Normal Theory#
Download#
Multivariate normal#
Linear transformations#
Mahalanobis distance#
If \(\Sigma > 0\) then
If \(\Sigma\) degenerate,
Defined even if \(X-\mu\) is not in \(\text{row}(\Sigma)\), but first projects onto \(\text{row}(\Sigma)\).
Quadratic forms#
What is distribution of \((X-\mu)^TQ(X-\mu)\) (with \(Q\) symmetric)
Above \(W_j \sim \chi^2_1\) independently, \(\lambda_j(A), 1 \leq i \leq p\) are the eigenvalues of \(A\).
Here \(Q^{1/2} = UD^{1/2}U^T\) where \(Q=UDU^T\). Could also use any square-root of \(Q\): \(AA^T=Q\)…
Normal data matrix (Section 3.3 of MKB)#
Normal data matrix#
Normal data matrix#
IID rows will have \(\Sigma_R = I_{n \times n}\)
Mean: \(M \in \mathbb{R}^{n \times p}\)
Covariance: a Kronecker product
Not the most general covariance structure – separates operations on rows from operations on columns.
Kronecker product#
\(A \otimes B\) a tensor…
Can be thought of as a linear map \(\mathbb{R}^{n \times p} \to \mathbb{R}^{n \times p}\)
Defined by
\(E_{ij} \in \mathbb{R}^{n \times p}\) is one-hot: selects \((i,j)\) entry of a matrix.
Linear transformations of normal data matrices#
Covariance#
Independence#
\(AXB\) and \(A'XB'\) are independent if either
\(A \Sigma_R (A')^T=0\) or
\(B^T \Sigma_C B' =0\).
Wishart distribution (Section 3.4 of MKB)#
Wishart distribution#
Suppose \(X \sim N(0, I_{n \times n} \otimes \Sigma_{p \times p})\)
Define
Degrees of freedom: \(n\).
Standard Wishart: \(\Sigma = I_{p \times p}\).
Operations with Wisharts#
Linear transformation#
Let \(W \sim \text{Wishart}(n, \Sigma)\).
Addition#
Let \(M_1 \sim \text{Wishart}(n_1, \Sigma), M_2 \sim \text{Wishart}(n_2, \Sigma)\) be independent
Quadratic forms#
Let \(\mathbb{R}^{n \times p} \ni X \sim N(0, I \otimes \Sigma)\)
Matrices \(W_j \sim \text{Wishart}(1, \Sigma)\) independently.
Special case: projections#
If \(P\) is a projection (i.e. \(P^2=P, P=P^T\)) then
Example#
Let \(R=I - \frac{1}{n}11^T\) be the centering matrix and \(X \sim N(1\mu^T, I \otimes \Sigma)\)
Let \(H=n^{-1}11'\) be the hat matrix for the intercept-only model.
Then \(HX, RX\) are independent…