xk 2
i PxT) x =) subject to e’ (x —x¥)=0
subject to e (x —x*)=0 x — x¥ € span{V ¢(x¥), X*KV p(x¥), xk — xk =1}
[(X) o =x) < [(X9)Hx—xM)] < 8
Second-order potential reduction ¢ Three methods reduce the same potential
function
A —b * Optimization can switch between them

T _
—A - c A > | seamlessly
b! —c —1 Ap — — 4
kooT Ar,r ~'=7 ) & First-order method can either do warm-starting
Or serve as a rescue when second order method
fails



Theoretical Results (Gao at al. SHUFE, 2023)

Theorem 1. Let A* = ¢(x*t1) — ¢(x5),

2
— 54 gl\g/lﬁz | 2(16_ 3 with first-order potential reduction
2
Ak <{ —3+ 353/’62 | 2(16_ 3y with dimension-reduced trust-region
3, B . . .
> 5 0= B) with second-order potential reduction

* Linear convergence for second-order method

* Sub-linear convergence for first-order method



Numerical Experiments: MIPLIB instances

* Tested on 971 MIPLIB instances for 1e-04 tolerance )

Timelimit set to 600 seconds

* Potential reduction switches to second-order 2
method after reaching 1e-03 accuracy

* Tested different combinations of first/second order

methods (0 step & 5 steps & 15 steps) 9 PP —
* First-order method alone achieves low-accuracy
* Second-order method follow up to finish solving Solver setting Solved SGM
Potential First-order 639 19.36
Potential First + Second order (5) 819  6.85
Why do we need Second-Order? Potential First + Second order (15) 935  2.87
Second order 945 0.54

Necessary for Crossover: obtaining an optimal

basis from the approximate solution All 971 —




Numerical Experiments: Crossover

Often we need highly accurate or an optimal basic solution that is hardly
achievable by first-order methods:

So we need to do crossover to locate an optimal basis from a “quality” solution

® \Wa crnecnvar from hnth intarinar point solut Solver  Potential Interior Point PDLP
S Solver Time 500S) Instance 10~ 108 10~ 10~8
Potential Interior Point 113 2 df1001 3678/0.61s 4036/0.72s 21924/6.43s 26929/8.20s
ding the opt pds-20 8413/0.42s 8647/0.39s 33543/13.19s 8861/0.37s
PDLP 222.5
qapl2 705/0.23s 698/0.23s 4801/2.53s 679/0.23s
* We choose 114 Netlib datasets qapl5 3046/2.47s 3052/2.48s 54015/82.14s 2895/2.38

* Interior point and PDLP solutions work comparatively on 70% of instances

* |n general, interior point solutions tell more valueble information for crossover: for
some Instances where b or ¢ has large norm, solutions generated by PDLP fails to
provide an efficient start for crossover



It can Viewed as a Cheaper Warm-Starting Presolver

100 - | | | | | | | | ]

Accuracy le-04 1e-06 1e-08 1le-10 / b/'

First-order 7.5 798.0 >1200 >1200 * \ |
Second-order 33.0 56.7 89.3 933 40 ‘W\ M \ W’ |
First + Second 54 121 14.1 15.2 ED\ ' w W |

Example: Speedup on QAP instances 0 10 20

60 70 80 90 100

Ilteration count on Netlib instances

* First-order method solves to 1e-02 accuracy and then switch to
second-order

* An average reduction of 30% Iterations compared to trivial start

* There are instances where first + second Is faster than first/second



There are More: Predicting Power for Mixed Integer Linear
Programming

min ¢ x+¢ y

X,y
subject to Ax+ By <d

* MILP are hard to solve In general

* Special heuristics are needed for
acceleration yi €10,1}

Interior point solution of the LP relaxation Is a natural prediction of the
likelihood each variable takes 1 in the optimal solution since it contains unbiased
Information of the optimal set

How to use this information safely and efficiently?



Pooling the Risk via Variance Reduction

* Given an MILP, the interior point solution of the LP relaxation tells us

y1(€) S50
(6 || 012
7.(8) 0.38

* Each y Is the likelihood a variable takes 1 or O Iin the optimal solution
* Each variable introduces some risk/variance of such rounding

so that dealing them separately results in extremely risk outcomes

Q: What should we do seeing a set of risky guesses? A: Put them in a pool!



Risk Pooling through Variance Reduction

* Pooling the binary variables by adding “confidence” cardinality cuts

g yi (&) > || Yy <BIL]

ieU={j:yj(§)=>0.9} ie{/:y;(£)<0.1}
* Intuitively we know that the above two inequalities are expectedly to hold
fora—-09and g — 0.1
* These two Inequalities are exactly cutting planes for MILP
* The last Issue Is how to choose «a, f to Increase the confidence level:
Interpret y;k as Bernoulli random variables with expectation Qj ,

then justify by concentration inequalities



Statistical Confidence Cut Generation (Gao at al. SHUFE, 2023)

Theorem 2. Given independent random variables {y{'(£),..., ya(&)} such that E[y*(&)|&] = yi(&), letting
U:=1i:yi(&)>71} and L:={i:yi(§)<1—71} for 0.5 <7 <1. Then w.p. 1—14, each of the inequalities

below holds.
C )> — [ Hliog(1/5) \
U- Z yf Z yf Og /

reu IeuU l/
Feasible Region

Co: Y v (&) <) (¢ \/wloglﬁ \ / \
€L IEL

* Overall, the two cuts (and their complement) split the whole feasible region into four
regions

C L T

* Solving the most likelihood region of two cuts often gives a satisfying solution with
confidence

* Branching over all four regions independently will not miss the optimal solution



Numerical Experiments: Online Cut-Generation

* Tested on IEEEE unit commitment
problems using COPT

* Using pre-solved instances to compare
speed
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* No loss of optimality 1

* Remarkable acceleration using proper

Gl B W

8382
242
263
495
241

187
170
168
167
182

6
I
8
9
10

1151
3600
1320
3600
3600

405
1510
1029
758
579

choosing cut generation parameters

Improvement of COPT on IEEE Instances

Offline-Training: Using past iInstances to improve prediction quality



Data-Driven Approaches to Mixed Integer Optimization
Learn from the past and predict the future such as the unit commitment

problem In Electrical Power Generation

* Many real-life MIO applications are solved on a min 6 y:¢)
; subject to h(x, y, &) <0
regular basis

yi€{0,1}

0501

Unit commitment; portfolio; scheduling...

* Large amount of data and solutions collected
from the past

Future instances are similar to the past

* A natural idea: use machine learning to learn
from history

Known as pre-trained data-driven approaches




Numerical Test Results |

* The method Is tested on multi-knapsack, set-covering and unit-commitment
problems

Train from 500 instances and test on 20 instances

* Measure the speedup of finding a good solution on In the region formed by two
cuts

B Gurobi B COPT

Min
1.032

10, 250, L. 10, 250, M 10, 250, H 10, 500, L. 10, 500, M 10, 500, H 30, 250, L. 30, 250, M 30, 250, H 30, 500, L. 30,500, M 30, 500, H

Average speedup on knapsack instances



Numerical Test Results I

* Acceleration by two lines of
code

* Remarkable speedup on
primal solution finding for
both the state of art MIP
solvers Gurobi and COPT

* No loss of optimality

Speed Up
ek o w = un (=) ~1 - -}

Min
0.676

3000.5000.L. 3000, 5000, M  3000.5000.H 4000, 6000.L.  4000,6000.M 4000, 6000. H

Unit Commitment

B Gurobi B COPT

Min
3.924

1000, 10000. L. 1000, 10000.M 1000,10000.H 2000,10000.1. 2000,10000.M 2000,10000.H 2000,20000.1. 2000,20000.M 2000,20000, H

Set-Covering



Takeaways

* First-order potential reduction serves as a fast warm-start for

high-precision second-order methods If needed

* Interior-point solutions provide prediction-power for cross-over
and mixed-integer programming via statistical cardinality cut

generation

* THANK YOU



