Written by Juliette Woodrow, Brahm Capoor, Anna Mistele, John Dalloul, and Elyse Cornwall
map Around the Globe
temps_f = [45.7, 55.3, 62.1, 75.4, 32.0, 0.0, 100.0]
# Helper Function
def to_celcius(temp_f):
return (temp_f - 32) * 5 / 9
temps_c = list(map(to_celcius, temps_f))
# Lambda Function
temps_c = list(map(lambda temp_f : (temp_f - 32) * 5 / 9, temps_f))
# A.
>>> sorted(houses, key=lambda tup:tup[1])
[('elm st.', 1, 1200), ('pine st.', 2, 1600), ('main st.', 4, 4000)]
# B.
>>> sorted(houses, key=lambda tup:tup[2], reverse=True)
[('main st.', 4, 4000), ('pine st.', 2, 1600), ('elm st.', 1, 1200)]
# C.
>>> sorted(houses, key=lambda tup:tup[2]/tup[1])
[('pine st.', 2, 1600), ('main st.', 4, 4000), ('elm st.', 1, 1200)]
# D.
>>> min(houses, key=lambda tup:tup[2]/tup[1])
('pine st.', 2, 1600)
# E.
>>> max(houses, key=lambda tup: tup[1])
('main st.', 4, 4000)
def reverse_keys(counts):
"""
Takes in a 'flat' counts dictionary and prints the
keys of the dictionary in reverse alphabetical order.
"""
tags = counts.keys()
tags_reversed = sorted(tags, reverse=True)
for tag in tags_reversed:
print(tag)
def most_used(counts):
"""
Takes in a 'flat' counts dictionary and prints the 5 most
frequently used hashtags in the dataset.
"""
count_tuples = counts.items() # [('#cs106a', 9), ('#Stanford', 2), ... ]
tuples_sorted = sorted(count_tuples, key=lambda t: t[1], reverse=True) # sort by count descending
top_5 = tuples_sorted[:5] # slice first 5 tuples
for tup in top_5:
print(tup[0], tup[1])