A Unified Theorem on SDP Rank Reduction and its Applications

Yinyu Ye
Department of Management Science and Engineering and Institute of Computational and Mathematical Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye

Outline

- Problem Statement
- SDP Rank Reduction Theorem and Algorithm
- Sketch of Proof
- Applications
- More Questions

Semidefinite Programming Problem

Consider the Semidefinite Programming problem:
$(S D P)$ minimize $C \bullet X$
subject to $\quad A_{i} \bullet X=b_{i} \quad i=1, \ldots, m$,

$$
X \succeq \mathbf{0}
$$

where C, A_{1}, \ldots, A_{m} are given $n \times n$ symmetric matrices and b_{1}, \ldots, b_{m} are given scalars, and

$$
A \bullet X=\sum_{i, j} a_{i j} x_{i j}=\operatorname{trace} A^{T} X
$$

An SDP Example

$(S D P) \quad$ minimize $\quad 2 x_{1}+x_{2}+x_{3}$
subject to $x_{1}+x_{2}+x_{3}=1$,

$$
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq \mathbf{0} .
$$

$(L P) \quad$ minimize $\quad 2 x_{1}+x_{2}+x_{3}$
subject to $x_{1}+x_{2}+x_{3}=1$,
$\left(x_{1}, x_{2}, x_{3}\right) \geq \mathbf{0}$.

The Dual of SDP

The dual problem to (SDP) can be written as:

$$
\begin{array}{lll}
(S D D) & \text { sup } & \mathbf{b}^{T} \mathbf{y} \\
& \text { subject to } & \sum_{i}^{m} y_{i} A_{i}+S=C, S \succeq \mathbf{0}
\end{array}
$$

where $\mathrm{y} \in \mathcal{R}^{m}$.
Let X^{*} and S^{*} be a solution pair with zero duality gap. Then

$$
\operatorname{rank}\left(X^{*}\right)+\operatorname{rank}\left(S^{*}\right) \leq n .
$$

If there is S^{*} such that $\operatorname{rank}\left(S^{*}\right) \geq n-d$, then the max rank of X^{*} is bounded by d.

Computational Complexity and Rank of SDP Solution

- The SDP interior-point algorithm finds an ϵ-approximate solution where solution time is linear in $\log (1 / \epsilon)$ and polynomial in m and n.
- Barvinok 95 showed that if the problem is solvable, then there exists a solution X whose rank r satisfies $r(r+1) \leq 2 m$. (A constructive proof can be based on Carathéodory's theorem.)
- And the rank bound is essentially tight.
- A such low-rank solution can be found in polynomial time; Pataki (1999), and Alfakih/Wolkowicz (1999).

SDP Feasibility Problem

For simplicity, consider finding X satisfies

$$
A_{i} \bullet X=b_{i} \quad i=1, \ldots, m, \quad X \succeq 0
$$

where A_{1}, \ldots, A_{m} are positive semidefinite matrices and scalars $\left(b_{1}, \ldots, b_{m}\right) \geq 0$.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1, \\
& \left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq \mathbf{0} .
\end{aligned}
$$

Problem Statement

- We are interested in finding a fixed low-rank (say d) solution to the above system.
- However, there are some issues:
- Such a solution may not exist!
- Even if it does, one may not be able to find it efficiently.
- So we consider an approximation of the problem.

Approximating the Problem

We consider the problem of finding an $\hat{X} \succeq 0$ of rank at most d that satisfies the SDP constraints approximately:

$$
\beta(m, n, d) \cdot b_{i} \leq A_{i} \bullet \hat{X} \leq \alpha(m, n, d) \cdot b_{i} \quad \forall i=1, \ldots, m
$$

Here, $\alpha(\cdot) \geq 1$ and $\beta(\cdot) \in(0,1]$ are called the distortion factors.
Clearly, the closer are both to 1 , the better the solution quality.

Our Main Result

Theorem 1. (So, Y and Zhang 07) Let $r=\max \left\{\operatorname{rank}\left(A_{i}\right)\right\}$. Then, for any $d \geq 1$, there exists an $\hat{X} \succeq 0$ with rank $(\hat{X}) \leq d$ such that

$$
\alpha(m, n, d)= \begin{cases}1+\frac{12 \ln (4 m r)}{d} & \text { for } 1 \leq d \leq 12 \ln (4 m r) \\ 1+\sqrt{\frac{12 \ln (4 m r)}{d}} & \text { for } d>12 \ln (4 m r)\end{cases}
$$

and
$\beta(m, n, d)= \begin{cases}\frac{1}{e(2 m)^{2 / d}} & \text { for } 1 \leq d \leq 4 \ln (2 m) \\ \max \left\{\frac{1}{e(2 m)^{2 / d}}, 1-\sqrt{\left.\frac{4 \ln (2 m)}{d}\right\}}\right. & \text { for } d>4 \ln (2 m)\end{cases}$
Moreover, there exists an efficient randomized algorithm for finding such an \hat{X}.

Some Remarks

- There is always a low-rank, or sparse, approximate SDP solution with respect to a bounded relative residual distortion. As the allowable rank increases, the distortion bounds become smaller and smaller.
- The lower distortion factor is independent of n and the rank of $A_{i} \mathrm{~s}$.
- The factors can be improved if we only consider one-sided inequalities.
- This result contains as special cases several well-known results in the literature.

Early Result: Metric Embedding

- Given an n-point set $V=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ in \mathbf{R}^{l}, we would like to embed it into a low-dimensional Euclidean space as faithfully as possible.
- Specifically, a map $f: V \rightarrow \mathbf{R}^{d}$ is an α-embedding (where $\alpha \geq 0$) if $(1-\alpha)\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|_{2} \leq\left\|f\left(\mathbf{v}_{i}\right)-f\left(\mathbf{v}_{j}\right)\right\|_{2} \leq(1+\alpha) \cdot\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|_{2}$
The goal is to find an f such that α is as small as possible. This is a case of the SDP with $A_{i j}=\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T}$.
- It is known that: for any $\epsilon>0$, an ϵ-embedding into $\mathbf{R}^{O\left(\epsilon^{-2} \log n\right)}$ exists (Johnson-Lindenstrauss 84).

Early Result: Approximating QPs

- Let A_{1}, \ldots, A_{m} be positive semidefinite. Consider the following QP:

$$
v^{*}=\operatorname{maximize} \quad \mathbf{x}^{T} A \mathbf{x} \quad \text { s.t. } \mathbf{x}^{T} A_{i} \mathbf{x} \leq 1 \quad i=1, \ldots, m
$$

and its natural SDP relaxation:
$v_{s d p}^{*}=\operatorname{maximize} A \bullet X \quad$ s.t. $A_{i} \bullet X \leq 1 \quad i=1, \ldots, m ; \quad X \succeq 0$

- Let X^{*} be an optimal solution to the SDP.
- Nemirovskii et al. 99 showed that one can randomly extract a rank-1 matrix \hat{X} from X^{*} such that it is feasible for the SDP and that $\mathbb{E}[A \bullet \hat{X}] \geq \Omega\left(\log ^{-1} m\right) v^{*}$.

Early Result: Approximating QPs (Cont'd)

- Luo et al. 06 considered the following real (complex) QP:

$$
\operatorname{minimize} \mathbf{x}^{T} A \mathbf{x} \quad \text { s.t. } \mathbf{x}^{T} A_{i} \mathbf{x} \geq 1 \quad i=1, \ldots, m
$$

and its natural SDP relaxation:
minimize $A \bullet X$ s.t. $A_{i} \bullet X \geq 1 \quad i=1, \ldots, m ; \quad X \succeq 0$

- They showed how to extract a solution \hat{x} from an optimal solution matrix to the SDP so that it is feasible for the SDP and that it is within a factor $O\left(m^{-2}\right)\left(O\left(m^{-1}\right)\right)$ of the optimal.
- Again, we can obtain the same results from our Theorem on both real $(d=1)$ and complex $(d=2)$ spaces.

How Sharp are the Bounds?

For metric embedding, it is known that:

- for any $d \geq 1$, there exists an n-point set $V \subset \mathbf{R}^{d+1}$ such that any embedding of V into \mathbf{R}^{d} requires $D=\Omega\left(n^{1 /\lfloor(d+1) / 2\rfloor}\right)$ (Matousek 90);
- there exists an n-point set $V \subset \mathbf{R}^{l}$ for some l such that for any $\epsilon \in\left(n^{-1 / 2}, 1 / 2\right)$, say, an $(1+\epsilon)$-embedding of V into \mathbf{R}^{d} will require $d=\Omega\left(\left(\epsilon^{2} \log (1 / \epsilon)\right)^{-1} \log n\right)$ (Alon 03).

Thus, from the metric embedding perspective, the ratio of our upper and lower bounds is almost tight for $d \geq 3$.

How Sharp are the Bounds? (Cont'd)

For the QP:

$$
v^{*}=\operatorname{maximize} \quad \mathbf{x}^{T} A \mathbf{x} \quad \text { s.t. } \quad \mathbf{x}^{T} A_{i} \mathbf{x} \leq 1 \quad i=1, \ldots, m
$$

and its natural SDP relaxation:
$v_{s d p}^{*}=\operatorname{maximize} A \bullet X$ s.t. $A_{i} \bullet X \leq 1 \quad i=1, \ldots, m ; \quad X \succeq 0$
Nemirovskii et al. 99 showed that the ratio between v^{*} and $v_{s d p}^{*}$ can be as large as $\Omega(\log m)$.

For the minimization version, Luo et al. 06 showed that the ratio can be as small as $\Omega\left(m^{-2}\right)$.
Thus, from the QP perspective, the ratio of our upper and lower bounds is almost tight for $d=1$.

Sketch of Proof of the Theorem

We only need to prove: Let $A_{1}, \ldots, A_{m} \in \mathcal{M}^{n}$ be symmetric PSD matrices. Then, for any $d \geq 1$, there exists an $\hat{X} \succeq 0$ with $\operatorname{rank}(\hat{X}) \leq d$ such that:
$\beta(m, n, d) \cdot \operatorname{Tr}\left(A_{i}\right) \leq A_{i} \bullet \hat{X} \leq \alpha(m, n, d) \cdot \operatorname{Tr}\left(A_{i}\right) \quad$ for $i=1, \ldots, m$
where $\alpha(m, n, d)$ and $\beta(m, n, d)$ are given in the main Theorem, respectively.

Note that I is a feasible solution to (1) with zero distortion.
The general theorem can be reduced to this form. (How?)

Sketch of Proof of the Theorem (Cont'd)

The proof is constructive: we use a simple randomized construction procedure to generate \hat{X} :

- Generate i.i.d. Gaussian random variables ξ_{i}^{j} with mean 0 and variance $1 / d$, and define $\xi^{j}=\left(\xi_{1}^{j}, \ldots, \xi_{n}^{j}\right)$, where $i=1, \ldots, n ; j=1, \ldots, d$.
- Return $\hat{X}=\sum_{j=1}^{d} \xi^{j}\left(\xi^{j}\right)^{T}$.

Cearly, the rank of \hat{X} is d.
The rest of proof is based on careful analyses of various probability bounds.

Sketch of Proof of the Theorem (Cont'd)

The analysis makes use of the following Markov inequality:
Lemma 1. Let ξ_{1}, \ldots, ξ_{n} be i.i.d. standard Gaussian RVs. Let
$\alpha \in(1, \infty)$ and $\beta \in(0,1)$ be constants, and Chi-square $U_{n}=\sum_{i=1}^{n} \xi_{i}^{2}$. Then, the following hold:

$$
\begin{aligned}
& \operatorname{Pr}\left(U_{n} \geq \alpha n\right) \leq \exp \left[\frac{n}{2}(1-\alpha+\log \alpha)\right] \\
& \operatorname{Pr}\left(U_{n} \leq \beta n\right) \leq \exp \left[\frac{n}{2}(1-\beta+\log \beta)\right]
\end{aligned}
$$

Sketch of Proof of the Theorem (Cont'd)

Lemma 2. Let $H \in \mathcal{M}^{n}$ be a symmetric PSD matrix with $r \equiv \operatorname{rank}(H) \geq 1$. Then, for any $\beta \in(0,1)$, we have:

$$
\begin{equation*}
\operatorname{Pr}(H \bullet \hat{X} \leq \beta \operatorname{Tr}(H)) \leq \exp \left(\frac{d}{2}(1-\beta+\ln \beta)\right) \tag{2}
\end{equation*}
$$

Lemma 3. Let $H \in \mathcal{M}^{n}$ be a symmetric PSD matrix with
$r \equiv \operatorname{rank}(H) \geq 1$. Then, for any $\alpha>1$, we have:

$$
\begin{equation*}
\operatorname{Pr}(H \bullet \hat{X} \geq \alpha \operatorname{Tr}(H)) \leq r \cdot \exp \left(\frac{d}{2}(1-\alpha+\ln \alpha)\right) \tag{3}
\end{equation*}
$$

Low Rank SDP Applications

The low-rank SDP problem arises in many applications, e.g.:

- graph realization/sensor network localization (e.g., Biswas and Y 03, So and Y 04)
- metric embedding/dimension reduction (e.g., Johnson and Lindenstrauss 84, Matousek 90)
- approximating non-convex (complex, quaternion) quadratic optimization (e.g., Nemirovskii, Roos and Terlaky 99, Luo, Sidiropoulos, Tseng and Zhang 06, Faybusovich 07)
- graph rigidity/distance matix (e.g., Alfakih, Khandani and Wolkowicz 99, etc.)

Graph Realization

Given a graph $G=(V, E)$ and sets of non-negative weights, say $\left\{d_{i j}:(i, j) \in E\right\}$, the goal is to compute a realization of G in the Euclidean space \mathbf{R}^{d} for a given low dimension d, i.e.

- to place the vertices of G in \mathbf{R}^{d} such that
- the Euclidean distance between every pair of adjacent vertices
(i, j) equals (or bounded) by the prescribed weight $d_{i j} \in E$.

Figure 1: 50-node 2-D Sensor Localization

Figure 2: A 3-D Tensegrity Graph Realization; provided by Anstreicher

Figure 3: Tensegrity Graph: A Needle Tower; provided by Anstreicher

Figure 4: Molecular Conformation: 1F39(1534 atoms) with 85% of distances below $6 \AA$ and 10% noise on upper and lower bounds

Sensor Localization Model

Given $\mathbf{a}_{k} \in \mathbf{R}^{d}, d_{i j} \in N_{x}$, and $\hat{d}_{k j} \in N_{a}$, find $\mathbf{x}_{i} \in \mathbf{R}^{d}$ such that

$$
\begin{aligned}
& \left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=d_{i j}^{2}, \forall(i, j) \in N_{x}, i<j \\
& \left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|^{2}=\hat{d}_{k j}^{2}, \forall(k, j) \in N_{a}
\end{aligned}
$$

$(i j)((k j))$ connects points \mathbf{x}_{i} and $\mathbf{x}_{j}\left(\mathbf{a}_{k}\right.$ and $\left.\mathbf{x}_{j}\right)$ with an edge whose Euclidean length is $d_{i j}\left(\hat{d}_{k j}\right)$.
Does the system have a localization or realization of all x_{j} 's? Is the localization unique? Is there a certification for the solution to make it reliable or trustworthy? Is the system partially localizable with certification?

Matrix Representation

Let $X=\left[\mathbf{x}_{1} \mathbf{x}_{2} \ldots \mathbf{x}_{n}\right]$ be the $2 \times n$ matrix that needs to be determined. Then

$$
\begin{gathered}
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} X^{T} X\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \text { and } \\
\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|^{2}=\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T}\left[\begin{array}{ll}
I & X
\end{array}\right]^{T}[I \quad X]\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right),
\end{gathered}
$$

where \mathbf{e}_{j} is the vector of all zero except 1 at the j th position.

$$
\begin{aligned}
& \left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} Y\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=d_{i j}^{2}, \forall i, j \in N_{x}, i<j, \\
& \left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T}\left(\begin{array}{cc}
I & X \\
X^{T} & Y
\end{array}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)=\hat{d}_{k j}^{2}, \forall k, j \in N_{a}, \\
& Y=X^{T} X .
\end{aligned}
$$

SDP Relaxation

Change

$$
Y=X^{T} X
$$

to

$$
Y \succeq X^{T} X .
$$

This matrix inequality is equivalent to

$$
\left(\begin{array}{cc}
I & X \\
X^{T} & Y
\end{array}\right) \succeq 0
$$

Biswas and Y 2004; Krislock et al 2007.
This matrix has rank at least 2 ; if it's 2 , then $Y=X^{T} X$, and the converse is also true.

SDP Standard Form

$$
Z=\left(\begin{array}{cc}
I & X \\
X^{T} & Y
\end{array}\right)
$$

Find a symmetric matrix $Z \in \mathbf{R}^{(2+n) \times(2+n)}$ such that

$$
\begin{aligned}
& Z_{1: 2,1: 2}=I \\
& \left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \bullet Z=d_{i j}^{2}, \forall i, j \in N_{x}, i<j, \\
& \left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T} \bullet Z=\hat{d}_{k j}^{2}, \forall k, j \in N_{a}, \\
& Z \succeq 0 .
\end{aligned}
$$

If every sensor point is connected, directly or indirectly, to an anchor point, then the solution set must be bounded.

The Dual of the SDP Relaxation

minimize

$$
I \bullet V+\sum_{i<j \in N_{x}} w_{i j} d_{i j}^{2}+\sum_{k, j \in N_{a}} \hat{w}_{k j} \hat{d}_{k j}^{2}
$$

$$
\text { subject to }\left(\begin{array}{cc}
V & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)+\sum_{i<j \in N_{x}} w_{i j}\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T}
$$

$$
+\sum_{k, j \in N_{a}} w_{k j}\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T} \succeq 0
$$

where variable matrix $V \in \mathcal{M}^{2}$, variable $w_{i j}$ is the (stress) weight on edge between \mathbf{x}_{i} and \mathbf{x}_{j}, and $\hat{w}_{k j}$ is the (stress) weight on edge between \mathbf{a}_{k} and \mathbf{x}_{j}.

Note that the dual is always feasible since $V=0$ and all w. equal 0 is a feasible solution.
The rank of any optimal dual (stress) slack matrix is less or equal to n.

Unique Localizability

A sensor network is 2-uniquely-localizable if there is a unique localization in \mathbf{R}^{2} and there is no $\mathbf{x}_{j} \in \mathbf{R}^{h}, j=1, \ldots, n$, where $h>2$, such that

$$
\begin{aligned}
& \left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=d_{i j}^{2}, \forall i, j \in N_{x}, i<j \\
& \left\|\left(\mathbf{a}_{k} ; \mathbf{0}\right)-\mathbf{x}_{j}\right\|^{2}=\hat{d}_{k j}^{2}, \forall k, j \in N_{a}
\end{aligned}
$$

The latter says that the problem cannot be localized in a higher dimension space where anchor points are simply augmented to $\left(\mathbf{a}_{k} ; \mathbf{0}\right) \in \mathbf{R}^{h}, k=1, \ldots, m$.

Figure 5: One sensor-Two anchors: Not localizable

Uniquely-Localizable Graphs

Theorem 2. - If every edge length is specified, then the sensor network is 2-uniquely-localizable (Schoenberg 1942).

- There is a sensor network, with $O(n)$ edge lengths specified, that is 2-uniquely-localizable (So 2007).
- If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is 2-uniquely-localizable (So and Y 2005).

ULPs can be localized in polynomial time

Theorem 3. (So and Y 2005) The following statements are equivalent:

1. The sensor network is 2-uniquely-localizable;
2. The max-rank solution of the SDP relaxation has rank 2;
3. The solution matrix has $Y=X^{T} X$ or $\operatorname{Trace}\left(Y-X^{T} X\right)=0$.

When an optimal dual (stress) slack matrix has rank n, then the problem is 2-strongly-localizable.

If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is 2-strongly-localizable

Figure 6: Two sensor-Three anchors: Strongly Localizable

Figure 7: Two sensor-Three anchors: Localizable but not Strongly

Figure 8: Two sensor-Three anchors: Not localizable

Figure 9: Two sensor-Three anchors: Strongly Localizable

Localize All Localizable Points

Theorem 4. (So and Y 2005) If a problem (graph) contains a subproblem (subgraph) that is localizable, then the submatrix solution corresponding to the subproblem in the SDP solution has rank 2. That is, the SDP relaxation computes a solution that localize all possibly localizable unknown sensor points.

Implication: Diagonals of "co-variance" matrix

$$
\bar{Y}-\bar{X}^{T} \bar{X}
$$

$\bar{Y}_{j j}-\left\|\overline{\mathbf{x}}_{j}\right\|^{2}$, can be used as a measure to see whether j th sensor's estimated position is reliable or not.

Uncertainty Analysis and Confidence Measure

Alternatively, each x_{j} 's can be viewed as uncertain points from the incomplete distance measures. Then the solution to the SDP problem provides the first and second moment estimation (Bertsimas and Y 1998).

Generally, $\overline{\mathbf{x}}_{j}$ is a point estimate of \mathbf{x}_{j} and $\bar{Y}_{i j}$ is a point estimate $\mathbf{x}_{i}^{T} \mathbf{x}_{j}$.

Consequently,

$$
\bar{Y}_{j j}-\left\|\overline{\mathbf{x}}_{j}\right\|^{2}
$$

which is the individual variance estimation of sensor j, gives an interval estimation for its true position (Biswas and Y 2004).

Deterministic Way on Finding a Low-Rank Solution

Add a regularization objective to minimize
$(S D P)$ minimize $C \bullet Z$
subject to $\quad A_{i} \bullet Z=b_{i}, i=1,2, \ldots, m, Z \succeq 0$.

$$
\begin{array}{ll}
\operatorname{minimize} & 2 x_{1}+x_{2}+x_{3} \\
\text { subject to } & x_{1}+x_{2}+x_{3}=1, \\
& \left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq \mathbf{0} .
\end{array}
$$

For sensor localization problem, we typically choose $C=-I$.

d-Realizable Graphs

A graph is d-realizable if it can always be realized in \mathbf{R}^{d} whenever it is realizable (the edge weights are Euclidean metric) for every instance of the graph.

- Connelly and Sloughter have recently given a complete characterization of the class of d-realizable graphs, where $d=1,2,3$
- It is trivial to find a realization of an 1-realizable graph, since a graph is 1-realizable iff it is a forest.
- A polynomial time algorithm for realizing 2-realizable graphs exists: since a graph is a partial 2 -tree and triangulation works. (The complete graph on k vertices is an k-tree. An k-tree with
$n+1$ vertices (where $n \geq k$) can be constructed from an k-tree with n vertices by adding a vertex adjacent to all vertices of one of its k-vertex complete subgraphs, and only to those vertices. A partial k-tree is a subgraph of an k-tree.)
- Finding realization for 3-realizable graphs is posed as an open question.

3-Realizable Graph

Using the forbidden minor characterization of partial 3 -trees, one can show that a graph is 3 -realizable if it either

- contains an V_{8} or an $C_{5} \times C_{2}$ as a minor

Figure 10: V-8

Figure 11: $\mathrm{C}-5 \times \mathrm{C}-2$

- or does not contain either graphs as a minor.

Indeed, if it is the latter, then G is a partial 3 -tree.
An k-tree is defined recursively as follows. The complete graph on k vertices is an k-tree. An k-tree with $n+1$ vertices (where $n \geq k$) can be constructed from an k-tree with n vertices by adding a vertex adjacent to all vertices of one of its k-vertex complete subgraphs, and only to those vertices.
A partial k-tree is a subgraph of an k-tree.

So, Y and Zhang (2006) Result

We resolve the above open question by giving a polynomial time algorithm for realizing 3 -realizable graphs. The main bottleneck in the proof is to show that two graphs, V_{8} and $C_{5} \times C_{2}$, are 3-realizable.
There exists a realization of $H \in\left\{V_{8}, C_{5} \times C_{2}\right\}$ such that the distance between a certain pair of non-adjacent vertices (i, j) is maximized in the SDP relaxation. Such a realization induces a non-zero equilibrium stress, which are the optimal dual multipliers of our SDP relaxation. Then use this equilibrium force to prove that the dual SDP has a rank- $(n-3)$ solution.

More Applications: The Kissing Problem

- Given a unit center sphere, the maximum number of unit spheres, in d dimensions, can touch or kiss the center sphere at same time?
- General Solutions does not exist.
- Delsarte Method uses linear programming to provide an upper bound on the number of spheres.
- $\mathrm{K}(8)=240, \mathrm{~K}(24)=196650$.
- $K(4)=24$: proved using Delsarte Method by Oleg Musin only 3 years ago.
- For other dimensions, lower bounds have been provided.

The Kissing Problem as a Graph Realization

Given a unit center sphere in d dimensions, can n unit spheres touch or kiss the center sphere at same time?

This can be formulated as a SDP feasibility problem with rank constraint.

$$
\begin{aligned}
\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} Y\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) & \geq 4, \forall i \neq j \\
\mathbf{e}_{i}^{T} Y \mathbf{e}_{i} & =4, \forall i \\
\operatorname{rank}(Y) & =d
\end{aligned}
$$

The objective construction

- Use pull some struts and/or push some cables in order to force SDP solution into low rank.
- For example, for 2D, 6 spheres can be connected as follows (thick lines are bars, red lines are struts, green lines are cables).

Figure 12: 6 Spheres in 2-D

Solving the 3-D Kissing Problem

A regularization objective structure can be extended to dimension 3.
For 12 spheres, SDP method provides the following realization

Figure 13: 12 Spheres in 3-D

More Questions

- Can the distortion upp bound be improved such that it's independent of rank of A_{i} ?
- Is there deterministic algorithm? Choose the largest d eigenvalue component of X ?
- In practical applications, we see much smaller distortion, why?
- How to construct a regularization objective to find a low rank SDP solution?

