bose_moin14

Summary

A dynamic slip boundary condition for wall-modeled large-eddy simulation. S.T. Bose and P. Moin. Physics of Fluids, 26(015104), 2014. (URL)

Abstract

Wall models for large-eddy simulation (LES) are a necessity to remove the prohibitive resolution requirements of near-wall turbulence in high Reynolds turbulent flows. Traditional wall models often rely on assumptions about the local state of the boundary layer (e.g., logarithmic velocity profiles) and require a priori prescription of tunable model coefficients. In the present study, a slip velocity boundary condition for the filtered velocity field is obtained from the derivation of the LES equations using a differential filter. A dynamic procedure for the local slip length is additionally formulated making the slip velocity wall model free of any a priori specified coefficients. The accuracy of the dynamic slip velocity wall model is tested in a series of turbulent channel flows at varying Reynolds numbers and in the LES of a National Advisory Committee for Aeronautics (NACA) 4412 airfoil at near-stall conditions. The wall-modeled simulations are able to accurately predict mean flow characteristics, including the formation of a trailing-edge separation bubble in NACA 4412 configuration. The validation cases demonstrate the effectiveness of this wall-modeling approach in both attached and separated flow regimes.

Bibtex entry

@ARTICLE { bose_moin14,
    AUTHOR = { S.T. Bose and P. Moin },
    TITLE = { A dynamic slip boundary condition for wall-modeled large-eddy simulation },
    JOURNAL = { Physics of Fluids },
    VOLUME = { 26 },
    NUMBER = { 015104 },
    YEAR = { 2014 },
    ABSTRACT = { Wall models for large-eddy simulation (LES) are a necessity to remove the prohibitive resolution requirements of near-wall turbulence in high Reynolds turbulent flows. Traditional wall models often rely on assumptions about the local state of the boundary layer (e.g., logarithmic velocity profiles) and require a priori prescription of tunable model coefficients. In the present study, a slip velocity boundary condition for the filtered velocity field is obtained from the derivation of the LES equations using a differential filter. A dynamic procedure for the local slip length is additionally formulated making the slip velocity wall model free of any a priori specified coefficients. The accuracy of the dynamic slip velocity wall model is tested in a series of turbulent channel flows at varying Reynolds numbers and in the LES of a National Advisory Committee for Aeronautics (NACA) 4412 airfoil at near-stall conditions. The wall-modeled simulations are able to accurately predict mean flow characteristics, including the formation of a trailing-edge separation bubble in NACA 4412 configuration. The validation cases demonstrate the effectiveness of this wall-modeling approach in both attached and separated flow regimes. },
    URL = { https://dx.doi.org/10.1063/1.4849535 },
}