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Semidefinite Programming Problem

Consider the Semidefinite Programming problem:

(SDP ) minimize C •X

subject to Ai •X = bi i = 1, . . . , m,

X º 0

where C, A1, . . . , Am are given n× n symmetric matrices and

b1, . . . , bm are given scalars, and

A •X =
∑
i,j

aijxij = traceAT X.
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An SDP Example

(SDP ) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,(
x1 x2

x2 x3

)
º 0.

(LP ) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

(x1, x2, x3) ≥ 0.
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The Dual of SDP

The dual problem to (SDP) can be written as:

(SDD) sup bTy

subject to
∑m

i yiAi + S = C, S º 0,

where y ∈ Rm.

Let X∗ and S∗ be a solution pair with zero duality gap. Then

rank(X∗) + rank(S∗) ≤ n.

If there is S∗ such that rank(S∗) ≥ n− d, then the max rank of
X∗ is bounded by d.
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Computational Complexity and Rank of SDP Solution

• The SDP interior-point algorithm finds an ε-approximate solution

where solution time is linear in log(1/ε) and polynomial in m

and n.

• Barvinok 95 showed that if the problem is solvable, then there

exists a solution X whose rank r satisfies r(r + 1) ≤ 2m. (A

constructive proof can be based on Carathéodory’s theorem.)

• And the rank bound is essentially tight.

• A such low-rank solution can be found in polynomial time; Pataki

(1999), and Alfakih/Wolkowicz (1999).
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SDP Feasibility Problem

For simplicity, consider finding X satisfies

Ai •X = bi i = 1, . . . ,m, X º 0

where A1, . . . , Am are positive semidefinite matrices and scalars

(b1, . . . , bm) ≥ 0.

x1 + x2 + x3 = 1,(
x1 x2

x2 x3

)
º 0.
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Problem Statement

• We are interested in finding a fixed low–rank (say d) solution to

the above system.

• However, there are some issues:

– Such a solution may not exist!

– Even if it does, one may not be able to find it efficiently.

• So we consider an approximation of the problem.
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Approximating the Problem

We consider the problem of finding an X̂ º 0 of rank at most d that

satisfies the SDP constraints approximately:

β(m,n, d) · bi ≤ Ai • X̂ ≤ α(m, n, d) · bi ∀ i = 1, . . . , m.

Here, α(·) ≥ 1 and β(·) ∈ (0, 1] are called the distortion factors.

Clearly, the closer are both to 1, the better the solution quality.
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Our Main Result

Theorem 1. (So, Y and Zhang 07) Let r = max{rank(Ai)}. Then, for any

d ≥ 1, there exists an X̂ º 0 with rank(X̂) ≤ d such that

α(m,n, d) =





1 +
12 ln(4mr)

d
for 1 ≤ d ≤ 12 ln(4mr)

1 +

√
12 ln(4mr)

d
for d > 12 ln(4mr)

and

β(m,n, d) =





1
e(2m)2/d

for 1 ≤ d ≤ 4 ln(2m)

max

{
1

e(2m)2/d
, 1−

√
4 ln(2m)

d

}
for d > 4 ln(2m)

Moreover, there exists an efficient randomized algorithm for finding such an X̂ .
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Some Remarks

• There is always a low-rank, or sparse, approximate SDP solution

with respect to a bounded relative residual distortion. As the

allowable rank increases, the distortion bounds become smaller

and smaller.

• The lower distortion factor is independent of n and the rank of

Ais.

• The factors can be improved if we only consider one–sided

inequalities.

• This result contains as special cases several well-known results

in the literature.



SDP Rank Reduction Yinyu Ye, Waterloo 2009 12

Early Result: Metric Embedding

• Given an n–point set V = {v1, . . . ,vn} in Rl, we would like

to embed it into a low–dimensional Euclidean space as faithfully

as possible.

• Specifically, a map f : V → Rd is an α–embedding (where

α ≥ 0) if

(1−α)‖vi−vj‖2 ≤ ‖f(vi)−f(vj)‖2 ≤ (1+α)·‖vi−vj‖2

The goal is to find an f such that α is as small as possible. This

is a case of the SDP with Aij = (ei − ej)(ei − ej)
T .

• It is known that: for any ε > 0, an ε–embedding into

RO(ε−2 log n) exists (Johnson–Lindenstrauss 84).
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Early Result: Approximating QPs

• Let A1, . . . , Am be positive semidefinite. Consider the following

QP:

v∗ = maximize xT Ax s.t. xT Aix ≤ 1 i = 1, . . . , m

and its natural SDP relaxation:

v∗sdp = maximize A •X s.t. Ai •X ≤ 1 i = 1, . . . , m; X º 0

• Let X∗ be an optimal solution to the SDP.

• Nemirovskii et al. 99 showed that one can randomly extract a

rank–1 matrix X̂ from X∗ such that it is feasible for the SDP and

that E[A • X̂] ≥ Ω(log−1 m)v∗.
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Early Result: Approximating QPs (Cont’d)

• Luo et al. 06 considered the following real (complex) QP:

minimize xT Ax s.t. xT Aix ≥ 1 i = 1, . . . ,m

and its natural SDP relaxation:

minimize A •X s.t. Ai •X ≥ 1 i = 1, . . . , m; X º 0

• They showed how to extract a solution x̂ from an optimal

solution matrix to the SDP so that it is feasible for the SDP and

that it is within a factor O(m−2) (O(m−1)) of the optimal.

• Again, we can obtain the same results from our Theorem on

both real (d = 1) and complex (d = 2) spaces.
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How Sharp are the Bounds?

For metric embedding, it is known that:

• for any d ≥ 1, there exists an n–point set V ⊂ Rd+1 such that

any embedding of V into Rd requires D = Ω(n1/b(d+1)/2c)
(Matousek 90);

• there exists an n–point set V ⊂ Rl for some l such that for any

ε ∈ (n−1/2, 1/2), say, an (1 + ε)–embedding of V into Rd will

require d = Ω((ε2 log(1/ε))−1 log n) (Alon 03).

Thus, from the metric embedding perspective, the ratio of our upper
and lower bounds is almost tight for d ≥ 3.
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How Sharp are the Bounds? (Cont’d)

For the QP:

v∗ = maximize xT Ax s.t. xT Aix ≤ 1 i = 1, . . . , m

and its natural SDP relaxation:

v∗sdp = maximize A •X s.t. Ai •X ≤ 1 i = 1, . . . ,m; X º 0

Nemirovskii et al. 99 showed that the ratio between v∗ and v∗sdp can

be as large as Ω(log m).

For the minimization version, Luo et al. 06 showed that the ratio can

be as small as Ω(m−2).

Thus, from the QP perspective, the ratio of our upper and lower
bounds is almost tight for d = 1.
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Sketch of Proof of the Theorem

We only need to prove: Let A1, . . . , Am ∈Mn be symmetric PSD

matrices. Then, for any d ≥ 1, there exists an X̂ º 0 with

rank(X̂) ≤ d such that:

β(m,n, d)·Tr(Ai) ≤ Ai•X̂ ≤ α(m,n, d)·Tr(Ai) for i = 1, . . . ,m

(1)

where α(m,n, d) and β(m,n, d) are given in the main Theorem,

respectively.

Note that I is a feasible solution to (1) with zero distortion.

The general theorem can be reduced to this form. (How?)
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Sketch of Proof of the Theorem (Cont’d)

The proof is constructive: we use a simple randomized construction

procedure to generate X̂ :

• Generate i.i.d. Gaussian random variables ξj
i with mean 0 and

variance 1/d, and define ξj = (ξj
1, . . . , ξ

j
n), where

i = 1, . . . , n; j = 1, . . . , d.

• Return X̂ =
∑d

j=1 ξj (ξj)
T

.

Cearly, the rank of X̂ is d.

The rest of proof is based on careful analyses of various probability
bounds.
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Sketch of Proof of the Theorem (Cont’d)

The analysis makes use of the following Markov inequality:

Lemma 1. Let ξ1, . . . , ξn be i.i.d. standard Gaussian RVs. Let

α ∈ (1,∞) and β ∈ (0, 1) be constants, and Chi-square

Un =
∑n

i=1 ξ2
i . Then, the following hold:

Pr (Un ≥ αn) ≤ exp
[n

2
(1− α + log α)

]

Pr (Un ≤ βn) ≤ exp
[n

2
(1− β + log β)

]
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Sketch of Proof of the Theorem (Cont’d)

Lemma 2. Let H ∈Mn be a symmetric PSD matrix with

r ≡ rank(H) ≥ 1. Then, for any β ∈ (0, 1), we have:

Pr
(
H • X̂ ≤ βTr(H)

)
≤ exp

(
d

2
(1− β + ln β)

)
(2)

Lemma 3. Let H ∈Mn be a symmetric PSD matrix with

r ≡ rank(H) ≥ 1. Then, for any α > 1, we have:

Pr
(
H • X̂ ≥ αTr(H)

)
≤ r · exp

(
d

2
(1− α + ln α)

)
(3)
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Low Rank SDP Applications

The low–rank SDP problem arises in many applications, e.g.:

• graph realization/sensor network localization (e.g., Biswas and Y

03, So and Y 04)

• metric embedding/dimension reduction (e.g., Johnson and

Lindenstrauss 84, Matousek 90)

• approximating non-convex (complex, quaternion) quadratic

optimization (e.g., Nemirovskii, Roos and Terlaky 99, Luo,

Sidiropoulos, Tseng and Zhang 06, Faybusovich 07)

• graph rigidity/distance matix (e.g., Alfakih, Khandani and

Wolkowicz 99, etc.)



SDP Rank Reduction Yinyu Ye, Waterloo 2009 22

Graph Realization

Given a graph G = (V, E) and sets of non–negative weights, say

{dij : (i, j) ∈ E}, the goal is to compute a realization of G in the

Euclidean space Rd for a given low dimension d, i.e.

• to place the vertices of G in Rd such that

• the Euclidean distance between every pair of adjacent vertices

(i, j) equals (or bounded) by the prescribed weight dij ∈ E.
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Figure 1: 50-node 2-D Sensor Localization
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Figure 2: A 3-D Tensegrity Graph Realization; provided by Anstreicher
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Figure 3: Tensegrity Graph: A Needle Tower; provided by Anstreicher
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Figure 4: Molecular Conformation: 1F39(1534 atoms) with 85% of distances below

6Å and 10% noise on upper and lower bounds



SDP Rank Reduction Yinyu Ye, Waterloo 2009 27

Sensor Localization Model

Given ak ∈ Rd, dij ∈ Nx, and d̂kj ∈ Na, find xi ∈ Rd such that

‖xi − xj‖2 = d2
ij, ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d̂2
kj, ∀ (k, j) ∈ Na,

(ij) ((kj)) connects points xi and xj (ak and xj) with an edge

whose Euclidean length is dij (d̂kj).

Does the system have a localization or realization of all xj ’s? Is the
localization unique? Is there a certification for the solution to make it
reliable or trustworthy? Is the system partially localizable with
certification?
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Matrix Representation

Let X = [x1 x2 ... xn] be the 2× n matrix that needs to be

determined. Then

‖xi − xj‖2 = (ei − ej)
T XT X(ei − ej) and

‖ak − xj‖2 = (ak;−ej)
T [I X]T [I X](ak;−ej),
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where ej is the vector of all zero except 1 at the jth position.

(ei − ej)
T Y (ei − ej) = d2

ij, ∀ i, j ∈ Nx, i < j,

(ak;−ej)
T

(
I X

XT Y

)
(ak;−ej) = d̂2

kj, ∀ k, j ∈ Na,

Y = XT X.
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SDP Relaxation

Change

Y = XT X

to

Y º XT X.

This matrix inequality is equivalent to
(

I X

XT Y

)
º 0,

Biswas and Y 2004; Krislock et al 2007.

This matrix has rank at least 2; if it’s 2, then Y = XT X , and the
converse is also true.
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SDP Standard Form

Z =

(
I X

XT Y

)
.

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

Z1:2,1:2 = I

(0; ei − ej)(0; ei − ej)
T • Z = d2

ij, ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d̂2

kj, ∀ k, j ∈ Na,

Z º 0.

If every sensor point is connected, directly or indirectly, to an
anchor point, then the solution set must be bounded.
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The Dual of the SDP Relaxation

minimize I • V +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

ŵkj d̂
2
kj

subject to

(
V 0

0 0

)
+

∑
i<j∈Nx

wij(0; ei − ej)(0; ei − ej)
T

+
∑

k,j∈Na
wkj(ak;−ej)(ak;−ej)

T º 0,

where variable matrix V ∈M2, variable wij is the (stress) weight

on edge between xi and xj , and ŵkj is the (stress) weight on edge

between ak and xj .

Note that the dual is always feasible since V = 0 and all w· equal 0

is a feasible solution.

The rank of any optimal dual (stress) slack matrix is less or equal to
n.
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Unique Localizability

A sensor network is 2-uniquely-localizable if there is a unique

localization in R2 and there is no xj ∈ Rh, j = 1, ..., n, where

h > 2, such that

‖xi − xj‖2 = d2
ij, ∀ i, j ∈ Nx, i < j,

‖(ak;0)− xj‖2 = d̂2
kj, ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher
dimension space where anchor points are simply augmented to
(ak;0) ∈ Rh, k = 1, ..., m.
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Figure 5: One sensor-Two anchors: Not localizable
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Uniquely-Localizable Graphs

Theorem 2. • If every edge length is specified, then the sensor

network is 2-uniquely-localizable (Schoenberg 1942).

• There is a sensor network, with O(n) edge lengths specified,

that is 2-uniquely-localizable (So 2007).

• If one sensor with its edge lengths to at least three anchors (in

general positions) specified, then it is 2-uniquely-localizable (So

and Y 2005).
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ULPs can be localized in polynomial time

Theorem 3. (So and Y 2005) The following statements are

equivalent:

1. The sensor network is 2-uniquely-localizable;

2. The max-rank solution of the SDP relaxation has rank 2;

3. The solution matrix has Y = XT X or Trace(Y −XT X) = 0 .

When an optimal dual (stress) slack matrix has rank n, then the

problem is 2-strongly-localizable.

If one sensor with its edge lengths to at least three anchors (in
general positions) specified, then it is 2-strongly-localizable
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Figure 6: Two sensor-Three anchors: Strongly Localizable
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Figure 7: Two sensor-Three anchors: Localizable but not Strongly
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Figure 8: Two sensor-Three anchors: Not localizable
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Figure 9: Two sensor-Three anchors: Strongly Localizable
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Localize All Localizable Points

Theorem 4. (So and Y 2005) If a problem (graph) contains a

subproblem (subgraph) that is localizable, then the submatrix

solution corresponding to the subproblem in the SDP solution has

rank 2. That is, the SDP relaxation computes a solution that localize

all possibly localizable unknown sensor points.

Implication: Diagonals of “co-variance” matrix

Ȳ − X̄T X̄,

Ȳjj − ‖x̄j‖2, can be used as a measure to see whether jth
sensor’s estimated position is reliable or not.
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Uncertainty Analysis and Confidence Measure

Alternatively, each xj ’s can be viewed as uncertain points from the

incomplete distance measures. Then the solution to the SDP

problem provides the first and second moment estimation

(Bertsimas and Y 1998).

Generally, x̄j is a point estimate of xj and Ȳij is a point estimate

xT
i xj .

Consequently,

Ȳjj − ‖x̄j‖2,

which is the individual variance estimation of sensor j, gives an
interval estimation for its true position (Biswas and Y 2004).
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Deterministic Way on Finding a Low-Rank Solution

Add a regularization objective to minimize

(SDP ) minimize C • Z

subject to Ai • Z = bi, i = 1, 2, ..., m, Z º 0.

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,(
x1 x2

x2 x3

)
º 0.

For sensor localization problem, we typically choose C = −I .
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d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever

it is realizable (the edge weights are Euclidean metric) for every

instance of the graph.

• Connelly and Sloughter have recently given a complete

characterization of the class of d–realizable graphs, where

d = 1, 2, 3

• It is trivial to find a realization of an 1–realizable graph, since a

graph is 1–realizable iff it is a forest.

• A polynomial time algorithm for realizing 2–realizable graphs

exists: since a graph is a partial 2–tree and triangulation works.

(The complete graph on k vertices is an k–tree. An k–tree with
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n + 1 vertices (where n ≥ k) can be constructed from an

k–tree with n vertices by adding a vertex adjacent to all vertices

of one of its k–vertex complete subgraphs, and only to those

vertices. A partial k–tree is a subgraph of an k–tree.)

• Finding realization for 3–realizable graphs is posed as an open

question.



SDP Rank Reduction Yinyu Ye, Waterloo 2009 46

3–Realizable Graph

Using the forbidden minor characterization of partial 3–trees, one

can show that a graph is 3–realizable if it either

• contains an V8 or an C5 × C2 as a minor
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Figure 10: V-8
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Figure 11: C-5×C-2
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• or does not contain either graphs as a minor.

Indeed, if it is the latter, then G is a partial 3–tree.

An k-tree is defined recursively as follows. The complete graph on

k vertices is an k–tree. An k–tree with n + 1 vertices (where

n ≥ k) can be constructed from an k–tree with n vertices by

adding a vertex adjacent to all vertices of one of its k–vertex

complete subgraphs, and only to those vertices.

A partial k–tree is a subgraph of an k–tree.
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So, Y and Zhang (2006) Result

We resolve the above open question by giving a polynomial time

algorithm for realizing 3–realizable graphs. The main bottleneck in

the proof is to show that two graphs, V8 and C5 × C2, are

3–realizable.

There exists a realization of H ∈ {V8, C5 × C2} such that the
distance between a certain pair of non–adjacent vertices (i, j) is
maximized in the SDP relaxation. Such a realization induces a
non–zero equilibrium stress, which are the optimal dual multipliers
of our SDP relaxation. Then use this equilibrium force to prove that
the dual SDP has a rank-(n− 3) solution.
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More Applications: The Kissing Problem

• Given a unit center sphere, the maximum number of unit

spheres, in d dimensions, can touch or kiss the center sphere at

same time?

• General Solutions does not exist.

• Delsarte Method uses linear programming to provide an upper

bound on the number of spheres.

• K(8) = 240, K(24) = 196650.

• K(4) = 24: proved using Delsarte Method by Oleg Musin only 3

years ago.

• For other dimensions, lower bounds have been provided.
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The Kissing Problem as a Graph Realization

Given a unit center sphere in d dimensions, can n unit spheres

touch or kiss the center sphere at same time?

This can be formulated as a SDP feasibility problem with rank

constraint.

(ei − ej)
T Y (ei − ej) ≥ 4, ∀i 6= j,

eT
i Y ei = 4, ∀i,

rank(Y ) = d.
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The objective construction

• Use pull some struts and/or push some cables in order to force

SDP solution into low rank.

• For example, for 2D, 6 spheres can be connected as follows

(thick lines are bars, red lines are struts, green lines are cables).
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Figure 12: 6 Spheres in 2-D
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Solving the 3-D Kissing Problem

A regularization objective structure can be extended to dimension 3.

For 12 spheres, SDP method provides the following realization
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Figure 13: 12 Spheres in 3-D
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More Questions

• Can the distortion upp bound be improved such that it’s

independent of rank of Ai?

• Is there deterministic algorithm? Choose the largest d

eigenvalue component of X?

• In practical applications, we see much smaller distortion, why?

• How to construct a regularization objective to find a low rank

SDP solution?


