Transport Database description (View the transport data file)

The FFCM transport database originates from the database distributed in the Sandia Transport subroutine library [1].

The library is appended with selected pairs of diffusion coefficients from [2-7]. These are mostly pairs involving light species (H and H2). For these species, the repulsive part of the Lennard-Jones (L-J) 12-6 potential function is known to be too stiff to accurately model diffusion coefficients at high temperatures [8]. For this reason, the diffusion coefficients of relevant, key pairs should be directly modeled without resorting to the use of tabulated L-J 12-6 collision integrals, as discussed in [2,3].

Within the framework of Sandia PREMIX [9] and similar codes, implementing these updates is quite straightforward. Selected pairs of diffusion coefficients in the form of polynomial coefficients are adopted. These coefficients are obtained from the potential functions directly calculated from high-level quantum chemistry and quantum scattering calculations. The temperature dependence of binary diffusion coefficients at 1 atm is parameterized as

$$\ln D_{ij}=d_0+d_1\ln T+d_2(\ln T)^2+d_3(\ln T)^3$$

Where $d_k$ (k=0, 3) is the polynomial coefficients (see Table 1 for selected pairs. For the mixture-averaged transport formulation, the above polynomial is sufficient for simulations. The multi-component transport formulation as well as the computation of thermal diffusion ratio in both transport formulations, however, requires the input of the ratios of collision integrals [1,10]:

$$A_{ij}^*=\Omega_{ij}^{(2,2)}/(2\Omega_{ij}^{(1,1)})$$ $$B_{ij}^*=(5\Omega_{ij}^{(1,2)}-\Omega_{ij}^{(1,3)})/(3\Omega_{ij}^{(1,1)})$$ $$C_{ij}^*=\Omega_{ij}^{(1,2)}/(3\Omega_{ij}^{(1,1)})$$

The above ratios are also parameterized as

$$A_{ij}^*=a_0+a_1\ln T_{ij}^*+a_2(\ln T_{ij}^*)^2+a_3(\ln T_{ij}^*)^3$$ $$B_{ij}^*=b_0+a_1\ln T_{ij}^*+b_2(\ln T_{ij}^*)^2+b_3(\ln T_{ij}^*)^3$$ $$C_{ij}^*=c_0+c_1\ln T_{ij}^*+c_2(\ln T_{ij}^*)^2+c_3(\ln T_{ij}^*)^3$$

where $a_k$, $b_k$, and $c_k$ (k=0, 3) are the polynomial coefficients whose values are found also in Table 1, $T_{ij}^*$ is the reduced temperature $T_{ij}^* =kT/\varepsilon_{ij}$ and $\varepsilon_{ij}$ is the well depth.

When implementing non-L-J potentials for the key pairs, however, $T_{ij}^*$ is undefined. Therefore, the tabulated coefficients for $A_{ij}^*$, $B_{ij}^*$, and $C_{ij}^*$ were calculated for the actual temperature $T_{ij}$ instead, and special handling was added for these coefficients in the transport data interpreter code.

Table 1. Summary of polynomial coefficients for updated binary diffusion coefficients and ratios of collision integrals

Pair

Dij

 

 

 

 

Aij*

 

 

d0

d1

d2×102

d3×103

Ref.a

a0'

a1'×10

a2'×102

a3'×103

H-He

-9.6699

2.1002

-7.7060

5.4611

[2]

0.9300

0.8015

-0.9473

0.6346

H-Ar

-9.0511

1.6161

-0.2878

1.3054

[3]

0.6882

1.5342

-1.7700

0.8880

H-H2

-11.7498

3.1507

-25.7472

15.8916

[2]

0.6857

1.5339

-1.3674

0.3221

H-O2

-11.0410

2.4043

-10.2797

5.3264

[4]

1.2925

-1.8499

4.2710

-2.6082

H-N2

-13.2703

3.5187

-29.6649

16.4314

[5]

1.3387

-0.8545

0.9229

0.0441

H2-He

-12.7513

3.4244

-28.4726

15.9317

[2]

0.5953

2.0781

-2.4848

1.0013

H2-N2

-10.9994

2.2026

-8.1155

4.4061

[6]

1.3165

-1.3202

2.4162

-1.2026

H2-H2

-9.9610

2.0560

-6.4977

4.1368

[7]

1.3221

-1.2075

2.2047

-1.0596

N-H2

-11.0630

2.3500

-10.3715

5.8031

[4]

1.3158

-1.3458

2.4925

-1.1910

N-N2

-14.5098

3.2704

-22.4113

10.7044

[4]

1.2855

-2.0527

3.7964

-2.3074

O-O2

-14.6025

3.2905

-22.3516

10.6864

[4]

1.2983

-1.7305

3.6353

-2.0673

N2-N2

-16.5175

4.0527

-34.5936

16.7101

[6]

1.3530

-0.5405

-0.1134

0.5980

 

Bij*

Cij*

 

b0'

b1'×10

b2'×102

b3'×103

 

c0'

c1'×10

c2'×102

c3'×103

H-He

0.8764

1.0238

-1.4803

0.9880

 

1.0600

-0.5993

1.0265

-0.7345

H-Ar

0.6968

1.7158

-2.4357

1.3655

 

0.6703

1.1433

-1.5041

0.5188

H-H2

0.6780

1.3747

-1.1059

0.1658

 

0.6512

0.8216

-0.4389

-0.2736

H-O2

1.9927

-2.7220

2.0595

0.1644

 

1.2757

-2.2786

4.4500

-2.7462

H-N2

-2.2030

15.9160

-25.3394

13.6448

1.2562

-2.6882

5.5776

-3.4083

H2-He

0.6771

1.3579

-1.1425

0.1889

0.6519

0.8365

-0.4450

-0.2599

H2-N2

1.9423

-4.1911

6.7119

-3.3685

1.2907

-1.9301

3.3990

-1.9684

H2-H2

3.6314

-11.3979

16.9421

-8.1268

1.2981

-1.7814

2.9567

-1.7020

N-H2

6.9907

-25.9650

37.7202

-17.8856

1.2855

-2.0527

3.7964

-2.3074

N-N2

1.3147

-1.2582

2.0939

-0.9124

1.1853

-0.0110

-0.6790

0.8244

O-O2

9.9616

-39.5289

58.2753

-28.2893

1.2659

-2.4767

4.9470

-3.0093

N2-N2

3.6149

-10.8631

15.4819

-7.2344

 

1.2562

-2.6882

5.5776

-3.4083

a The fits are based on diffusion coefficients directly taken from the referenced paper, or those computed using the potential functions given in the referenced paper.

 

The coefficients listed in the above table are appended to the transport database as follows:

We will be working with Reaction Design to implement the above formulations and transport parameters into ChemKin. In the meantime, a user has two options:

a) Delete the block after the “END” line and use the original transport database. For hydrogen-air mixtures at 1 bar pressure and 298 K unburned gas temperature, the thus-calculated laminar flame speed values are 3-4% lower than those using the updated transport database. For methane or other hydrocarbon flames, the updated diffusion coefficients produce little changes in the simulated laminar flame speed.

b) Write to Hai Wang to obtain a version of the ChemKin/TranFit/PreMix codes that works with the updated transport database.

References

[1]  Kee R, Dixon-Lewis G, Warnatz J, Coltrin M, Miller J. Sandia report SAND86-8246. Sandia National Laboratories, New Mexico. 1986.

[2]  Middha P, Yang B, Wang H. A first-principle calculation of the binary diffusion coefficients pertinent to kinetic modeling of hydrogen/oxygen/helium flames. Proc Combust Inst. 2002;29:1361-9.

[3]  Middha P, Wang H. First-principle calculation for the high-temperature diffusion coefficients of small pairs: The H-Ar case. Combust Theor Model. 2005;9:353-63.

[4]  Stallcop JR, Partridge H, Levin E. Effective potential energies and transport cross sections for atom-molecule interactions of nitrogen and oxygen. Phys Rev A. 2001;64:042722.

[5]  Stallcop JR, Partridge H, Walch SP, Levin E. H–N2 interaction energies, transport cross sections, and collision integrals. J Chem Phys. 1992;97:3431-6.

[6]  Stallcop JR, Partridge H, Levin E. Effective potential energies and transport cross sections for interactions of hydrogen and nitrogen. Phys Rev A. 2000;62:062709.

[7]  Stallcop JR, Levin E, Partridge H. Transport properties of hydrogen. J Thermophys Heat Transfer. 1998;12:514-9.

[8]  Paul P, Warnatz J. A re-evaluation of the means used to calculate transport properties of reacting flows. Symp (Int) Combust. 1998;27:495-504.

[9]  Kee, RJ, Grcar, JF, Smooke, MD, Miller JA. PREMIX: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Sandia Report SAND85-8240, 1985.

[10]  Dixon-Lewis, G. Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems. Proc Roy Soc A 1968; 307: 111-35.