
Stats 300b: Theory of Statistics Winter 2017

Lecture 1 – January 10

Lecturer: John Duchi Scribe: Xiaowei Wang

� Warning: these notes may contain factual errors

Reading: VDV Chapter 2.1, 2.2

Outline of lecture 1:

• Administrative basic stuff: As on the syllabus

• Overview of the course

• Basic theory of convergence of random variables

• Probability, Asymptotic Statistics and Distributions

Overview of the course: (In this course, we will be majorly dealing with big data sets, N →∞)
1. Convergence of random variables, random vectors, estimators and functions.
2. Understanding various notions of optimality and quality of estimators and tests. We will

not be talking about admissibility as it is too difficult. What we will try to do in this course is
to show that certain estimators are good under specific metrics or to prove that certain estimators
are unimprovable.

Part I of the course: Finite dimensional problems and statistic models

Example 1: One example problem is that we have Xi
iid∼ Pθ, Xi ∈ Rd, where d is fixed. We want

to understand the estimators of parameter θ ∈ Rd of distribution Pθ. ♣

Part II of the course: Optimality and comparisons of estimators
In this part, we will try to understand when an estimator θ̂ of θ is good or optimal. Also, we

will look into how to distinguish Pθ from Pθ+∆ when ∆ is small.

Part III of the course: Infinite dimensional or uniform laws of convergence for random
variables

1. Concentration inequalities
2. For functions F : X × θ → R, we will look into how

1

n

n∑
i=1

F (xi, θ)→ E[F (x, θ)]

uniformly in θ.
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Backgrounds needed: 1. Stat 300a (not strictly necessary).
2. Probability at stat 310a level.
e.g. Convergence of distribution, Helly Selection Theorem etc.
3. Analysis at Math 171 level.
e.g. Compactness, metric spaces etc.

Basic theory of convergence of random variables:

In this part we will go thourgh basic definitions, Continuous Mapping Theorem and Portman-
teau Lemma.

For now, assume Xi ∈ Rd, d <∞. We first give the definition of various convergence of random
variables.

Definition 0.1. (Convergence in probability) We call Xn
p→ X (sequence of random variables

converges to X) if
lim
n→∞

P(||Xn −X|| ≥ ε) = 0, ∀ε > 0

In a general metric space, with metrix ρ, the above definition becomes

lim
n→∞

P(ρ(Xn, X) ≥ ε) = 0, ∀ε > 0

Definition 0.2. (Weak convergence or convergence in distribution)
We say

Xn
d→ X

if for ∀x ∈ Rd,
P(Xn ≤ x)→ P(X ≤ x)

at all X ∈ Rd such that x→ P(X ≤ x) is continuous.

Note: In the above definition P(X ≤ x) = P(X ∈ (−∞, x1]× · · · × (−∞, xd])
We also have an alternative definition for convergence in distribution.

Definition 0.3.
Xn

d→ X

if for all bounded continuous function f ,

E[f(Xn)]→ E[f(X)]

Below is a definition of Lp convergence.

Definition 0.4. (Convergence in the pth mean)
We say that

Xn
Lp

→ X

if
lim
n→∞

E[||Xn −X||p] = 0

Finally, we give the definition of almost surely convergence for random variables.
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Definition 0.5. (Xn converges almost surely to X)
We say that

Xn
a.s.→ X

if
P( lim
n→∞

Xn 6= X) = 0

i.e.
P( lim
n→∞

||Xn −X|| ≥ ε) = 0, ∀ε > 0

Standard implications:

For the various types of convergence above, we have the following relationships.

Xn
a.s.→ X ⇒ Xn

p→ X ⇒ Xn
d→ X

Xn
Lp

→ X ⇒ Xn
p→ X

All the reversed directions may not be true.
Examples of almost surely convergence and convergence in probability can be found in the

strong law of large numbers and central limits theorem, as stated below.

Example 2: If Xi
iid∼ P , cov(Xi) = Σ = E[(Xi − µ)(Xi − µ)T ], µ = E[Xi], then

1

n

n∑
i=1

Xi
a.s.→ µ

1√
n

n∑
i=1

Xi
d→ N(0,Σ)

♣

Basic Convergence Theorems: (Chapter VDV for all proofs)

Theorem 1. (Continuous Mapping Theorem) Let g be continuous on a set B such that P(X ∈
B) = 1 then

Xn
p→ X ⇒ g(Xn)

p→ g(X)

Xn
a.s.→ X ⇒ g(Xn)

a.s.→ g(X)

Xn
d→ X ⇒ g(Xn)

d→ g(X)

For the heuristics of the third line: If g is continuous, then f ◦ g is continuous and bounded for
any continuous bounded f . Thus,

E[f(g(Xn))]→ E[f(g(x))]

Another important theorem we will need is Slutsky’s Theorem.
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Theorem 2. (Slutsky’s Theorem)
(1) If c is constant, then

Xn
d→ c⇔ Xn

p→ c

(2) If Xn
d→ X, d(Xn, Yn)

p→ 0, then

Yn
d→ X

(3) If Xn
d→ X, Yn

p→ c, then (
Xn

Yn

)
d→
(
X
c

)
The Slutsky’s theorem allows us to ignore low order terms in convergence. Also, the following

example shows that stronger impliations over part (3) may not be true.

Example 3: If Xn
d→ N(0, I), then −Xn

d→ N(0, I).
However, (

Xn

−Xn

)
d→
(

Z
−Z

)
where Z ∼ N(0, I) instead of N(0, I). ♣

Sketch of Proof
(1) The ”⇐ ” direction is trivial and given in the previous sections. For ”⇒ ” direction of the

theorem, take
f(x) = ||x− c|| ∧ 1 = min{||x− c||, 1}

then
E[||xn − c|| ∧ 1]→ 0

(2) Let f be 1-Lipschitz and bounded by 1, then we have

E[f(Yn)] ∈ E[f(Xn)]± E[d(Xn, Yn) ∧ 1]

Since E[f(Xn)]→ E[f(X)] and E[d(Xn, Yn) ∧ 1]→ 0, we have

E[f(Yn)]→ E[f(X)]

and thus Yn → X.
(3) We have (

Xn

Yn

)
−
(
X
c

)
=

(
0

Yn − c

)
p→ 0

By part (2), (
Xn

c

)
d→
(
X
c

)
⇒
(
Xn

Yn

)
d→
(
X
c

)
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Consequences of Slutsky’s Theorem:

If Xn
d→ X, Yn

d→ c, then

Xn + Yn
d→ X + c

YnXn
d→ cX

If c 6= 0,
Xn

Yn

d→ X

c

Proof Apply Continuous Mapping Theorem and Slutsky’s Theorem and the statements can be
proved.

Note: For the third line of convergence, if c ∈ Rd×d is a matrix, then (2) still holds. Moreover,
if det(c) 6= 0, (3) holds but

Y −1
n Xn

d→ c−1X

because c→ c−1 is continuous when det(c) 6= 0.

Example 4: (t-type statistics:) Let Xi
iid∼ P , Cov(Xi) = Γ > 0, define

µn =
1

n

n∑
i=1

Xi

Sn =
1

n

n∑
i=1

(Xi − µn)(Xi − µn)T

Tn =
1√
n
S
− 1

2
n

n∑
i=1

(Xi − µ)

Then Tn
d→ N(0, I).

The reason is that
µn

p→ E[X]

and
Sn

p→ Γ

Apply Slutsky’s Theorem,

Tn −
1√
n

Γ−
1
2

n∑
i=1

(Xi − µ)
p→ 0

♣
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Big-O Notation: (in probability)
In this part we introduce the big-o and little-o notation in probbility.
Let Xn be random vectors, Rn be random variables. We say that Xn = op(Rn) if ∃ random

vectors Yn such that
Xn = YnRn

Yn
p→ 0

This is called ”little o-pea”.
We say that Xn = Op(Rn) if ∃ random vectors Yn where Yn = Op(1). Yn = Op(1) means that

means {Yn} is uniformly tight. i.e.

lim sup
M→∞

sup
n

P(||Yn|| ≥M) = 0

or ∀ε > 0, ∃ M such that
P(||Yn|| ≥M) ≤ ε, ∀ n

Comsequences:
With the definition above, we can get the following properties and lemma.

op(1) + op(1) = op(1)

Op(1) + op(1) = Op(1)

Op(1) +Op(1) = Op(1)

Lemma 3. Let function R : Rd → Rk, with R(0) = 0. Let Xn
p→ 0, then

(1) If R(h) = o(||h||p) as h→ 0, then

R(Xn) = op(||Xn||p)

(2) If R(h) = O(||h||p) as h→ 0, then

R(Xn) = Op(||Xn||p)

Proof Define

g(h) =


R(h)

||h||p
, if h 6= 0

0, if h = 0

(1) Then g(h) → 0 as h → 0. Thus, g is continuous at 0 and Xn
p→ 0. Apply Continuous

Mapping Theorem(CMT), we get

g(Xn)
p→ 0

(2) ∃ M , δ > 0 such that ||g(h)|| ≤M , ∀||h|| ≤ δ. Then

Φ(||g(Xn)|| > M) ≤ P(||Xn|| ≥ δ)→ 0

so
g(Xn) = Op(1)
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