THE MITRE . CORPORATION

Bedford, Massachusetts

Subject:
To:

From:
Dept:
Issued at:

Date:

Contract No.

Release to:

Working Paper  W— 6674

Sheet 1 of 10  Sheets

SOME ASPECTS OF TREE THEORY (U) Project 702.0

Distribution List

A. M, Zwicky, Jr., and S. Isard
D-15 |

Bedford, Massachusetts

3 December 1963

AF19(628)2390

Distribution List

per 2B ok,

Abstract

D. E. Walker

A set of axioms for various types of trees (in particular, for the

labeled ordered trees used in current linguistics) is presented, and

definitions for some notions relevant to linguistic work are given.

Several alternative abstract representations of trees are discussed.

This Working Paper, prepared for Corporation Internal use, does not represent @ corporate position. Reproduction or further
dissemination is not authorized. M has not been reviewed by Office of Security Review, Department of Defense, and therefore

is not for public release.




W-6674

Foreword

During the summer of 1963 a group of linguistS, logicians, and mathe-
maticians joined the Information Sciences Subdepartment of D-15, System
Sciences, to work on a number of well-defined tasks for Project 702,
Language Processing Techniques. This paper, the result of one of these
special studies, is in the area of mathematical formalizations. 1In our
development of a program to establish natural language as an operational
language for command and control, logico-mathematical formalism is basic
to: (1) defining the complex aspects of linguistic structure in gemerative
grammars; (2) developing translation algorithms that relate structural
descriptions of sentences to representations of data; and (3) solving
mathematical problems of translatability betrween formal language of
differing complexity.

In current linguistic work the notion of a tree is an important oune
(Chomsky, 1955; Fraser, 1963; Postal, 1963; Meyers and Wang, 1963). The
object of this paper is to characterize formally the particular variety of
tree --labeled, ordered, finite, directed, singly-rooted, connected graph
without circuits-- useful in describing the constituent structure of
sentences. Our interest in the algebraic-set theoretic formulation pre-
sented stems from dissatisfaction with other existing abstract representa-
tions of trees, many of which are examined briefly in the final section of
the paper. A basis for a new formalization of operations on trees, operations
such as those central to Chomsky's (1955, 1957, 19%2) transformational theory
of grammar, is presented first.

The authors are indebted to E, C. Haines and J. R. Ross for their

suggeétions and advice in formulating the axioms presented in this paper.

iii
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SOME ASPECTS OF TREE THEORY

I. Axioms and Definitions - First Order Calculus

A, Unordered Tree

We begin with the notion of an (unordered) tree;l in a model for
this theory, a universe U of objects called nodes and one binary relation
D on X must be specified. D(X,Y) is read, "X dominates Y."

Al., (X)(Y)(Z) (DX,Y) . DY,z2)——D(X,2))
D is transitive.

A2. (X)) (D(X,Y) 7~D(Y,X))

D is asymmetric.
DI. Root (X) for (¥) (Y A X——D(X,¥))
X is a root if it dominates every node.
A3, (d!X) Root(X)
There is exactly one root.
D2. D(X,Y) for D(X,Y) . ~(H4z) (D(X,Z) . D(Z,Y))
X covers Y if X dominates Y and no Z intervenes.
A4, (X) (~Root(X)—>(E'Y) D(Y,X))
Every node except the root is uniquely covered,
B. Ordered Tree

A tree is order-ed2 by the specification of an additional binary

.relation B on - B(X,Y) is read, "X precedes Y."

1Note that our concept of tree differs from the usual notion in graph
theory (Ore, 1962, Chapter 4) in that our trees are directed, and,
moreover, directed in a particular way.

2Our ordered trees, since they are actually doubly-ordered, may be con-
sidered as double lattices if three closure points (be31des the root)
are added and if the conditions on our relation B are changed somewhat.
For a presentation of lattice theory, see Ore (1962), pp. 175-182.
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A5. (X)(Y)(Z) (B(X,Y) . B(Y,Z)—B(X,2))
B is transitive.
A6. (X)(Y) (B(X,Y)—8—~B(Y,X))
B is asymmetric.
A7. (0 V) (B(X,Y)—3(32) (D(Z,X) . (D(Z,1)))
If X precedes Y, both are covered by the same node.
D3. Init (X,Y) for D(Y,X) . ~~(3Z) B(Z,X)
X is an initial of Y if Y covers X and nothing precedes X.
D4, B(X,Y) for B(X,Y) . ~<3Z) (B(X,Z).. B(Z,Y))

X is the predecessor of Y if X precedes Y and no Z intervenes.

D5. Fin (X,Y) for D(Y,X) . ~(dZ) B(X,Z)
X is a final of Y if Y covers X and nothing succeeds X.
A8, (X) (~(d&Y) Fin (X,Y)— (a!2) B(X,Z))
If X is not the final of some Y, then X has a unique successor.
"D6. Term (X) for ~—(8Y) D(X,Y)
X is terminal if it dominates nothing.
A9, (X) (~Term (X)———(A'Y) Init (Y,X))
Every node that is not terminal has a unique initial.
C. Labeled Tree
A tree is labeled by the addition of a predicate A and a binary
relation N. A(X) is read, "X is a label," and N(X,Y) is read, "X names
Y." ZQ.now consists of objects called labels as well as objects called
nodes (where the nodes are simply those objects which are not labels).

A10. (X)) (Y) (D(X,Y)—— ~A(X) . ~A(Y)')

3We used succeed as the converse of precede in the informal discuséion.
Similarly, successor is used with the obvious meaning.
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If X dominates Y, both X and Y are nodes.. From D2, A7, and AlO it
follows that if X precedes Y, both X and Y are nodes.
All. (X)) (~AX)——=(31Y) (A(Y). .« N(Y,X)))
For every node X there is a unique label Y which names X.
Al2,  (Y) (A(Y)——3(FX) (— A(X) .. N(Y,X)))
Every label names some node.
Al3. (X)) (NX;V)—A(X) . —A(Y))
If X names Y, X is a label and Y is a node.
For labeled trees, -adjustments are necessary in the statements of

three earlier axioms:

ALY, (X) (~A(X) . ~Root (X) S(3!'Y) D(Y,X))

A8'., (X) (~A(X) . ~(aY) Fin (X,Y) XT'Z) B(X,Z))

A9'. (X)) (~A(X), . ~Term (X)——(2Y) Init (Y,X))

II. Axioms and Definitions - Second Order Calculus

In(;he aboye axioms we have used, as the underlying logic, a first-
order calculus with eqqality. By_wegkeningvthe restriction on the.under-
lyinghlogiq, we éan/pakelszand E,_rather than D and B, as primitive and
can use the inductive dgfinitions.

l
ki

(
' D(X,Y) . D(Y,Z)——>D(X, z))
3y
j

p2'. | D(X,¥)——5D(X,Y)

D4 .j—ﬁ(X,Y)——-aB(X,Y)
(B, 1) . B(Y,2——B(x,2)

4Here, and in later inductive definitions, we have omitted the clause
requiring that the relation being defined is the smallest relation
satisfying the defining conditions. It is the writing out of this
extra clause which requires second-order logical notation.
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Al, A2, A5, and A6 must then be replaced by axioms of intransitivity
and asymmetry for D and B.

Al'. (3X)(qY)(32) (D(X,Y) . D(Y,Z) . D(X,2))

a2'. (D@ (DE,D—~D(Y,X))

A5' and A6' are similarly replaced.

A. Labeled Ordered Tree

For an example of a labeled ordered tree, let #= {0,1,...,8,

'S','NP','VP','D','N','V"' ]}, where the nodes are 0,1,...,8, the labels
are 'S','NP','VP','D','N', and 'V', and the relations are given by the
following ordered pairs:

D: (0,1), (0,4), (1,2), (1,3), (4,5), (4,6), (6,7), (7,8)
(1,4), (2,3), (5,6), (7,8)

IN: ('s',0), ('NP',1), ('D',2), ('N',3), ('VE',4), ('V',5), ('NP',6),
. ('p',7), ('N',8)

Udl

In‘thé;;ustomary graphic representation of trees, symbols used as labels
répr;;ept nodes, D is represented by lines drawn downward from the cover-
iné node to the covered node, and P is represented by the plaéemént of

nddés:directly to the right of their immediate predecessors; the labeled

ordered tree given above is ordinarily drawn as

S

/N W
AN

D N .V
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B.. Unordered .and Ordered Sets of Trees

Unordered "sets of unordered trees and ordered sets of ordered
trees are easily represented as unordered ‘and ordered trees, respectively,
by‘the'addition'Of a new root covering the roots of the given trees
(with: the requisite additions to D and E.)

To deal with ordered sets of unordered trees or with unordered
sets of ordered trees, however, we would have to begin with the notion
of a forest (set of trees) by amending D1 and A3 to

D1'. Root (X) for ~—~(¥Y¥) D(Y,X)
X is a xroot if no node dominates X.

A3'.  (X) (TRoot(X)——3(HY) (Root(Y) . D(Y,X))), or

A3". (X) (~A(X) . ~~Root(X)——>(TY)(Root(Y) . D(Y¥,X)))
For every node X not.a root, there is a root which dominates X.

A forest is ordered by a new binary relation T which chain-
orders its roots. A forest is a tree if A3 is satisfied. Since this’
paper is primarily concerned with ordered sets of ordered trees, we will
not provide axioms involving.T;

C. Bar and Cap Relatiogé

In the present#tioﬁ ébové, Wé havevéméloyéd the ﬁotation of a

bar above a binary relation symbol to stand for the intransitive relation

corresponding to the given t;ansif;§;.one. R (X,Y) replaces/{(X,Y).
~(Z) R(X,2) . f«Z,Y))'fof aﬁy éransifive feiationff; or, conversely,
g;ven% intransitive we vdefin.é” the ancestral /:

AL 5(X,Y) ]

AZD) . AT, D—>R(X,2)
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In the remainder of the paper, we will provide definitioh-numbers and
readings for additional "bar-relations' without explicitly writing»out
the definitions. For example,

D7. L(X,Y) for B(X,Y) v (W)@EAV)(D(,X) . D(V,Y) . B(U,V))
X is to the left of Y if X precedes Y or if a domiﬁétor of X precedes
a dominator of Y.

D8. E(X,Y): X is immediately to the left of Y.

D9. Q(X,Y) for D(X,Y) v L(X,Y)

X Polishly precedes Y if X dominates Y or is to the left of Y.

D10. Q(X,Y): X is the Polish predecessor of Y.
When they exist, covers (A4), predecessors and successors (A7, A8),
and Polish predecessors and successors are unique.
Finally, to each relation (or predicate) f{ on the set of nodes, we

N
associate a cap relation ﬁ’obtained fronllfby replacing all nodes by

their unique labels.

ITI. Definitions for the Relativized Case

D(Z,X) . D(Z,Y) . D(X,Y)

[ad

s

r B(Z,X) . B(Z,Y) . B(X,Y)

parubaty

D11, DZ(X,Y) fo

D12, BZ(X,Y) o
The definitions of BZ’ EZ’ LZ’ ii, Qz, and az are, as before with
relativized notions, replacihg absolute ones. -

D13. Lext,(X) for D(Z,X) . ~(&) L,(¥,X)

D14, REth(X) for D(Z,X) . ~(3Y) LZ(X,Y)

A node X dominated by Z is left-extreme (right-extreme) relative’to z

if no node dominated by Z is to the left (right) of X.
D15. Isa, [%1,...,Xé] for Lextz(Xl) . Reth(Xn).

(1) (A<isn—sL, & 5, X))
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If Isaz E{l"“’xn]’ we say that [xl,...,xn] is a Z (or Z consists of
[xl,.,..,xn]).
YA
Dlé6a. Pran1 E(l,...,XtJ for
I,saZ E{I,...,Xr;l . (qY) (Root(Y) . B(Y,Z))

D16b, Praln2 E(l, .o ,Xn] for IsaZ E{l, co ,XIZI . Root(Z)

If Pran E{l’"”’xn]’ we say that E{l,...,xn:l is a proper analysis,5 of
type 1 or type 2.

For examples, consider the tree in Section II. The nodes 1 and 2
are left-extreme relative to 0, and thenodes 4, 6, and 8 are right-extreme
relative to 0. Node 1 consists of [2,3], node 4 consists of [5,6] and of
[5,7_,8]; node 6 consists of [7,8]. The following are proper analyses of
type 2: [14] [2,3,4]_, [1,5,6:], [1,5,7,8:], [2,3,5,6], and [2,3,5,7,8],

Dl7a. Teranlz [Xl"""xn:] for PranlZ [X1’°"°’Xn:}°

(i) (1S 1i<n—aTerm (x,))

D17b. Teran2 E(l,...,XrJ for Pran2 El,..g,xn:l.

(1) (1 =i £ n—Term (Xi))

E(ll’”"xn] is a terminal analysis (of type 1 or 2) if it is a proper
analysis (of the correct type) and if each node is terminal.

In the example above, [2,3,5,7,8:' is the only terminal analysis of
vtype 2, -Analyses of the first type are used for sets of trees; those of

the second type, for single trees.

IV, Finiteness Conditions

In a great many applications of trees, the required finiteness condi-~

tion is simply

5The term "proper analysis" was introduced by Chomsky (1955), p. 379.
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Cl. 2¢is finite.
Should we wish to speak of denumerable sets of finite trees, possible
conditions are
C2. The set of all nodes covered by the root is denumerable and is
well-ordered by B.
C3. For all X covered by the root, the set of all nodes dominated
by X is finite.
For denumerable sets of infinite trees, possible conditions are C2
and the following:
C4. Each node covers a finite number of nodes.
C5. If X dominates Y, there is a path from X to Y (where Xl,...,X

n

is a path if for every i, 1 < i <mn, X, , covers Xi).

V. Other Representations of Finite-ordered Trees

We now relate our discussion of trees to several representations
suggested elsewhere. We do this by providing definitions, within the

framework of the earlier part of this paper, for some additional terms

‘in this section.

A. The Polish Representation
If the labels of a tree are symbols, the tree can be represented
as the string of labels in their Polish order (beginning with the roqt),
where each label.Z bears as its subscript the number of nodes immediately
dominated by the node named by.47. The Polish representation of our example
is

SZNPZDONOVPZVONPZDONO
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B. The Labeled Bracketing Representation
D18. Fam [Y; Xl,Xz,...,Xn] for
Init (X, ¥) . Fin (X, ¥) . (1) (1 <iSna- P& _;, X))
[%1,...,Xn] is the family of Y if Xl‘is the initial of Y, Xn is the
final of Y, and the Xi's,are in the order of immediate succession.

To obtain a labeled bracketing for a given tree, we associate the

following. string to each..node with a non-empty family.
[yxl Ky oo xn]

where fZE’[%; Xl,...,XAJ. (Note that the variables now range over labels
and not nodes.) Beginning with the string S0 associated with the root,
we substitgpe‘foy eaqh label X in SO the string associated with X. This
process ingepeated wiﬁh egch resultant string, until no more substitution
is possibxegr The final resultant is the labeled bracketing associated
with the trée. The labeled bracketing f&r our example is

[s [NP D N [vp v e 0 ¥]]]

Algorithms for converting the Polish,representation into the labeled
bracketing, and vice versa, are well known (Rosenbloom,1950, Chapter 1V,
_Sectiop;l; Oettinger, 1961).

‘CtuéThe ""Rotated: Polish' Representation

For this representation, we define the level of a node as its
distance from the root.- The nodes.are.ordered first by increasing level,
then by a new kind of precedence on a given level,

D19. ( Root (X) — Le(X) = 0

D(X,Y): . Le(X) = n = Le(¥) = n+l,
The level of a root is 0; if the‘level of a node X is n, the level of any

node covered by X is n+l.
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D20. K(X,Y) for (Le(X) <Le(¥)) v
(Le(X) = Le(Y) . L(X,Y))
A node X is prior to a node Y if the level of X is less than the level

of Y, or if the levels are equal and X is to the left of Y.

D21. E(X,Y): X is immediately prior to Y.

The "rotated Polish'" representation is the string of labels in
their order (beginning with the root) where each label bears as its sub-
seript the number of immediately dominated nodes. For our example, this
is

SZNPZVPZDONOVONPZDONO

D. Representations Involving Complete Paths and Levels

The definition of path (C4 of Section III) can be formalized as

D22. Path [%1,...,X;] fpr (i) (1 <is<n-~- D(Xi-l’ Xi))
Similarly, we define
D23. Level [%1,...,X;] for i) (l1<is<n~=
Le(Xi_l) = Le(Xi) . K(Xi-l’ Xi))

and then complete path and complete level:

D24. CPath E{l,...,xn] for Root (X;) . Term (X ) . Path E(l,...,xn]

D25. CLevel [kl,...,xn] for Lext (Xl) . Rext (Xn) . Level [?1,...,Xn]

A tree is uniquely determined by the specification of CPath,

CLevel, and N; or of CPath, the sequence S, of all nodes in their'Polish

Q

order, and N; or of CLevel, the sequence SK of all nodes in the order of

their priority, and N,
D26. SQ[%I""’Xn] for Root (Xl) . Term (Xn) .. Rext (Xn).‘

(1) (1<isn-=QE& ,, X))
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D27. SK[%l""’XQ] for Root (Xl) . Term (Xn) . Rext (Xn).
i) (1<isn- E(xi_l, X;))
D28. ME{I,...,xn] for (n =1 . Root (X)) v Pranz[Xl,...,Xn]

The specification of M and N determines a unique tree if there
is no node which covers only one node (i.e., if M does not contain two
sequences differing in only one position); in this case, it is impossible
to determine which of the two nodes is the covering node and which is the
covered node. Either the further specification of CPath, CLevel, SQ’ SK’
or D, or a suitable ordering of M uniquely determines a tree.

Unique representation of trees with the cap relations is more
complicated. The following two trees are indistinguishable even if CPath,

ClLevel, and M are all specified:

S S
N\ é
i g S/// \\\S

A A

We have indicated in (A) and (C) gbove how representation by SQ and SK
can be made unique by the addition of subscripts.

In our example, CPath is true of the sequences [%, NP, ﬁ], [é,
NP, N], [s VP, v], [s, VP, NP, rﬂ, [s, VP, NP, N]; CLevel is true of [s}
[ﬁP, VP], [b, N, V, VP], [?, N].

E. Representation by Quadruples6
A tree can also be uniquely represented by giving all the

quadruples (X, Y, Z, W), where X is a node, Y the cover of X (or X

itself if X is a root), Z the immediate successor of X (or X itself if

For some éppliéétions of this and the following notations, see Iverson
(1962).
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X has no immediate successor), and W the label that names X. That is,

D29, F(X,Y,Z,W) for (D(Y,X) v (Root (X) . Y = X)) . (B(X,2) v

(~ (2V) B(X,V)

Z=X)

N(W,X)

F. Representation by Integer-Sequences

The nodes of a tree can be coded as sequences of positive integers

in the following way:

To the root X is assigned the sequence (1); to the

initial Y of X is assigned the sequence (1, 1) and to the immediate suc-

cessor of Y the sequence (1,2) and

by X; to the initial of Y is assigned the sequence (1, 1, 1), etc.

so on through the other nodes covered

To

formalize this process we first define two operations on finite sequences

of positive integers; the lower-case Latin variables in the definitions

range over positive integers,

the Greek variables over sequences.

D30. [X,X,,...,X] DR A5 AT NI
DI STUIIS S O ,Yh]
D31, [X,X,....x )" = [X,%,,....x X +1]
D32. Root (X) = Seq (X) = [1]
Seq (X) = « . Init (Y,X) = Seq (Y) = o [1]
Seq (X) = « ..E(X,Y) - Seq (Y) =«

In our example, the values of
Seq (2) =
Seq (3) =

Seq (5) =

L]

Seq (7)

Seq (8)

AMZ : ST/ nmc
Attachments: References

Distribution List

= [1,

’

Seq for the terminal nodes are

1]
2]
1]

[1, 1,
(1,
(1,

[1,

D

A. M. Zwdcky, Jr., and S, TIsard
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