Multivariate Distributionally Robust Convex Regression under Absolute Error Loss

Zhengqing Zhou

Department of Mathematics, Stanford University

Joint work with:

Jose H. Blanchet Stanford MS&E Peter W. Glynn Stanford MS&E Jun Yan Stanford STATS

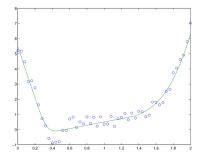
Problem Setting

Consider a regression model of the form

$$Y_i = f_*(\mathbf{X}_i) + \mathcal{E}_i, \quad i = 1, 2, \cdots, n,$$

where the covariates $\mathbf{X}_i \in \mathbb{R}^d$, the response $Y_i \in \mathbb{R}$ and \mathcal{E}_i are random noise with zero mean and finite variance.

Q: How to nonparametrically estimating f_* under the **convex** shape constraint?



Convex Shape Matters!

Convexity is crucial in some settings, in the sense that a non-convex estimated function can create economically undesirable anomalies.

- ▶ For instance, consider the pricing of a European Call $C(K) = \mathbb{E}(S K)^+$.
- ▶ Suppose we fit the price $\hat{C}(K)$ that is **NOT** convex in K, i.e., there exists K and $\varepsilon > 0$ such that

$$\widehat{C}(K+\varepsilon) + \widehat{C}(K-\varepsilon) < 2\widehat{C}(K).$$

- ► This allows us to buy a contract at strike price K + ε and one at K ε, then sell two of the options at K.
- The total payoff at expiry is

$$P = (S - (K - \varepsilon))^{+} + (S - (K + \varepsilon))^{+} - 2(S - K)^{+}.$$

▶ $P \ge 0$ always holds for all S (In particular, P > 0 for $K - \varepsilon < S < K + \varepsilon$), which leads to an **arbitrage**!

Zhengqing (Stanford Math)

Convex regression problems arise in a variety of fields.

- In financial engineering, stock option prices usually have convexity restrictions.
- In economics, production functions and utility functions are often required to be concave.
- Approximating an objective function for a convex optimization problem.
- Convex (concave) regression problems are also common in operations research and reinforcement learning.

Convex Regression

Model

$$Y_i = f_*(\mathbf{X}_i) + \mathcal{E}_i, \quad i = 1, 2, \cdots, n.$$

$$\hat{f}_n := \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \left(Y_i - f(\mathbf{X}_i) \right)^2,$$

where ${\cal F}$ is a suitable convex function class.

Measure of performance

$$l_p(f_*, \hat{f}_n) := \left[\frac{1}{n} \sum_{i=1}^n \left(f_*(\mathbf{X}_i) - \hat{f}(\mathbf{X}_i)\right)^p\right]^{1/p}.$$

where $p\geq 1.$ In standard literature, l_2 error loss was used to measure the "distance" between \hat{f} and $f_*.$

Recent Progress

- (Lim and Glynn'12, Seijo and Sen'11) Consistency of \hat{f}_n for general d.
- (Guntuboyina and Sen'14) Suppose d = 1, the least square estimator $\hat{f}^{\rm LS}$ achieve the optimal rate

$$l_2(f_*, \hat{f}_n^{\mathrm{LS}}) = O_P(n^{-2/5}).$$

▶ (Lim'14) Suppose d > 4, $f_* : [0,1]^d \to \mathbb{R}$ and $\|\nabla f_*\|_{\infty}$ is bounded by C, then there is an estimator \hat{f}_n (depending on C) such that

$$l_2(f_*, \hat{f}_n^{\mathrm{LS}}) = O_P(n^{-1/d}).$$

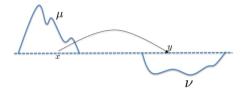
Our Model

Q: What if we want an estimator that is **robust** to both adversarial perturbations in the empirical data and outliers?

- Leverage the idea of Optimal Transport (Wasserstein distance).
- Let μ and ν be two distributions,

$$D_c(\mu,\nu) := \min \left\{ \mathbb{E}_{\pi} c(X,Y) : \pi \in \Pi(\mu,\nu) \right\},\$$

where $c(\cdot, \cdot)$ is a cost function.



Our Model

Q: What if we want an estimator that is **robust** to both adversarial perturbations in the empirical data and outliers?

Distributionally Robust Convex Regression (DRCR)

 $(\mathbf{X}_1, Y_1), \cdots, (\mathbf{X}_n, Y_n)$ i.i.d.,

$$\hat{f}_n^{\mathrm{DR}} := \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sup_{\substack{F \in \mathcal{P}(\mathbb{R}^{d+1}): D(P, P_n) \le \delta}} \mathbb{E}_P[Y - f(\mathbf{X})]_{\mathcal{H}}$$

where ${\mathcal F}$ is a suitable class of convex Lipschitz functions.

Remarks :

Distributional robustness: By introducing the Wasserstien ball

$$\left\{P: D(P, P_n) \le \delta\right\},\$$

our estimator has performance guarantees under noisy inputs and small distributional shifts.

• Robust to outliers: Implement the L_1 loss function.

Tractable Formulation

Theorem (Blanchet, Glynn, Yan and Z.'19) For any $\delta > 0$, we have

$$\inf_{f \in \mathcal{F}} \sup_{P \in \mathcal{P}(\mathbb{R}^{d+1}): D(P,P_n) \le \delta} \mathbb{E}_P |Y - f(\mathbf{X})| = \inf_{f \in \mathcal{F}} \left\{ \delta \|\nabla f\|_{\infty} + \frac{1}{n} \sum_{i=1}^n |Y_i - f(\mathbf{X}_i)| \right\}.$$

- The inner maximization is solved in closed form resulting in a regularization penalty involves the norm of the gradient.
- This is still an infinite dimensional problem...

$\min_{g_i,\xi_i} \quad \frac{1}{n} \sum_{i=1}^n |Y_i - g_i| + \delta \max_{1 \le i \le n} \|\xi_i\|_{\infty}.$

Algorithm

s.t.
$$g_j \ge g_i + \langle \xi_i, X_j - X_i \rangle,$$

 $1 \le i, j \le n.$

▶ To solve the DRCR, consider the

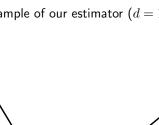
following finite dimensional LP:

• Let $(\widehat{g}_1, \widehat{\xi}_1), \cdots, (\widehat{g}_n, \widehat{\xi}_n)$ be any solution of the above LP. Then

$$\widehat{f}_{n,\delta}^{\mathrm{DR}}(x) := \max_{1 \le i \le n} \left(\widehat{g}_i + \langle \widehat{\xi}_i, x - X_i \rangle \right).$$

Zhengqing (Stanford Math)

• Example of our estimator (d = 1).



Statistical Guarantee

We focus on d > 4, and assume the function f_* is convex with $\|\nabla f_*\|_{\infty} < \infty$.

Theorem (Blanchet, Glynn, Yan and Z.'19)

Under mild assumptions on the distribution of X and the noise \mathcal{E} , we can pick a δ_n of order $\widetilde{\Theta}(n^{-2/d})$ such that

$$l_1(\widehat{f}_{n,\delta_n}^{\mathsf{DR}}, f_*) = \widetilde{\mathcal{O}}_P\left(n^{-1/d}\right).$$

Comparison to standard literature

 $\begin{array}{ccc} & {\rm Existing Results} & {\rm Our Result} \\ {\rm Algorithm} & {\rm QP}, \, \mathcal{O}(n^2) \, {\rm constraints} \\ {\rm X} & {\rm Bounded \, support} & {\rm LP}, \, \mathcal{O}(n^2) \, {\rm constraints} \\ {\rm Robustness} & {\color{red} {\tt X}} & {\color{red} {\tt V}} \\ {\rm No \, apriori \, knowledge \, of \, f_*} & {\color{red} {\tt X}} & {\color{red} {\tt V}} \\ {\rm Rate \, of \, Convergence} & \mathcal{O}\left(n^{-1/d}\right) & \widetilde{\mathcal{O}}\left(n^{-1/d}\right) \end{array}$

Zhengqing (Stanford Math)

Numerical Experiments

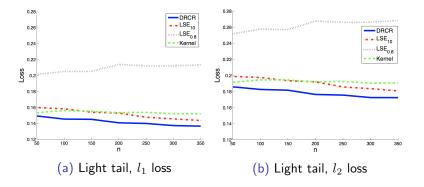
- Let d = 5, and $f_*(\mathbf{x}) = |x_1| + |x_2| + |x_3| + |x_4| + |x_5|$.
- Generate \mathbf{X}_i i.i.d. from $N(\mathbf{0}, I_5)$, then generate Y_i by

$$Y_i = f_*(\mathbf{X}_i) + \mathcal{E}_i,$$

where \mathcal{E}_i are sampled i.i.d. from N(0, 0.04).

- To construct (DRCR) $\hat{f}_{n,\delta_n}^{\text{DR}}$, we simply take $\delta_n = n^{-2/5}$.
- ► To compare, we consider the estimator (LSE_c) f_c^{LS} in (Lim'14), which require an estimation ||∇f_{*}||_∞ ≤ c. We set c = 10 and 0.8, since in practise we may overestimate/underestimate the ||∇f_{*}||_∞.
- ▶ We also consider the kernel estimator (typically not in convex shape), hyperparameters are chosen via cross-validation.
- ▶ We evaluate the performance in both l_1 and l_2 losses.

Numerical Experiments



- ▶ $\hat{f}_{n,\delta_n}^{\text{DR}}$ outperforms $\hat{f}_{n,0.8}^{\text{LS}}$, $\hat{f}_{n,10}^{\text{LS}}$ and the kernel estimator in both l_1 and l_2 losses
- ► The performance of $\hat{f}_{n,c}^{\text{LS}}$ is sensitive to the choice of the constant c, the a priori bound on $\|\nabla f_*\|_{\infty}$.

Conclusion

Summary

- We formulate and study the distributionally robust convex regression.
- Our estimator is designed to be robust to adversarial perturbations in the empirical data.
- Contrary to all of the existing results, our convergence rates hold without assuming compact domain, and with no apriori bounds on the underlying convex function or its gradient norm.

Future works

- Find the optimal rate of convergence and design an estimator to achieve it.
- Introduce distributional robustness to estimate other shape restricted functions, such as quasi-convex function, increasingly convex function, etc.

Thank you!