CS109
Course Resources
Syllabus
Schedule
Honor Code
Office Hours
Course Reader
Python Review
Latex Cheat Sheet
Lecture Videos
Challenge
Midterm
Final
Problem Sets
1. Counting
2. Core Probability
3. Random Variables
4. Probabilistic Models
5. Models, Beta, and CLT
6. Uncertainty Theory
7. Machine Learning
Lecture
1. Welcome
2. Combinatorics
3. Probability
4. Conditioning and Bayes
5. Independence
6. Random Variables & Binomial
7. Moments
8. Poisson
9. Continuous
10. Gaussian
11. Probabilistic Models
12. Inference
13. General Inference
14. Multinomial
15. Beta
16. Adding Variables
17. Sampling
18. Bootstrapping
19. Algorithm Analysis
20. Information Theory
21. Maximum Likelihood Estimation
22. Logistic Regression
Section
Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Section Reassign Form
PEP
Midterm
Final
Schedule
Lecture 15: Beta
Feb 12th, 2025
Nvidia Auditorium, 3p
Lecture Materials
Slides PDF
Lecture Code
Reading
Learning Goals
Know how to think about uncertainty in probabilities