Quadratic discriminant analysis (QDA)#

Fig 4.9

Fig. 19 Comparison of LDA and QDA boundaries#

  • The assumption that the inputs of every class have the same covariance \(\mathbf{\Sigma}\) can be quite restrictive.

  • Bayes boundary (\(-- -- --\)), LDA (\(\cdot\cdot\cdot\)), QDA (\(--------\)).


QDA: multivariate normal with differing covariance#

  • In quadratic discriminant analysis we estimate a mean \(\hat\mu_k\) and a covariance matrix \(\hat{\mathbf \Sigma}_k\) for each class separately.

  • Given an input, it is easy to derive an objective function: $\(\delta_k(x) = \log \pi_k - \frac{1}{2}\mu_k^T \mathbf{\Sigma}_k^{-1}\mu_k + x^T \mathbf{\Sigma}_k^{-1}\mu_k - \frac{1}{2}x^T \mathbf{\Sigma}_k^{-1}x -\frac{1}{2}\log |\mathbf{\Sigma}_k|\)$

  • This objective is now quadratic in \(x\) and so the decision boundaries are 0s of quadratic functions.