Fostering Collaborative Research in Physics & Engineering

HEPL, founded in 1947 as Stanford's first Independent Laboratory, provides facilities and administrative structure enabling faculty to do research that spans across the boundaries of a single department or school—for example: physics & engineering or physics & biology/medicine. The Independent Laboratory concept, in many ways unique to Stanford, facilitates world-class research and teaching.
For more information about HEPL research, see the Research page.

News in Brief

New HEPL Director Sarah Church

Left: HEPL doctoral candidate, Karthik
Balakrishnan holds a spherical proof
mass from his UV-LED charge control
experiment in the lab. Right: A Russian-
Ukranian Dnepr rocket launches
Karthik's experiment, housed in a Saudi
Arabian satellite, into orbit.

June 19, 2014

HEPL PhD Candidate’s Charge-Control Experiment is Flight Certified at NASA Ames, Integrated into a Saudi Arabian Satellite and Launched into Orbit Aboard a Russian-Ukrainian Rocket

Given the current political state of the world, you might think that the headline above describes a doctoral candidate’s pipe dream. However, back on June 19, 2014, this satellite launch event actually happened!

Karthik Balakrishnan is a doctoral student in the Aeronautics and Astronautics Department of Stanford’s School of Engineering. His research on charge control systems for satellite guidance is sponsored by HEPL and the Center for Excellence in Aeronautics and Astronautics (a collaboration between Stanford and the King Abdulaziz City for Science and Technology in Saudi Arabia), and it is being carried out in the laboratory of Robert Byer, Professor of Lasers and Optics in Stanford’s Department of Applied Physics. Professor Byer is also a former director of HEPL. Mr. Balakrishnan’s experimental apparatus uses low-power, ultraviolet frequency LEDs to remove electrostatic charge buildup from a baseball-sized, gold-coated sphere comprising the guidance control mechanism that enables a satellite to circle the Earth (or another planet or the Sun) as a gravitational reference sensor (GRS).

Read Full Story...

South Pole Keck Observatory telescopes

BICEP2 telescope (foreground) and
the South Pole Telescope
( background). Photo: Steffen Richter,
Harvard University

March 17, 2014

Detection of Gravitational Waves by HEPL/SLAC Professor Chao-Lin Kuo and Colleagues of the BICEP2 Experiment, Supports the Cosmic Inflation Theory of Stanford Physicist Andrei Linde

Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of today's best telescopes. All this, of course, has just been theory.

Researchers from the BICEP2 (Background Imaging of Cosmic Extragalactic Polarization) collaboration today announced the first direct evidence supporting this theory, known as "cosmic inflation." Their data also represent the first images of gravitational waves, or ripples in space-time. These waves have been described as the "first tremors of the Big Bang." Finally, the data confirm a deep connection between quantum mechanics and general relativity.

"This is really exciting. We have made the first direct image of gravitational waves, or ripples in space-time across the primordial sky, and verified a theory about the creation of the whole universe," said Chao-Lin Kuo, an assistant professor of physics at Stanford/HEPL and SLAC National Accelerator Laboratory, and a co-leader of the BICEP2 collaboration. Read Full Story...