Calendar

Sep
16
Wed
2020
IBIIS & AIMI Seminar - Judy Gichoya, MD @ Zoom - See Description for Zoom Link
IBIIS & AIMI Seminar – Judy Gichoya, MD
Sep 16 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
IBIIS & AIMI Seminar - Judy Gichoya, MD @ Zoom - See Description for Zoom Link

Judy Gichoya, MD
Assistant Professor
Emory University School of Medicine

Measuring Learning Gains in Man-Machine Assemblage When Augmenting Radiology Work with Artificial Intelligence

Abstract
The work setting of the future presents an opportunity for human-technology partnerships, where a harmonious connection between human-technology produces unprecedented productivity gains. A conundrum at this human-technology frontier remains – will humans be augmented by technology or will technology be augmented by humans? We present our work on overcoming the conundrum of human and machine as separate entities and instead, treats them as an assemblage. As groundwork for the harmonious human-technology connection, this assemblage needs to learn to fit synergistically. This learning is called assemblage learning and it will be important for Artificial Intelligence (AI) applications in health care, where diagnostic and treatment decisions augmented by AI will have a direct and significant impact on patient care and outcomes. We describe how learning can be shared between assemblages, such that collective swarms of connected assemblages can be created. Our work is to demonstrate a symbiotic learning assemblage, such that envisioned productivity gains from AI can be achieved without loss of human jobs.

Specifically, we are evaluating the following research questions: Q1: How to develop assemblages, such that human-technology partnerships produce a “good fit” for visually based cognition-oriented tasks in radiology? Q2: What level of training should pre-exist in the individual human (radiologist) and independent machine learning model for human-technology partnerships to thrive? Q3: Which aspects and to what extent does an assemblage learning approach lead to reduced errors, improved accuracy, faster turn-around times, reduced fatigue, improved self-efficacy, and resilience?

Zoom: https://stanford.zoom.us/j/93580829522?pwd=ZVAxTCtEdkEzMWxjSEQwdlp0eThlUT09

Nov
18
Wed
2020
IBIIS & AIMI Seminar: Deep Tomographic Imaging @ Zoom: https://stanford.zoom.us/j/96731559276?pwd=WG5zcEFwSGlPcDRsOUFkVlRhcEs2Zz09
IBIIS & AIMI Seminar: Deep Tomographic Imaging
Nov 18 @ 12:00 pm – 1:00 pm Zoom: https://stanford.zoom.us/j/96731559276?pwd=WG5zcEFwSGlPcDRsOUFkVlRhcEs2Zz09

Ge Wang, PhD
Clark & Crossan Endowed Chair Professor
Director of the Biomedical Imaging Center
Rensselaer Polytechnic Institute
Troy, New York

Abstract:
AI-based tomography is an important application and a new frontier of machine learning. AI, especially deep learning, has been widely used in computer vision and image analysis, which deal with existing images, improve them, and produce features. Since 2016, deep learning techniques are actively researched for tomography in the context of medicine. Tomographic reconstruction produces images of multi-dimensional structures from externally measured “encoded” data in the form of various transforms (integrals, harmonics, and so on). In this presentation, we provide a general background, highlight representative results, and discuss key issues that need to be addressed in this emerging field.

About:
AI-based X-ray Imaging System (AXIS) lab is led by Dr. Ge Wang, affiliated with the Department of Biomedical Engineering at Rensselaer Polytechnic Institute and the Center for Biotechnology and Interdisciplinary Studies in the Biomedical Imaging Center. AXIS lab focuses on innovation and translation of x-ray computed tomography, optical molecular tomography, multi-scale and multi-modality imaging, and AI/machine learning for image reconstruction and analysis, and has been continuously well funded by federal agencies and leading companies. AXIS group collaborates with Stanford, Harvard, Cornell, MSK, UTSW, Yale, GE, Hologic, and others, to develop theories, methods, software, systems, applications, and workflows.

Apr
30
Fri
2021
Racial Equity Challenge: Race in society @ Zoom
Racial Equity Challenge: Race in society
Apr 30 @ 12:00 pm – 1:00 pm Zoom
Racial Equity Challenge: Race in society @ Zoom

Targeted violence continues against Black Americans, Asian Americans, and all people of color. The department of radiology diversity committee is running a racial equity challenge to raise awareness of systemic racism, implicit bias and related issues. Participants will be provided a list of resources on these topics such as articles, podcasts, videos, etc., from which they can choose, with the “challenge” of engaging with one to three media sources prior to our session (some videos are as short as a few minutes). Participants will meet in small-group breakout sessions to discuss what they’ve learned and share ideas.

Please reach out to Marta Flory, flory@stanford.edu with questions. For details about the session, including recommended resources and the Zoom link, please reach out to Meke Faaoso at mfaaoso@stanford.edu.

Jul
16
Fri
2021
Radiology-Wide Research Conference @ Zoom – Details can be found here: https://radresearch.stanford.edu
Radiology-Wide Research Conference
Jul 16 @ 12:00 pm – 1:00 pm Zoom – Details can be found here: https://radresearch.stanford.edu
Radiology-Wide Research Conference @ Zoom – Details can be found here: https://radresearch.stanford.edu

Radiology Department-Wide Research Meeting

• Research Announcements
• Mirabela Rusu, PhD – Learning MRI Signatures of Aggressive Prostate Cancer: Bridging the Gap between Digital Pathologists and Digital Radiologists
• Akshay Chaudhari, PhD – Data-Efficient Machine Learning for Medical Imaging

Location: Zoom – Details can be found here: https://radresearch.stanford.edu
Meetings will be the 3rd Friday of each month.

 

Hosted by: Kawin Setsompop, PhD
Sponsored by: the the Department of Radiology

Aug
3
Tue
2021
2021 AIMI Symposium + BOLD-AIR Summit @ Virtual Livestream
2021 AIMI Symposium + BOLD-AIR Summit
Aug 3 @ 8:00 am – Aug 4 @ 3:00 pm Virtual Livestream
2021 AIMI Symposium + BOLD-AIR Summit @ Virtual Livestream

Stanford AIMI Director Curt Langlotz and Co-Directors Matt Lungren and Nigam Shah invite you to join us on August 3 for the 2021 Stanford Center for Artificial Intelligence in Medicine and Imaging (AIMI) Symposium. The virtual symposium will focus on the latest, best research on the role of AI in diagnostic excellence across medicine, current areas of impact, fairness and societal impact, and translation and clinical implementation. The program includes talks, interactive panel discussions, and breakout sessions. Registration is free and open to all.

 

Also, the 2nd Annual BiOethics, the Law, and Data-sharing: AI in Radiology (BOLD-AIR) Summit will be held on August 4, in conjunction with the AIMI Symposium. The summit will convene a broad range of speakers in bioethics, law, regulation, industry groups, and patient safety and data privacy, to address the latest ethical, regulatory, and legal challenges regarding AI in radiology.

 

REGISTER HERE

Sep
10
Fri
2021
CME Grand Rounds Sanjiv Sam Gambhir Lectureship - Simon Cherry, PhD @ LKSC 101/102 & Zoom - See Description for Zoom Link
CME Grand Rounds Sanjiv Sam Gambhir Lectureship – Simon Cherry, PhD
Sep 10 @ 12:00 pm – 1:00 pm LKSC 101/102 & Zoom - See Description for Zoom Link
CME Grand Rounds Sanjiv Sam Gambhir Lectureship - Simon Cherry, PhD @ LKSC 101/102 & Zoom - See Description for Zoom Link

CME Grand Rounds Sanjiv Sam Gambhir Lectureship – “Imaging at the Speed of Light:  Innovations in Positron Emission Tomography”

 

Simon R. Cherry, PhD
Professor
Biomedical Engineering & Radiology
UC Davis

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT

Positron emission tomography (PET) allows for sensitive and quantitative measurement of physiology, metabolism and molecular targets noninvasively in the human body.  However, typical clinical PET scanners capture less than 1% of the available signal produced in the body.  PET scanners also are not currently capable of precisely determining the location at which a particular decay occurs. These limitations present opportunities for further innovation that ultimately will impact molecular imaging research and diagnostic imaging with PET.  This presentation focuses on 1) total-body PET imaging which greatly improves signal collection, allowing radiotracer kinetics to be assessed across the entire human body for the first time, and 2) the development of detector technologies that have a timing precision of ~ 30 picoseconds, enabling direct localization of radiotracer decays without tomographic reconstruction.

 

BIO

Simon R. Cherry, Ph.D.  received his B.Sc.(Hons) in Physics with Astronomy from University College London in 1986 and a Ph.D. in Medical Physics from the Institute of Cancer Research, University of London in 1989.  After a postdoctoral fellowship at UCLA, he joined the faculty in the Department of Molecular and Medical Pharmacology, also at UCLA, in 1993. In 2001, Dr. Cherry joined UC Davis and established the Center for Molecular and Genomic Imaging, which he directed from 2004-2016. Currently Dr. Cherry is Distinguished Professor in the Departments of Biomedical Engineering and Radiology at UC Davis.

Dr. Cherry’s research interests center around biomedical imaging and in particular the development and application of in vivo molecular imaging systems.  His major accomplishments have been in developing systems for positron emission tomography (PET), in particular the invention of the microPET technology that was subsequently widely adopted in academia and industry and as co-leader of the EXPLORER consortium which has developed the world’s first total-body PET scanner.  He also has contributed to detector technology innovations for PET, conducted early biomedical studies using Cerenkov luminescence, and developed the first proof-of-concept hybrid PET/MRI (magnetic resonance imaging) systems.

Dr. Cherry is a founding member of the Society of Molecular Imaging and an elected fellow of six professional societies, including the Institute for Electronic and Electrical Engineers (IEEE) and the Biomedical Engineering Society (BMES). He served as Editor-in-Chief of the journal Physics in Medicine and Biology from 2011-2020. Dr. Cherry received the Academy of Molecular Imaging Distinguished Basic Scientist Award (2007), the Society for Molecular Imaging Achievement Award (2011) and the IEEE Marie Sklodowska-Curie Award (2016).   In 2016, he was elected as a member of the National Academy of Engineering and in 2017 he was elected to the National Academy of Inventors.  Dr. Cherry is the author of more than 240 peer-reviewed journal articles, review articles and book chapters in the field of biomedical imaging. He is also lead author of the widely-used textbook “Physics in Nuclear Medicine”.

Sep
22
Wed
2021
IBIIS & AIMI Seminar: Seeing the Future from Images: ML-Based Models for Cancer Risk Assessment @ Zoom: https://stanford.zoom.us/j/99474772502?pwd=NEQrQUQ0MzdtRjFiYU42TCs2bFZsUT09
IBIIS & AIMI Seminar: Seeing the Future from Images: ML-Based Models for Cancer Risk Assessment
Sep 22 @ 11:00 am – 12:00 pm Zoom: https://stanford.zoom.us/j/99474772502?pwd=NEQrQUQ0MzdtRjFiYU42TCs2bFZsUT09

 

Regina Barzilay, PhD
School of Engineering Distinguished Professor for AI and Health
Electrical Engineering and Computer Science Department
AI Faculty Lead at Jameel Clinic for Machine Learning in Health
Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Abstract:
In this talk, I will present methods for future cancer risk from medical images. The discussion will explore alternative ways to formulate the risk assessment task and focus on algorithmic issues in developing such models. I will also discuss our experience in translating these algorithms into clinical practice in hospitals around the world.

Sep
24
Fri
2021
CME Grand Rounds Diversity Lectureship - Jennifer L. Eberhardt, PhD @ Zoom - See Description for Zoom Link
CME Grand Rounds Diversity Lectureship – Jennifer L. Eberhardt, PhD
Sep 24 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds Diversity Lectureship - Jennifer L. Eberhardt, PhD @ Zoom - See Description for Zoom Link

CME Grand Rounds Diversity Lectureship – Topic: TBD

 

Jennifer L. Eberhardt, PhD
Professor
Psychology
Stanford University

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!

Sep
27
Mon
2021
2021 IBIIS & AIMI Virtual Retreat
Sep 27 @ 1:00 pm – 4:30 pm https://ibiis.stanford.edu/events/retreat/2021Hybrid.html

Keynote:

Self-Supervision for Learning from the Bottom Up

Why do self-supervised learning? A common answer is: “because data labeling is expensive.” In this talk, I will argue that there are other, perhaps more fundamental reasons for working on self-supervision. First, it should allow us to get away from the tyranny of top-down semantic categorization and force meaningful associations to emerge naturally from the raw sensor data in a bottom-up fashion. Second, it should allow us to ditch fixed datasets and enable continuous, online learning, which is a much more natural setting for real-world agents. Third, and most intriguingly, there is hope that it might be possible to force a self-supervised task curriculum to emerge from first principles, even in the absence of a pre-defined downstream task or goal, similar to evolution. In this talk, I will touch upon these themes to argue that, far from running its course, research in self-supervised learning is only just beginning.

Oct
8
Fri
2021
CME Grand Rounds - Christoph L. Lee, MD, MS, MBA @ Zoom - See Description for Zoom Link
CME Grand Rounds – Christoph L. Lee, MD, MS, MBA
Oct 8 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds - Christoph L. Lee, MD, MS, MBA @ Zoom - See Description for Zoom Link

CME Grand Rounds – “Community Based Partnered Research:  Revisiting a Critical Concept for Radiology”

 

Christoph L. Lee, MD, MS, MBA
Professor
Radiology
University of Washington

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!